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We present a new gauge-independent approach to resonant transition amplitudes with noncon- 
served external currents, based on the pinch technique method. In the context of 2 + 2 and 2 --t 3 
scattering processes we show explicitly that the analytic results derived respect U(l),, gauge sym- 
metry and do not depend on the choice of the SU(2)r. gauge fixing. Our analytic approach treats, on 
equal footing, fermionic as well as bosonic contributions to the resummed gauge boson propagators, 
does not contain any residual spacelike threshold terms, shows the correct high-energy unitarity 
behavior, admits renormalization, and satisfies a number of other required properties, including the 
optical theorem. Even though our analysis has mainly focused on the standard model gauge bosom, 
our method can easily be extended to the top quark, and be directly applied to the study of unstable 
particles present in renormalizable models of new physics, 

PACS number(s): 11.15.Bt, 11.15.Ex, 14.70.Fm 
I. INTRODUCTION 

Several years after the first experimental observations 
of decaying quantum-mechanical systems [l], Weisskopf 
and Wigner [2] formulated a theory for the time evolu- 
tion of decaying states, which has been used with great 
success for the description of CP violation in the K,,-& 
and other systems. This theory is, however, approximate, 
and deviations from its predictions are expected, when 
observations take place at very short or very long times 
as compared to the lifetime of the unstable particle [3]. 
Subsequently, V&man [4] showed that an S matrix the- 
ory, where the dynamics of unstable particles is described 
in terms of initial and final asymptotic states, is unitary 
and causal, despite the presence of on-shell particle con- 
figurations. 

The correct treatment of unstable particles has re- 
ceived a renewed attention within the framework of the S 
matrix pesturbation theory, mainly because the straight- 
forward generalization of the Br&Wigner (BW) propa- 
gator derived from naive scalar field theories (41 to gauge 
field theories, violates the gauge symmetry [5-141. This 
fact is perhaps not so surprising, since the naive resum- 
mation of the self-energy graphs takes into account higher 
order corrections, for only certain parts of the tree-level 
amplitude. Even though, as we will show, the amplitude 
possesses all the desired properties, this unequal treat- 
ment of its parts distorts subtle cancellations, resulting in 
numerow pathologies, which are artifacts of the method 
used. Evidently, a self-consistent calculational scheme 
needs be devised, which will exploit all the healthy field 
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theoretical properties intrinsic in every S-matrix element. 
An early attempt in this direction has been based on 

the observation that the position of the complex pole 
is a gauge-independent (GI) quantity [6-81. Exploiting 
this fundamental property of the S matrix, Stuart [7] 
has developed a perturbative approach in terms of three 
gauge-invariant quantities: the constant complex pole 
position of the resonant amplitude, the residue of the 
pole, and a q2-dependent nonresonant background term. 
Even though this approach, which is based on a Laurent 
series expansion of the resonant transition element [7], 
may eventually furnish a gauge-invariant result, the per- 
turbative treatment of these three GI quantities [ll] in- 
troduces unavoidably residual spacelike threshold terms, 
which become more apparent in CP-violating scenarios 
of new physics. In fact, the precise q2-dependent shape 
of a resonance [s] is reproduced, to a given loop order, by 
considering quantum corrections to the three GI quanti- 
ties mentioned above [7,11], while the spacelike threshold 
contributions, even though are shifted to higher orders, 
do not disappear completely. 

Within the f%nework of the S matrix perturbation 
theory, it was suggested [5] that finite width effects can 
induce sizable CP violation and resonantly enhance CP- 
violating observables [15] in supersymmetric theories, 
and other extensions of the minimal standard model 
(SM) 1161. The quest of the proper BW form for a 
resonant W and t propagator [9, 10, 171 is equally im- 
portant for processes, such as e+e- -+ W+W- [12], 
e-7 -+ p-Ppv. [13,14,18], etc. 

In this paper, we present a new GI approach to res- 
onant transition amplitudes implemented by the pinch 
technique (PT) [N-22]. The PT is an algorithm that 
systematically exploits the known field theoretical prop- 
erties of the S matrix, which is the fundamental physical 
quantity of interest. Operationally, the PT leads to a 
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3 GAUGE-INDEPENDENT APPROACH TO RESONANT.. 2129 
rearrangement of the Feynman graphs contributing to a 
gauge-invariant amplitude, in such a way as to define in- 
dividually GI propagator, vertex, and boxlike structures. 
For example, the PT arranges the S matrix element T 
for the process ql& + q,&, where ql, q2 are two on-shell 
test quarks with masses ml and nz2, in the form 

T(s,t,m1,mz) =6,(t) +%(t,m*) +~&,mz) 

+TdS>t,~l,w) , (1.1) 

where the Z’i (i = 1,2,3) are individually f indepen- 
dent. The parts of vertex and box graphs which are 
kinematically akin-to propagators and enforce the gauge 
independence of Tl(t), are called propagatorlike pinch 
parts. Similarly, vertexlike pinch parts of boxes enforce 
the gauge independence of Tz (t) . 

The crucial novel ingredient we introduce in the con- 
text of resonant transition amplitudes is the proposition 
that the resummation of graphs must take place only af- 
ter the amplitude of interest has been cast via the PT al- 
gorithm into manifestly GI subamplitudes, with distinct 
kinematic properties, order by order in perturbation the- 
ory. For example, it is the resummations of the ‘?I which 
will provide the effective, manifestly GI, resummed prop- 
agators. 

The main points of our approach have already pre- 
sented in a brief communication [23]; in this paper we 
mainly focus on the detailed treatment of several techni- 
cal issues. The outline of the present work is as follows. 
In Sec. II, we define the &nework of our perturbative 
GI S matrix approach by considering the resonant re- 
action e-17~ + /I-.?~. Issues of resummation and the 
resummation procedure within the PT will be discussed 
in Secs. III and IV, respectively. In Sec. V, we show that 
the position of the pole does not get shifted when using 
the PT resummation algorithm in the stable particle the- 
ory --a heuristic proof is given in Appendix A. In Sec. 
VI, we further show that this is still true for the case of 
unstable particles. Section VII deals with issues related 
to unitarity of resonant processes. In Sec. VIII, we give 
an application of our approach to the resonant processes 
ye- + p-cpve and QQ’ + e-pep-@+, which involve the 
7WW and ZWW vertices, respectively. tither techni- 
cal details of such reactions are relegated in Appendices 
B and C. Section IX contains our conclusions. 

II. THE PROCESS e-tie + p-v,, 

Despite the fact that the S matrix is well defined, the 
evaluation of physical processes has to rely on its pertur- 
bative expansion in the coupling constants of the theory, 
as there is not yet an analytic method to calculate the 
complete S-matrix amplitude. On the other hand, this 
perturbative approximation of S is not unique, and de- 
pends on the form of the expansion adopted, and, to 
some extent, on the renormalization prescription used 
to remove the ultraviolet (UV) divergences. However, 
the summation of all infinite perturbative contributions 
should formally reproduce the unique expression of the 
S-matrix element of the process under consideration. Al- 
though the perturbative expansion itself may contain 
such difficulties, there are some well-defined features that 
characterize a consistent perturbative expansion of S ma- 
trix within gauge field theories. 

(i) The expansion should obey a number of required 
properties, including unitarity (or equivalently the opti- 
cal theorem) [4], causality [24], analyticity, etc. [25]. 

(ii) Since we are interested in renormalizable field the- 
ories based on Lagrangians which contain operators of di- 
mension no higher than four and so have an inherent pre- 
dictive power, the expansion under consideration should 
consistently admit renormalization. 

(iii) The perturbative S matrix element should respect 
the fundamental gauge symmetries. In particular, since it 
represents a physical quantity, it should be independent 
on the choice of gauge used, which can only be shown to 
be the cake with the help of Becchi-Rouet-Stora (BRS) 
transformations [26]. 

Conditions (i) and (iii) are the main source of prob- 
lems, when considering resonant S matrix transition am- 
plitudes. In what follows, we will discuss some of the 
crucial differences between our approach and the con- 
ventional S matrix perturbation theory. In the context 
of the latter, the one loop W-boson self-energy has the 
general form 

q%4J) = bL”w$%?2) + 4ww~‘(92), (2.1) 

where 

&w(Q) = -sp + 7, 

&“(Q) = 7. (2.2) 

The self-energy of Eq. (2.1) is a gauge-dependent quan- 
tity; in the conventional S-matrix approach it depends 
explicitly on the gauge parameter f. The two-point func- 
tion for the mixing W-G-, O,, and G-G- self-energy, 
0, are also .$ dependent. Using the general form of 
Eq. (2.1) for the self-energy, the one loop resummed W 
propagator is given by 

= t,“(q) 
1 

q2 - w - rI$P(q2) 

-4&l) 
f 

q2 - .p.r~ - rIp( 
(2.3) 

where 

Ai$v(d =t (4 ’ P” q2-M= - L”(q) q2 -;Ma 

=U,&) - $$2lf’(q2). (2.4) 

In Eq. (2.4), U,,, stands for the &ee W propagator in the 
unitary gauge, which has the form 

u,“(q) = (-gpv + g> q2 _1,? 

=Md q2 _1,2 + 44”(Q) &, (2.5) 
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and 

op(q”) = l 
q=-fMa’ (2.6) 

is the tree-level propagator of the associated Goldstone 
boson G+ in a general f gauge. Its resummed propagator 
reads 

Dqq2) = 1 
qz - FM2 - flW(qZ) 

For purposes of illustration, we have only considered 
the lowest order of resummation, where higher order 
W-G- mixing effects have not been taken into account. 
However, our conclusions will still be valid for the gen- 
eral case. Using the resummed f-dependent propagators 
given in Eqs. (2.3) and (2.7) for the calculation of a res- 
onant process, such as e-oe + P-Q,,, to a given order 
of perturbation theory, one can then verify easily that 
the ,$ dependence does not disappear. The reason is that 
II$ (9”) is a .$ dependent quantity in a region not far away 
from the resonant point q2 = M2 (only at this point the 
self-energy is GI) and the propagators (2.3) and (2.7) in- 
duce f dependence to all orders, while &dependent terms 
coming &am vertices and box graphs can remove this 
gauge dependence only to a given order of the conven- 
tional perturbation theory. Instead, within our frame- 
work, the above problems associated with the resummed 
self-energies are absent, because the entire f dependence 
has been eliminated via the PT order by order in pertur- 
bation theory, before resummation takes place. 

We will now consider an approach implemented by the 

v. c- 
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(4 
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FIG. 1. The PT decomposition of the process e-i& --t 
p-0” (the arrow of time shows downwards). 
PT. Within the PT framework, the transition amplitude 
T(s,t,mi) of a 2 + 2 process, such as e-De + ti-p@ 
shown in Fig. 1, can be decomposed as 

T(s,t,mi) = Tl(s) + Cf&m;) + @,t,m<), 

(2.8) 

in terms of three individually GI quantities: a propa- 
gatorlike part (F1), a vertexlike piece (Tz), and a part 
containing box graphs (2’3). The important observation 
is that vertex and box graphs contain in general pieces, 
which are kinematically akin to self-energy graphs of the 
transition amplitude. The PT is a systematic way of 
extracting such pieces and appending them to the con- 
ventional self-energy graphs. In the same way, effective 
gauge-invariant vertices may be constructed, if after sub- 
tracting from the conventional vertices the propagator- 
like pinch parts we add the vertexlike pieces coming from 
boxes. The remaining purely boxlike contributions are 
then also GI Finally, the entire S matrix can be rear- 
ranged in the form of Eq. (2.8). In the specific example 
e-pc 3 P-D~, the piece ?I consists of three individzlally 
GI quantities: The WY self-energy fi,, [Fig. l(a)], the 

W-G- mixing term1 0, [Figs. l(b) and l(c)], and the 
GG self-energy 6 [Fig. l(d)]. Similarly, ?z(s, rni) consists 

of two pairs of GI vertices We-&, Ge-De [Pt’ and h(l), 
given in Figs. l(e) and l(f), respectively] and W@-P~ and 

Gp-c,, [Fr’ and j\(‘), in Figs. l(g) and l(h)]. In addition 
to being GI, the PT self-energies and vertices possess a 
very crucial property, e.g., they satisfy tree-level Ward 
identities, &mar&d as 

q’ffiJw - 2Mq6, + M% = 0, 

4’qm - M&,=0, 

q’& - M6=0, 

q’fil - M;I”=O, 

(2.9) 
(2.10) 

(2.11) 

(i = 1,2). (2.12) 

These Ward identities are a direct consequence of the re- 
quirement that ?I and ?z are fully .$ independent. As 
explained in detail in [20,27], after having canceled via 
the PT all f dependences inside loops, these Ward iden- 
tities enforce the final cancellations of the f dependences 
stemming from the tree-level propagators. In fact, the 
derivation of the Ward identities does not require knowl- 
edge of the closed expressions of the quantities involved. 
To see how the final f dependences cancel by virtue of 
the aforementioned Ward identities we turn to Tl. After 
the PT process has been completed, 7’1 reads 

‘In fact, we define &(q) = ii,“‘“-(q) = i?,“‘w-(q) = 

-fi;+G+(q) = -,;+w+ (q), where the momentum always 
flows from the left to the right in the language of Feynman 
diagrams. 
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?I = r;A$; + YA(‘) ,, oV,i?““A$,,E?,r; 

+h,,Df)A,, + AoDf%D~‘)Ao 

+l?;A&@D~‘) ho + A,,D~%‘A$r~ 

= r;u,,r; + r;u,,Wu,,r~, (2.13) 

where I$ and A,, are the tree-level W-boson and would- 
be Goldstone boson couplings to the fermions, respec- 
tively. In the second step of Eq. (2.13), the Ward iden- 
tities of Eqs. (2.10) and (2.11) were used. Clearly, all [ 
dependence has disappeared. We can actually go one step 
further and rewrite this last E-independent expression as 
a sum of two pieces, one transverse and one longitudinal, 
by employing Eq. (2.5) and the Ward identities of Eqs. 
(2.10) and (2.11). Indeed, if we write fi,, in the form of 

Eq. (2.1), i.e., IIpV = t,,& + !,,lI, we have 

(2.14) 

fi,xfi, 
q2 

(2.15) 

and so ?I may be written as 

Let us now assume for a moment that the PT decom- 
position holds to any order in perturbation theory (we 
will extensively discuss the validity of this assumption in 
the next sections). In such a case, summing up contribu- 
tions from all orders in perturbation theory we obtain, 
for 2’1 (suppressing contraction of Lorentz indices), 

6 = rouro + roui?uro + roufWfiuro + 

= roAro, (2.17) 

with 

4d”(Q) = Md 
1 

q2 - M2 -II* 

+L”(q) t. 
MZ - II,( 

It is important to emphasize that the propagator of Eq. 
(2.17) is process independent; one arrives at exactly the 
same expression for A,,, fin, and i?~, regardless of the 
quantum numbers of the external particles [28]. In the 
last step of Eq. (2.17), we have assumed that the analytic 
continuation of the result to the resonant point q2 = M2 

will not cause any theoretical difficulty. In the case of the 
conventional propagator such an assumption is justified, 
since the resonant propagator can be directly derived as 
a solution of the corresponding Dyson-Schwinger (DS) 
integral equation, which is well defined, even at the sin- 
gular point q2 = M2. The reason is that the DS integral 
equations can be deduced directly from the action of the 
theory, through a variational principle [29]. Even though 
the corresponding task has not been yet accomplished for 
the SD equation governing the dynamics of PT Green’s 
functions [30], we will consider the analytic continua- 
tion of our results as a plausible assumption. We will 
therefore carry out our diagrammatic approach in terms 
of Feynman graphs and then continue analytically ow 
results to describe the physics of unstable particles. 

III. ISSUES OF RESUMMATION IN THE PT 

Even though the PT has been developed in detail to 
one loop, its generalization to higher orders has not yet 
been presented in the literature. In this section we will 
briefly outline how this generalization proceeds; the full 
presentation will be given elsewhere [31]. 

Here we will focus particularly on issues of resumma- 
tion, and show that the gauge-invariant PT self-energy 
may be resummed in the same way as one carries out 
the Dyson summation for the conventional self-energy. 
In other words, the PT self-energies have the fame re- 
summation properties as regular self-energies. The cru- 
cial point is that, even though contributions from ver- 
tices and boxes are instrumental for the definition of 
the PT self-energies, their resummation does not require 
a corresponding resummation of vertex or box parts. 
In order to see that, consider the usual Dyson series 
for the conventional self-energy of QCD. The building 
blocks of this series are strings of the basic self-energy 
II&q) = trv(q)II(q2), computed to a given order in per- 
turbation theory, which repeats itself. The net effect of 
the resummation of all such strings is to bring the quan- 
tity II in the denominator of the free gluon propaga- 
tor A,,,. 

Let us now see how one can resum, i.e., bring in the 
denominator the one loop PT self-energy. To that end, 
consider a string of regular one loop self-energies (in any 
gauge) in QCD. Clearly, in order to convert the string of 
self-energies into a string of PT self-energies one needs 
to furnish the missing pinch parts (in the same gauge). 
At one loop any pinch contribution has the general form 
[At’(q)]-‘VP(q) (for propagatorlike pinch parts coming 
from vertices) and [Atp(q)]-lBP(q)(Ar(q)]-l for prop- 
agatorlike pinch parts coming from boxes). To simplify 
the picture (without loss of generality) let us work in 
the Feynman gauge 5 = 1. Then at one loop the only 
pinch contribution comes from vertices (beyond one loop 
we have propagatorlike pinch parts from boxes, even for 
[ = 1). So for each conventional lI,, q) we need to 
supply a factor [Ar(q)]-‘;VP(q) + ;V 6 (q)[Ar(q)]-‘. 
Some of the necessary pinch contributions will be pro- 
vided by graphs containing at least one vertex, such as 
in Figs. 2(b), 2(c), and 2(d). These existing pinch parts 
are however not sufficient for converting all II,,, into fi,,. 
If we add by hand (and subsequently subtract) the miss- 
ing pieces to each ll,,, (a) the string has been converted 

into a string with IIrrv + fi,, and (b) the leftovers, due 
to the presence of the inverse [Ar]-‘, are effectively one- 
particle iweducible. 
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To see that in detail, let us turn to the specific example 
shown in Fig. 2. The original string L with two one loop 
self-energies reads (there is an overall factor t,, which is 
factored out) 

L = -$ [n, ($) n,] $ (3.1) 

and is accompanied by the three strings Lx, Lz, and Ls 

shown in Figs. 2(b), 2(c), and 2(d), respectively. After 
extracting the pinch contributions from the one loop ver- 
tices of L1, Lz, and Ls as is depicted in Figs. 2(e), 2(f), 
and 2(g), we receive the propagatorlike contributions 

Lr=+ [IL ($) ;v:,q $ 
L: = -$ [ Q2+: (+) ;v:q2] $. (3.2) 

Returning to L, we know that in order for a fl to be 
FIG. 2. The PT method applied to the scattering qq + 
q’$ at the two-loop QCD order. 

converted into a fi an amount (q2$Vp+4Vpq2) must be 

add+. Let us call L the corresponding string containing 
two II, instead of two II. Let us see how we can construct 
it from the existing pieces: 
(3.3) 
where 

R=ll,@ + ;V,PII, 

(3.4) 

We see that in addition to the existing pieces L, Lr, L{, 
and L$‘, one needs to supply R. As advertised, R has the 
very important property that it is effectively one-particle 
irreducible. So, R has the same structure as the one- 
particle irreducible two-loop self-energy graphs shown in 
Fig. 3. Evidently, -R together with the genuine two-loop 
vertex and box pinch Contributions displayed in Fig. 4 
will then convert the conventional two-loop self-energy 
into the GI two-loop PT self-energy. So, the general 
form of the QCD propagatorlike pinch contributions in 
the Feynman gauge, to a given loop order n in perturba- 
tion theory, has the form t,,(q)IIc(q”), with 

@‘bi? = n2V,P(q2) + (q2)2B,p(q2) + R,p(q’). (3.5) 

For example, propagatorlike pinch contributions from 
-i 
(4 

FIG. 3. Two-loop PT contributions to the gluon vacuum 
polarization. 
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(4 (4 

FIG. 4. Typical two-loop vertex and box graphs giving 
PT contributions to the two-loop PT self-energy. 

one loop vertex graphs have the general form of the first 
term in the right-hand side (RHS) of Eq. (3.5), whereas 
one-loop contributions from boxes have the general form 
of the second term. The Rz(q’) contains contributions 
of all terms described in (b). Clearly, Rp(q2) = 0, but 
R,p(q2) # 0 for n > 1. For example, for n = 2 we have 
that Rf is the negative of R of Eq. (3.4). In this notation, 
Rf reads 

R;(q’) = -R = - 
( 

3, P P &VIP + ;q VI VI 
> 

(3.6) 

Obviously, the Rf terms consist in general of products of 
lower order conventional self-energies IIk(q’), and lower 
order pinch contributions Vtp and/or BP, with k+e = n. 

We emphasize that the procedure described above has 
not been tailored for the particular needs of the present 
problem, but it is of general validity. In fact, this is the 
way the PT must be generalized to higher orders: one 
has to first convert a subset of diagrams locally into the 
corresponding PT subsets using the results of the previ- 
ous order, by adding (and subsequently subtracting) the 
appropriate pinch parts, every time they are not present. 
Because of their characteristic structure the extra pieces 
give rise to diagrams which then can (and they should) 
be allotted to the remaining graphs, and they are cru- 
cial for their gauge independence. In this way, one can 
rewrite the S matrix at each order in perturbation theory, 
into manifestly GI subamplitudes, with the characteris- 
tic properties one knows from one loop. In fact, it is of 
particular importance to explicitly demonstrate that the 
procedure described above will indeed give rise to a GI 
two-loop self-energy, whose divergent part will coincide 
with the GI two-loop QCD p function. Results in this 
direction will be presented in detail in (311. 

We conclude this section with some technical remarks. 
It has been known for years that when computing the PT 
Green’s functions any convenient gauge may be chosen, 
a~ long aa one properly accounts for the pinch contribu- 
tions within that gauge 1191. In the context of the “renor- 
m&able” Rc gauges the most convenient gauge-fixing 
choice is the Feynman gauge (c = 1). This is SO because 
the longitudinal parts of the gauge boson propagators, 
which can pinch, vanish for [ = 1, and the only possibility 
for pinching stems from the tree-boson vertices. As was 
recently realized [32], the task of the PT rearrarigement 
of the S matrix can be further facilitated, if one quantizes 
the theory in the context of the background field method 
(BFM) [33]. Even though the Feynman rules obtained 
via the BFM are rather involved, they become, particu- 
larly convenient for one loop piqching, if one chooses the 
Feynman gauge ([Q = 1) inside the quantum lpops. In 
fact, all possible one loop pinch contributions are zero in 
this gauge, e.g., VlpI~p=l = B&,I = 0. Consequently, 
the one loop PT Green’s functions (which one can obtain 
for every gauge) are identical to the conventional Green’s 
functions, calculated in the Feynman gauge of the BFM. 
This correspondence between PT and BFM eat &J = 1 
breaks down for the two-loop purely bosonic part [34]. 
Therefore, Vz’nplcp=l # 0 and @‘I<,=1 # 0, for 7~ > 1. 
The technical details leading to these conclusions will be 
presented in [31]. 

IV. PT RESUMMATION WITH 
NONCONSERVED CURRENTS 

We now describe how to generalize the form of ‘?I, 
presented in Eq. (2.13) for the one loop case, to higher 
orders. In particular we want to show that when the 
external currents are nonconserved, all possible GI prop- 
agatorlike strings assume the form of Eq. (2.16). For 
definiteness, we concentrate on the case where the exter- 
nal currents are charged. Exactly analogous arguments 
hold for neutral currents. To accomplish that we must 
follow a three-step procedure. 

(a) As described in the previous section, if we work at 
loop order ft in perturbation theory, the strings contain- 
ing conventional I&, O,, and a self-energies (of indi- 
vidual order less that n, but of combined order n) must 
@ converted to_the corresponding PT strings containing 
$,,, O#, and 0, i.e., we must replace conventional with 
“hatted” quantities. In doing so we use the formulas and 
methodology developed in [20]. As in the previous sec- 
tion, we assume that the necessary pinch parts form the 
lower orders are known; in particular, the missing pinch 
contributions are supplied by hand, and subsequently 
subtracted. The leftovers are effectively one-particle ir- 
reducible and will be added to the corresponding IIrrvr 
O,, and fi of order 1~. All such terms, together with the 
normal pinch parts from box and vertex graphs of order 
n, will finally give rise to the fi,,,, G,,, and 6 of that 
order. 
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(b) By close analogy to Eq. (3.5), the general form of 
the transverse propagatorlike pinch contribution to the 
massive gauge boson is given by 

@(qZ) = (q2 - 4w(q2) 

+(q2 - m$Bp(q2) + R,p(q”) ? (4.1) 

The generic form of Rf: is also very similar; the Rf for 
example is simply 

Ri= = - 
( 

3 2 P P 
&VP+ z(q -m;)v, V, 

> 
(4.2) 

Of course, the closed expressions of the individual Vff, 
B,‘, and R,’ are in general different from the QCD case. 
It is important to notice that Rz contains a nonzero 
number of terms which are not explicitly proportional 
to (q2 - rn;); this is so because, as explained above, the 
explicit [At;“]-’ in front of the IIk(q’) cancels against 
one of the Ar of the string. 

(c) When all possible strings have been converted to 
PT strings, one can show that due to the Ward identities 
in Eqs. (2.9)-(2.11), they finally reorganize themselves 
into two different types of GI strings, @ and ??f of the 
form 

[cq],, = t,“DOi@DOii;DO{.’ .}Doii;-‘Dofi~Do 

(4.3) 

and 
(4.4) 

Here, Do E D$‘=l) = (q2 - M2)-’ defined in Eq. (2.6), ii”? is the PT transverse WW self-energy of loop order ij, 

$2 is the PT G-G- self-energy, and C,kzl(ij) = n. Of course, for resummation purposes to a given loop order n, 
we have to identify all the possible combinatorial strings of self-energies in Eqs. (4.3) and (4.4), which will yield the 
resummed propagator of order n. 

To give a concrete example, let us consider the entire set of possible strings at n = 2, for the process e-oe + ~-0~ 
shown in Fig. 5. Their explicit expressions are 

(4.5) 

I 
It is now straightforward to prove that due to the Ward 
identities of Eqs. (2.10) and (2.11) all remaining t depen- 
dences cancel. To see that we can simply isolate powers 
of D(t) and verify that their cofactors, by virtue of the 
Ward identities add up to zero (this is essentially the ap- 
preach presented in [27]). Equivalently, we notice that 
the above strings may be combined pairwise [(a) with 
(b), (c) with (d), (e) with (f), and (g) with (h)], to yield 
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(0, ii, IS, PII 

FIG. 5. The propagatorlike part i;, of the transition el- 
ement for the process e-pc + j.-6,. at the two-loop elec- 
troweak order. 

[after using Eqs. (2.10) and (2.11)]: 

We can then further combine (a)+(b) with (g)+(h) and 
(c)+(d) with (e)+(f): 

(a) + (b) + (g) + (h) = l&f+ @A - %$Di”) 

XiWY r”, 

(c) + (d) + (e) + (f) = U,,@‘D~%TJ rY (4.7) 

which finally gives 

[i;,],, = u,,iwu,,fi~~u,,. (4.8) 

We may now write the [‘?&, of Eq. (4.8) as the sum of 

two pieces, [?&, and [?&,, of the general form adver- 
tised in Eqs. (4.3) and (4.4), respectively. Indeed, using 
the identity of Eq. (2.5), and the Ward identities, we 
obtain 

= RI,, + r21,,. (4.9) 
It is obvious how to generalize the above arguments to 
an arbitrary loop order rz, which will formally lead to the 
resummed propagator A,+ stated in Eq. (2.18) in the 
limit n + co. 

V. THE POSITION OF THE POLE IN THE PT 

Another important issue in the context of the PT is the 
following. It is known that even though the conventional 
gauge boson self-energy is gauge dependent, the position 
of the pole is a GI quantity [6,7]. On the other hand, the 
PT self-energy is by construction GI for all values of q2, 
and therefore its pole is also guaranteed to be GI. Given 
the fact that the pole position of the conventional prop- 
agator is related tb physical quantities (mass and width) 
it is important to inquire, whether or not the PT pole 
position is different from that of the conventional one. 
It turns out that, to any order in perturbation theory, 
the two poles are identical. Put in different words, if one 
works at loop order n in perturbation theory, the two 
poles differ by a gauge-independent amount, which is of 
order n + 1. This fact may come as no surprise sin& the 
PT seems to have the general property of not affecting 
quantities which are already GI. 

In order to gain some intuition, let us first concentrate 
on the simpler case of a stable particle, and show that its 
mass does not get shifted by the PT. The conventional 
propagator A,,“(q) (computed at some gauge), and the 
PT propagator &y(q) have the form 

A,&4 = 
-+,” 

q2 - mg - qq2) + 

and 

kW(Q) = -ig,, 
q2 - rn; - fi(q2) 

f..., 

where the ellipses denote the omission of terms propor- 
tional to q’qy. The corresponding masses rn and &, re- 
spectively, are defined as the solution of the following two 
equations: 

rn2 = rn; + II (5.3) 

and 

h2 = rn; + ii( (5.4) 

In perturbation theory clearly rn2 = m~+C~gs2”C, and 

Y?? = rn; + C;“g”“&, and to zeroth order rn2 = liLz = 
rn;. Therefore, 

?2 -rn; = O(g2). (5.5) 

At one loop it is easy to see what happens. To begin 
with, to any order in perturbation theory 

fL(q2) = IL(q2) + II:($) (5.6) 

The general form of the one loop IIf’( in any gauge, 
is given by 
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@(q’) = (9’ - mi)V,P(q’) + (9’ - &%(q”) , 

(5.7) 

and of course Rr = 0 for every gauge; in addition, in the 
Feynman gauge BP = 0. So, from Eqs. (5.3)-(5.7) Andy 
assuming that Vlp(7iL2) and Bf’(liL”) are nonsingular, we 
have that 

6%; = rn: + lII (72) + O(g4) (5.8) 
= rn? + O(g4) (5.9) 

from which follows that C, = &. 
The nontrivial step in generalizing this proof to higher 

orders is to observe that not all pinch contributions in 
the previous equation contribute terms of higher order. 
Indeed, as already mentioned in Sec. IV, the RP terms of 
Eq. (4.1) do not always have a characteristic factor (q2 - 

mg) in front, because it has been cancelled by an internal 
propagator of the string. Such terms are not of higher 
order, as is the case with the graphs which are of the 
form given in Eq. (5.7). To see why such contributions 
are instrumental for our proof, let us repeat the previous 
calculation, in the two-loop case. At the two-loop order, 
rn2 and A2 are given by 

TL2 = rni + IIl(rn2) + H&2) (5.10) 

and 

A2 = rn; + I&(6?) + II, + IIT + II;, (5.11) 

where 

IIf + IIf(62) = (G? -‘m;)[v,P(???) + V,p(+L”)] 

+(liL2 - m:)Z~Bf=‘(~2) + B,p(~??)l 

+R;(riL’) .-~ (5.12) 

We want to show that II~@“) + II;(&) = O(gB); sub- 
stituting fi2 - rn; = II, + O(g4) into Eq. (5.12), 
and neglecting terms of O(g6) or higher, we find 
II:@“) + I$@“) = Rf@‘) + II,(liL”)V~(liL”) + O(g”) 

= 0 + O(gS). (5.13) 

In the final step we have used Eq. (4.2) at q2 = 6~‘: i.e., 

R;(T%‘) = -lI~(ljLZ)Vlp(rh2) - ;(T?? - m&p(r%2) 

xvlp(T?i2) 

= -II,(+?)V,P(~“) + O(g6). (5.14) 

The generalization of the previous proof to an arbi- 
trary loop order 1~ in perturbation theory proceeds by 
induction. First of all, to simplify things we will work in 
the Feynman gauge. In that case, the general form of the 
RP terms becomes 

R,’ = (q2 - m;)v,P + (q2 - m;)‘b,P + fi; , (5.15) 

where & is the part of RE which is of O(gz”) at q2 = 
rn’, whereas the rest is O(g2(“+1)). For example, from 
Rf of Eq. (4.2), or equivalently Eq. (5.14), we have that 
@(q) = -II,(q)Vp(q). Finally, we define V,f and f?,’ as 

v,p=vnp+tJ,p, 

U,p=B,p+b,p. (5.16) 

Let us_now assume that ??a2 = rn’, up to order n- 1, i.e., 
Cr, = Ck, for every k < 1~ - 1. The expression for +x2 to 
order n is 

n 
?Q=m; + &I, + (?Q-?n;,~vkp 

!%=I !+=I 
n 

+ (?%-m~)2~L?f + kfif. (5.17) 
k=l k=1 

Using the fact that h2 - m; = x:-Ink + O(gZ=) 
(from the previous order), and that, as before, both 

(6~’ - mi)Vf and (T%” - m$“@ are of O(g’“+‘) and 
higher, Eq. (5.17) becomes 
It is a matter of careful counting to convince oneself that 
each term of the series in the right-hand side (RHS) of 
the last Eq. (5.18) vanishes, i.e., 

kc + ‘k&Vflt + 2 &IItIIj-IUf-j = 0, 

1=1 j=1 !=I (5.19) 
which means that to order n, ti2 = rn’, or equivalently, 
C, = &,, for every 1~. In Appendix A, we present a proof 
ofEq. (5.19). It is interesting to see that it is precisely the 
leftover contributions we obtain when we convert conven- 
tional strings into GI strings, which enforce the equality 
between the conventional and PT poles. 



3 GAUGE-INDEPENDENT APPROACH TO RESONANT. , . 2137 
VI. THE CASE OF THE UNSTABLE PARTICLE 

We now proceed to the case of an unstable particle; 
‘we want to show that both the mass and the width re- 
main unshifted in the context of the PT. We will adopt 
the definitions and methodology introduced by Sirlin [s]. 
Calling s = q2, the pole position 3 is defined as the solu- 
tion of the equation 

3 = mg + II(S). (6.1) 

We adopt the following definition of mass rn and width 
I? in terms of .? 

~=7l?-iTlS. (6.2) 

Similarly, in the context of the PT we define the pole 
position i = T?Z’ - iliLf as the solution of 

s = rni + ii(S). (6.3) 

We want-to show that s = S -or equivalently, rn = ?iL 
and I? = r-to every order in perturbation theory. Since 
both r and ? are of O(&, at one loop we have just the 
result of the previous section, i.e., rn = 7iL, for n = 1. 
Going to the next order, we expand Eqs. (6.1) and (6.3) 
up to terms of O(g”), 

s = rn; + II(&) - n’(d)id- (6.4) 

and 

i = rn; + fi(7jL2) - i?(@)i?%P, (6.5) 

where II’ = dII(q2)/dq2/,~,,s. Separating real and 
imaginary parts (we omit the arguments rn2 and +x2, re- 
spectively) we have 

72 = rni + ReII + mrhn’, (6.6) 

??I’ = rn; + Refi + &II&? , (6.7) 

for the real parts, and 

d = -rmn + dRerv, (‘5.8) 

kr = -Ir& + &FR&’ ) (6.9) 

for the imaginary parts. Let us write +a2 and &j? as 
follows: 

A2=??2+, li (6.10) 

liLr=mr+Ez, (6.11) 

where 

cl = ReIIP + ~?&mll P’ , (6.12) 

~2 = -In@ + +z?ReIIP’. (6.13) 

In Eqs. (6.12) and (6.13), II= is the total pinch contribu- 
tion to order g4, i.e., IIp = lTf + IIf, with the general 
form given in Eq. (5.12). We now want to show that both 
~1 and ~2 are of O(g’). Using again Eq. (5.12) we have 
that 

ReIIP = Re&Rev; + ReRz + O(g’) (6.14) 
and 

TFL%nII~‘= [ImV,P + O(g4)][-Irn& + O(g’)] 

= -ImV~Iml& + O(g6). (6.15) 

Therefore, up to terms of O(g6), 

cl= ReR; + ReVIPReIIl - lmV1%II~ 

= Re(R; +&VIP) 

=o, (6.16) 

where we used Eq. (5.14). Similarly, using the fact that, 
to ow, 

ImIIP = ImR; + Im[(r?z” - m;)Vp + O(g6)] 

= ImR; + Im[V,PReI& + O(g’)] 

= ImR; + ReII&nV,P (6.17) 

and 

&ReII” = -ReV1%II1 + O(g6) 

we have 

62 = -1mR; - ReIIJn@ - ReV1pImlIl 

= -Im(R; +&I’,‘) 

= 0, (6.19) 

where again Eq. (4.2) was used. 
It is straightforward to generalize this result to an arbi- 

trary order 1~ in perturbation theory. One should simply 
notice that the formula of Eq. (4.2) and its g+neralization 
to higher orders given by Eq. (5.19) is crucial to obtain a 
general proof. In particular, we have seen in Sec. III that 
the extension of the PT to higher orders has given rise 
to new PT terms, Rf, which guarantee that the position 
of the pole remains unchanged. 

VII. UNITARITY AND RELATED PROPERTIES 

In this section, we will analyze issues of unitarity perti- 
nent to a consistent S-matrix perturbation theory involv- 
ing unstable particles. In particular, we will mainly focus 
on the optical theorem, which is a direct consequence of 
the unitarity of the 5’ matrix, and prescribes the form of 
the perturbative expansion for the transition operator 2’. 

The T-matrix elen& of a reaction i + f is defined 
via the relation 

(6.18) 

(flSli) = 6fi + i(27r)?w(Pf - Pi)(fITli), 

(7.1) 

where Pt (Pf) is the sum of all initial (final) momenta of 
the li) (If)) state. Furthermore, imposing the unitarity 
relation St.9 = 1 leads to the optical theorem 

WI4 - (wlf)’ 

= i~(2+@)(P~s - Pi)(i’lTlf)*(i’lTli). (7.2) 
i’ 
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In Eq. (7.2), the sum Ci, should be understood to be over 
the whole phase space and spins of all possible on-shell 
intermediate particles i’. A corollary of this theorem is 
obtained if i = f. In this particular case, we have 

Im(ilTli) = ; -$(2?+9(P, - Pi)l(flTli)j2. 

(7.3) 

In the conventional S matrix theory with stable parti- 
cles, Eqs. (7.2) and (7.3) hold also perturbatively. To 
be precise, if one expands the transition operator in 
power series of the coupling constants, say g, as T = 
Tc’) + T@) + + Tc”) + ., in a given order n one has 

n--l 

= i~(2~r)%@)(P,s - Pi) c Tj,;)*Tj;-k’. (7.4) 

k=l 

In a scalar model containing an unstable particle, Velt- 
man showed [4] that unitarity can be preserved by snit- 
ably modifying the S-matrix perturbation theory, in 
which unstable particles should always appear as inter- 
mediate states. Obviously, the S-matrix perturbation 
expansion arising from the truncation of the unstable 
particles as asymptotic states should be reformulated ac- 
cordingly. A convincing example of how the PT algo- 
rithm gives rise to amplitudes which, in addition to be- 
ing GI also respect unitarity, is the c+lculation of the 
magnetic dipole moment /IW and the electric quadruple 
Qw for the W boson [22]. Such quantities are of par- 
ticular interest in view of the upcoming experiments of 
the type e+e- + W+W- [35] that will be studied at the 
CERN Large Electron Positron (LEP 2) collider, which 
is planned to operate at a center of mass system (c.m.s.) 
energy s = 200 GeV. 

In order to understand under what. conditions an ex- 
pansion based on resummed propagators can respect the 
unitarity relation of Eq. (7.3), let us first consider the toy 
model of Ref. [4]. This model is a superrenormalizable 
&scalar theory, which contains a light scalar, 4, and a 
heavy one, 0, having a mass Aa’* > 2&f+. In order to 
provide a decay mode for the heavy scalar into two es, 
one introduces the interaction term in the Lagrangian 

where X is a nonzero coupling constant. For concrete- 
ness, we consider the reaction $6 + 44 at c.m.s. ener- 
gies s N &f$ This process proceeds via three graphs; one 
resonant s-channel graph, and two nonresonant t and u 
graphs. After performing a Dyson summation for the s-, 
t-, and u-channel propagators, we arrive at the following 
expression for the transition amplitude: 
T(s, t,u) = -X2 
1 

s - M; + R&I,(s) + iImn,p(s) 

where II* is the irreducible two-point function of the 
@a self-energy at the one loop order. It is easy to verify 
from Eq. (7.6), that the amplitude T(s, t,u) is endowed 
with the analyticity property of crossing symmetry. In 
other words, the various processes can be obtained by 
appropriately interchanging the Mandelstam variables .s, 
t, and ti; obviously T(s,t,u) = T(t,s,u) = . . . . These 
crossing properties can be naturally implemented, when 
the resummed self-energies appearing in Eq. (7.6) are mo- 
mentum dependent. When crossing is applied in such a 
case, the unphysical absorptive parts are killed by the 
kinematic 0 functions, whereas the new physical absorp- 
tive contributions, which emerge after crossing, will regu- 
late the resulting resonant channels. This feature persists 
even if vertex and box graphs are included. A qualita- 
tively similar behavior is expected in gauge theories; since 
the resummed self-energy derived &am the PT depends 
on q2, we conclude that our PT approach to gauge theo- 
ries with unstable particles respects the crossing symme- 
try. 

We will now discuss the main reason which clearly ad- 
vocates for a q2-dependent regulator, rather than a con- 
stant one. If we consider the LHS of Eq. (7.3), we have, 
for the process &$ + &, 

x2 Id*(s) 

lmT(s’t’u) = [s-M; + Ren,(s)]” + [IdI,( 

(7.7) 

which is related to the amplitude squared of the resonant 
s-exchange graph, say T.. In fact, one finds that 

ImT(s,t,u) = ; ~~XmsIT&)12, 
‘J 

where X~lps stands for the Lorentz-invariant phase space 
for the two on-shell 4 particles. Equation (7.8) is con- 
sistent with Eq. (7.4) in a perturbative sense. At this 
point it is important to notice that the unitarity rela- 
tion of Eq. (7.8) is only valid when the resummation in- 
volves an s-dependent two-point function and width for 
the unstable scalar Q. If a constant width for @ had been 
considered instead, unitarity would have been violated 
through Eq. (7.8), when s # Mg. It is therefore evident 
that the regulator of a resummed propagator should be 
s dependent in this scalar theory. The above problem is 
expected to appear if one attempts to use a constant pole 
expansion in the context of a gauge field theory. Indeed, 
there is no fundamental reason to believe that one could 
consistently describe gauge theories using a resummation 
procedure which is not well justified even for scalar the- 
ories. On the other hand, the reordering of Feynman 
graphs via the PT and the resummation of the momen- 
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turn dependent PT self-energies provides a GI solution to 
the problem at hand, while, at the same time, does not 
introduce residual unitarity-violating terms in the reso- 
nant matrix element. 

In what follows we will analyze some crucial aspects 
of the PT algorithm in relation to the unitarity, and un- 
derline the analogies between the PT results in gauge 
theories and some known facts from the @ scalar theory. 
In the b3 model, the transition amplitude of Eq. (7.6) ex- 
hibits a clear separation of the dependence on the Man- 
d&tam variables .s, t, and u. In this way, resummation 
can be applied to each channel independently. Because of 
this property, T(s, t,u) displays the correct high-energy 
unitarity behavior, and vanishes as s, t + 00. In gauge 
theories, this is generally not the case. For example, con- 
sider the process 1-fil + W-H shown in Fig. 6, where 
the charged lepton (1) is massive. In the Born approxima- 
tion, there exist two graphs: an s- and t-mediated graph 
in the unitary gauge [see, also, Figs. 6(a) and 6(c)]. Tak- 
ing the infinite limit of s and t for the s-channel graph, 
one can verify that this amplitude alone does not van- 
ish. On the other hand, the total matrix element tends 
to zero in the high-energy unitarity limit. Evidently, 
the t-exchange graph contains terms, which, when prop- 
erly taken into account, conspire in such a way so as 
to give the correct high-energy unitarity limit. The PT 
algorithm accomplishes, via the decomposition given in 
Eq. (2.8), the same clear kinematic separation one knows 
from the scalar theory. 

The above discussion becomes more transparent if one 
employs the Ward identities which relate the Feynman 

FIG. 6. The process 1fi~ + HW- in an arbitrary Re 
gauge. 
graphs of Fig. 6(a) to those of Fig. 6(b), and the diagram 
of Fig. 6(c) to that of Fig. 6(d). For the process IVY --f 
We(p- we have in an arbitrary .$ gauge 

P’ -T(c) -T(t) + d?L&, 
MW k)P - (d) 2Mw 

In the high-energy limit where p- + ca, the polarization 
vector, $(p-), of the longitudinal W boson approaches 
to p!!/Mw. In the Feynman gauge, the amplitudes TCd, 
and Tc*, vanish in the limit s, t + co. In this limit, it is 
easy to see that the remaining constant term in Eq. (7.9) 
is responsible for the bad high-energy behavior, and can 
only be cancelled if a corresponding term coming from 
Eq. (7.10) is added. It turns out that, when loop correc- 
tions are considered, this latter term is furnished by the 
relevant PT part thus leading to a proper s-dependent 
propagator [20]. 

An issue related to the discussion of unitarity is 
whether the PT self-energy which regularizes the singu- 
lar propagator contains any unphysical absorptive parts. 
Prom Eq. (7.4), one has to show that the propagatorlike 
part !?I of a reaction should contain imaginary parts as- 
sociated with physical Landau singularities only, whereas 
the unphysical poles related to Goldstone bosom and 
ghosts must vanish in the loop. Although the PT algo- 
rithm produces a GI result for $, there would still have 
been a problem if this procedure had introduced some 
fixed unphysical poles. A qualitative argument suggest- 
ing that this is not the case, is that the PT results can 

FIG. 7. The one loop absorptive graphs of the reaction 
e-i% --f a-0,, involving the on-shell intermediate bosom W- 
and H (the arrow of time shows downwards). Feynman lines 
with Goldstone bosons are not displayed. 
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be obtained equally well by working directly in the uni- 
tary gauge [Zl], where only physical Landau poles are 
present. We will also demonstrate this fact by an ex- 
plicit calculation of the Irn?1 of the process ece + po,, 
at the one loop electroweak order. We will assume that 
only the W and H particles can come kinematically on 
the mass shell, as shown in Fig. 7. In what follows, 
we omit the common integration measure of the loop, 
1/[2(2+] j- d4p-d4p#)(p~ +P- -p, -pu). Then, the 
absorptive amplitude, ImM, for the aforementioned pro- 
cess may be conveniently written as (suppressing con- 
traction over Lorentz indices) 
(7.11) 
where T’ (2”) denotes the electron (muon) mediated am- 
plitude present in Fig. 7, and the tilde acting on the tree- 
level propagators simply projects out the corresponding 
absorptive parts, as these are effectively obtained after 
applying the Cutkosky rules. More explicitly, we have 

&H(PX) = 2?riJ+(P& - M$), (7.12) 

I?$’ (p) = 27ri 6+ (p” - EM&), (7.13) 
= qm(P) - P,p,f)f) (p) , 
M& 

(7.14) 

with 6+(p2 - M’) = 6(p2 - M2)6’(po). After identifying 
the PT piece [‘I$ = g&‘/2M~, with i = l(: e), 2(: @)I, 
which is obtained from Eq. (7.10) each time the pcpy- 

dependent part of Aizv gets contracted with ‘i”;;(f), we 
find that the imaginary propagatorlike part is 
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In the last step of Eq. (7.15), we have separated contri- 
butions originating from the physical poles at p$ = M$ 
and pz. = M& from those that occur at p: = [M$ and 

are included in &?I,, where 

-‘f’(t) &Ta - T$J; . 
(a)XMw p 1 (7.16) 

Obviously, the imaginary parts coming from the phys- 
ical Lmdau singularities are manifestly GI, whereas the 
term &Tl not only should be GI because of the PT re- 
ordering, but it should vanish identically. With the help 
of Eq. (7.9), it is a matter of simple algebra to show that 
indeed SF1 = 0. 

It is therefore important to emphasize the conclusions 
of this section. The PT algorithm can effectively disen- 
tangle the different kinematic dependences on the Man- 
d&tam variables s and t via the decomposition given 
in Eq. (2.8), when radiative corrections are considered. 
Furthermore, this algorithm yields a proper $-dependent 
propagator displaying the desired unitarity behavior in 
the high-energy limit. The PT method not only produces 
GI analytic results but also gives rise to a well-defined 
self-energy, in which only physical absorptive parts are 
present, while unphysical Landau singularities originat- 
ing from ghosts and Goldstone bosons do not survive. 
This latter property is particularly advantageous, since 
we wish to ~esum the q2-dependent PT self-energy in OI‘- 
der to unitarize the singular resonant amplitude, and, at 
the same time, avoid the presence of unphysical residual 
absorptive phases, which could be generated if a constant 
pole expansion had been used instead. 

VIII. THE PROCESS ye- + p-O,,vE 

We will study the process ye- + p-v,,,v<, in which two 
gauge W bosons are involved. This process is of potential 
interest at the LEP2. Furthermore, the collider Tevatron 
at Fermilab offers the possibility to study the scattering 
process qq’ --f yp-Pp [13]. 

In the Born approximation, the process ye- --t p-z?,,ve 
consists of three Feynman graphs shown in Fig. 8, with 
the gauge bosons in the unitary gauge. The transition 
amplitude then reads 

T(W -+ P-~A) = +q)To,, (8.1) 

with 

To, = HO&‘; r+Lyx ‘w-w+(4,P-,P+)u~(P+)ro, 

+ rops%$ut; (P ” + )roy + roput;(p-) 

xr;&+O ” (8.2) 
FIG. 8. The process e-y + fi-fi,,ue. The bubbles denote 
PT self-energies and three-point functions. Goldstone boson 
lines are not shown. 

In Eq. (8.2), aSin = ($ - mf)-l denotes the free f- 

fermion propagator, riwmw+ (I’&) is the tree-level 
yWW (l-l+y) coupling, and p- (p+) is the momentum 
of the W- (W+) boson flowing into the 7W-W+ vel- 
tex. The form of the amplitude given in (8.1) is gauge- 
invariant, in the sense that it does not depend on the 
gauge-fixing procedure nor the gauge-fixing parameter 
chosen. In the RE gauges, for example, additional graphs 
with Goldstone bosons must be included, but at the end, 
the expression of (8.1) will emerge again. In addition, 
since the action of the photon& momentum on the tree- 
level yWW vertex triggers the elementary Ward identity 

the electromagnetic gauge-invariance of the tree-level am- 
plitude is evident, i.e., q’Top = 0. In Eq. (8.3), Ukiy is 
the inverse free propagator, of the W boson in the uni- 
tary gauge. In general, the inverse free propagator of a 
vector boson, V, including massless gauge bosons, such 
as photons and gluons, may be obtained from Eq. (2.5) 
in the same gauge. Its explicit form is given by 

u;:,(q) = t,&)(q2 -MG) + ‘Lv(dM+. (8.4) 

However, since the Top of (8.2) exhibits a physical pole at 
pt = M$,, the use of a resummed propagator is needed. 
As we have discussed in Sec. II, the naive form of a BW 
propagator for the singular amplitudes violates U(l),, 
and Rt gauge-invariance. On the other hand, the PT 
method used to reorder the Feynman graphs, restores 



2142 JOANNIS PAPAVASSILIOU AND APOSTOLOS PILAFTSIS 53 
both the U(l),, and the Rf invariance of the amplitude, 
which are present at the tree level. 

To see that, let us concentrate on the part PI,, of the 
amplitude, shown in Fig. 8, which contains the trilinear 
?WW vertex. Applying the PT, and then resumming 
the PT self-energies following a procedure exactly anal- 
ogous to the one described in Sec. II, we arrive at the 
resonant transition amplitude (suppressing all the con- 
tracted Lorentz indices except of the photonic one): 

^ ^ 
Ttp = ro&v(r,, 

^Iw- Wf + qw- w+)i\wro 

(4 ^ CP) fros, r;,a,r, + r,awr;,so ra. (8.5) 

The PT procedure renders all hatted quantities in the 
above expression independent of the gauge-fixing param- 
eter [; Aw is given in Eq. (2.18). The final ingredi- 
ent which enforces the full Re invariance of the resonant 

amplitude Tl,,, and allows it to be cast in the form of 
Eq. (8.5), is a number of Ward identities, satisfied by the 
PT vertices. These identities can be summarized as (all 
momenta flow into the vertex, i.e., 4 + p- + p+ = 0) 

$+;G-G+ = i?(p-) - 6(p+), (8.8) 
= Mv@,(P+) - Mw@,(P-) 

-Pi 
( 

qx(4) + ~fi;344 
> 

(8.13) 

In the derivation of the above equations, we have used 
the fact that 

(8.14) 

(8.15) 

which implies that i?:,(O) = 0 and fizz(O) = 0. 
The one loop PT self-energy [20] and the one loop 

yWW vertex (221 are, respectively, given by 
fi,w,(P) = q?=‘)(P) - 4dJJi&(P)k%v,(P) + CzJWZ(P)l, 

~:~~;-w+(~,~-,~+) =r:~-W+(E=*)(q,p-,P+) - gw~~[u,-:-(p)~,,x(~,~-,~+) 

+u~~(P-)B:,x(4,P-,P+) + v;;:“(P+)B;,,(P,P-,P+)] 

- 2&$F+k,~-,P+)[ rww(q) + StJWy(P-) + s~lw~(P+) 

+ctJwz(~-) + &vz(P+)] + g~s,[g,,P+xM-(q,P-,P+) 

+ gpxp-A+(~+,p+)], 

(8.16) 

(8.17) 
where IIECCzl) [36] and l?;~ew+(‘=l) [37] are the CO*- 

ventional one loop WW se f-energy and yWW coupling, 
respectively, evaluated in the Feynman gauge, and the 
functions &, B,,x , %A, and M* are defined in Ap- 
pendix B. 

If we now contract ‘??I, of Eq. (8.5) with q’, it is el- 
ementary to verif, that by virtue of the Ward identity 
of Eq. (8.6), @‘TI, = 0. So we conclude that the reso- 
nant amplitude obtained by the PT satisfies both RF and 
U(l).m invariance. 

Note finally, that all PT Green’s functions defined 
thus far satisfy QED-like Ward identities [for example, 
Eqs. (8.6)-(8.13)]. This feature not only enforces the 

RE =*d UP),, invariance, but it constitutes a sufficient 
condition that OUI approach admits multiplicative renor- 
malization [38]. 
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FIG. 9. The process QQ’ --f /z+p-e-ce, 
where Z-i-mixing effects and other photonic 
contributions are not shown. Crossed Z- 
boson exchange graphs are also implied. 
Another process that is df particular interest in testing 
the electroweak theory at Tevatron is QQ’ + e-@-p+; 
there, in addition to the TWW, the ZWW coupling ap- 
pears also. The phenomenological relevance of the ZWW 
coupling becomes important as soon as the invariant- 
mass cut m(p-p+) e Mz is imposed. In a similar way, 
one can analytically derive the TX amplitude for this pro- 
cess, which is more involved due to the presence of Zy- 
mixing effects [39]. As an example, we consider the GI 
amplitude ?F, which, as can be seen from Fig. 9, does 
not contain tree-level photonic contributions. @ can be 
cast into the form 
?y =r&(p-)(rf~-W+ + PZW-W’)~,(4)r,ZL3,(p+)ro 

+ ros~r~i\z(~)r~~w(p+)ro + r,Zs~“r,~,,(4)roZ2\w(p+)ro 
+ ro~w(P-)roZ~Lz(Q)r~s~)rg + roi\w(p-)r,Z~z(4)ros~)r~ 
+ ro~w~~-~r~s~~r~i\w(p,~r~, (8.18) 
where I$ stands for the Z coupling to fermions at the 
tree level. The PT Ward identities, which are neces- 
sary for maintaining gauge invariance, are listed in Ap- 
pendix C. It should be noted that the inclusion of the 
Zy mixing in Eq. (8.18) proceeds in a straightforward 
way, since in the PT framework these additional con- 
tributions form a distinct GI subset of graphs. Indeed, 
both G&(Q) and i?;:(q) are by construction independent 
of the gauge-fixing parameter, and the final gauge cancel- 
lations proceed by virtue of the transversality properties 
of fi$(n) and g;:(q), as explicitly stated in Eqs. (8.14) 
and (8.15). By analogy, the Higgs-mixing terms, which 
become significant for external heavy fern&ns, also form 
a GI subset; possible addi+nal refinements necessary for 
their proper inclusion in TL will be studied elsewhere. 

IX. CONCLUSIONS 

We have presented a new GI approach to resonant 
transition amplitudes with external nonconserved cur- 
rents, based on the PT method. We have explicitly 
demonstrated how our analytic approach bypasses the 
theoretical difficulties existing in the present literature, 
by considering the resonant processes e-oe + /I-U,, and 
re- + p-O,,ve in the SM, with massive external charged 
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leptons. In particular, it has been found that our ap- 
proach defines a consistent GI perturbative expansion of 
the S matrix, where singular propagators are regular- 
ized by resumming PT self-energies. Through an explicit 
proof, particular emphasis has been put on the fact that 
the PT resummed propagator does not shift the complex 
pole position of the resonant amplitude. Furthermore, 
it has been demonstrated that the so-derived propaga- 
tor does not give rise to fixed unphysical Landau poles. 
The main points of our approach can be summarized as 
follows. 

(i) The analytic expressions derived with our approach 
are, by construction, independent of the gauge-fixing pa- 
rameter, in event gauge-fixing scheme (RE gauges, axial 
gauges, background field method, etc.). In addition, by 
virtue of the tree-level Ward identities satisfied by the PT 
Green’s functions, the U(l)., invariance can be enforced, 
without introducing residual gauge-dependent terms of 
higher orders. 

(ii) As can be noticed from Sec. IX and Appendix C, 
the two- and three-point PT functions satisfy Abelian- 
type Ward identities. This is a sufficient condition in 
order that multiplicative renormalization is admissible 
within our approach. 

(iii) We treat, on equal footing, bosonic and fermionic 
contributions to the resummed propagator of the W, Z 
boson, t quark, or other unstable particle. This feature 
is highly desirable when confronting the predictions of 
extensions of the SM with data from high-energy collid- 
ers, such as the planned Large Hadron Collider (LHC) 
at CERN. Most noticeably, extra gauge bosom, such as 
the Z’, W’, ZR predicted in SO(10) or EB unified mod- 
els 1401, can have widths predominantly due to bosonic 
channels; the same would be true for the standard Higgs 
boson (H) within the minimal SM, if it turned out to 
be heavy. In such cases it becomes particularly apparent 
that prescriptions based on resumming only GI subsets 
of fermionic contributions are bound to be inadequate. 

(iv) The main drawback of using an expansion of the 
resonant matrix element in terms of a constant complex 
pole is that this approach introduces spacelike thresh- 
old terms to all orders, whereas nonresonant corrections 
can remove such terms only up to a given order. These 
spacelike terms manifest themselves when the c.m.s. en- 
ergy of the process does not coincide with the position 
of the resonant pole. As we showed in Sec. VII, these 
terms explicitly violate the unitarity of the amplitude. 
On the contrary, our approach avoids this kind of prob- 
lem by yielding an energy-dependent complex-pole regu- 
lator. For instance, for channels below their production 
threshold, such residual unitarity-violating terms coming 
from unphysical absorptive parts have already been killed 
by the corresponding kinematic b’ functions. 

(v) Finally, our approach provides a good high-energy 
unitarity behavior to our amplitude, as the c.m.s. energy 
s + cm. In fact, far away from the resonance, the reso- 
nant amplitude tends to the usual PT amplitude, show- 
ing up the correct high-energy unitarity limit of the entire 
tree-level process. 

Our formalism can find an immediate application in 
the study of unstable particles at LEP, LEP2, and Teva- 
tron. The exact numerical significance of the GI bosonic 
contributions requires a detailed analysis and is beyond 
the scope of the present work. However, it is possible 
to provide a qualitative estimate of the bosonic effects. 
For example, in the case of the W boson at LEP2 and 
Tevatron, such effects are relevant for momentum ex- 
changes, q2, larger than A4&. For 4’ > A&, the im- 
provement based on a running fermionic width [8, 131 
as compared to a constant width [7,9, lo] is of order 

GV/M& - lo@ [14]. The numerical impact of the GI 
bosonic contributio&s are expected to be one order of 
magnitude less. The reason is that the dominant bosonic 
diagrams containing a W boson and a 7 are suppressed 
by a factor sin’& relative to fermionic graphs due to 
the different coupling constants. In addition, an extra 
suppression factor comes from the fact that there is only 
one bosonic channel as opposed to nine fermionic ones. 
It is important to emphasize that the previous elemen- 
tary argument becomes reliable only in the context of our 
formalism, where all dependence on the gauge fixing pa- 
rameter has been cancelled; instead, in the conventional 
formulation the above counting argument could be inval- 
idated by the presence of arbitrarily large gauge artifacts. 

Although more attention has been paid to the unsta- 
ble W and Z gauge particles, our considerations will 
also apply to the case of the heavy top quark discov- 
ered recently [41]. Our formalism is particularly suited 
for a systematic study of the CP properties of the top 
quark 151 at LHC. Our method may find important ap- 
plications in the context of supersymmetric theories, es- 
pecially when resonant CP effects in the production and 
decay of heavy gluinos and scalar quarks are studied [9]. 
It may also be interesting to consider our GI approach 
as an appealing alternative to the conventional formu- 
lation of supergravity theories in the background field 
gauges, where, in addition to the regular Fadeev-Popov 
ghosts [42], the Nielsen-Kallosh ghosts [43] may appear. 
Finally, our analysis could be of relevance for the study of 
nonperturbative or Coulomb-like phenomena, which may 
appear in the production of unstable particles [44], and 
are currently estimated by using special forms of the DS 
integral equation [45,44]. 
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APPENDIX A: THE STRUCTURE OF THE i? 
TERMS 

In order to understand the structure of the lip, we 
study in detail the three-loop case. To avoid notational 
clutter we remove the superscript “P” from VP, VP, up, 
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I?+‘, BP, and bP. 
For k = 3, Eq. (5.19) gives 

I23 = - [IIlV, + IbVl] , C-41) 
where we used that B1 = B1 = 0 in the Feynman gauge. 
We now proceed to derive Eq. (Al). To that end, we 

first express a string with the three fi, self-energies in 
terms of conventional strings, and the necessary pinch 
contributions. We have 
^ ^^^ 
LI = D,II,D,Il,D,II,Dc, 

= Do [b + W,‘]Do [II, + IAD,‘] Do [II, + v~D,l] Da 

= Do[n:D,z + 3IIfV,Do + 3&V; + V,“D,‘]Do 

= LI + Do[~II~VIDO +3&V; + V;D,‘]D,,. 

In a similar way, we have, for the string containing a fi, and fii,, 

22 = 2DofilD,,fizDo 

= 2Do [& + KD,‘]Do [n, + VzD,’ + BzD,~ + fi,] Dc, 

= 2Do [IIADo + (&Vz + &VI - II,V,2) - II:VzDo + (II& + VIVZ)D,’ + V&D,‘] D,, 

= Lz + 2Do [@IV, +&VI - &V,“) - IIfl4Do + (II,& + VIVZ)D,’ + V&D,‘] Do, 

W 
where we used that & = -lI,Vl. F’rom the graphs de- 
picted in Fig. 10, we receive the propagatorlike pinch 
contributions Lai L4, Ls, LB, and L,, respectively, given 
by 

LB = DonlDob = Do [IhvZ] Do, (A4) 

La = WWoK = Do [&&I Do, (A5) 
Ls = DJI~D,,II~DoVI = Do [@VID,,] D,, , (-46) 

Lg = ~v~D~~~D~v~ = Dc [$II,v;] Dc, C-47) 

-yf-1 
La Ls Li 

FIG. 10. Structures of Feynman graphs respqnsible far 
the vanishing of the shift of the pole at the three-loop case 
-see, also, Appendix A. 
We now add by parts the hatted and unhatted quanti- 
ties from Eqs. (Al)-(A8); their difference represents the 
contributions one has to add (and subsequently subtract, 
as described in Sec. II) in order to convert “unhat- 
ted” strings into “hatted” strings. Using the fact that 
V, = V,, ~12 = -;V;, and 

vz = vz+?Jz = If,-sv2 4 11 (Ag) 

we finally have 

Ra = -[2II#2 + :V; + ;VIV,]D,~ 

-~VIB,D,~ - [IhV, +&VI] 

From Eq. (All), we obtain 

1)s = - [2lI& + gv; + qv,v,] , 

ba = -2&B, ( 

(All) 

b412) 

(AI3) 

23 = - [IIIVZ + II,V,] (Al4) 

We notice that all unwanted terms proportional to 
IJ~VIDO have canceled against each other as they should. 
R3 of Eq. (A14) is precisely what Eq. (5.19) predicts for 
k = 3, namely Eq (Al). As we explained i.n Sec. III, the 
RB terms, together with the V, and BB propagatorlike 
pinch terms will eventually convert IIs to fi,. 
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Having gained enough insight on the structure of the 
fiip terms through the study of explicit examples, we can 
now generalize our arguments to obtain Eq. (5.19). For 
the rest of this appendix we restore the superscript “P.” 

The basic observation is that the conversion of regular 
strings of order n into “hatted” strings gives rise to Ei,’ 
terms only when (a) the regular string is of the form 
DolIkDoIIcDo, with k + e = n, or (b) the regular string 
is of the form DoIIkDoncDoIIjDo, with k + l + j = n. 

In other words, only strings with two or three self- 
energy bubbles give rise to R,’ terms. To understand 
the reason for that, let us consider a string of order n, 
consisting of more than three self-energy insertions, i.e., 

Doni,WL,Doni,Do{~ ..)Don,-,Don,Do > 

where k > 3, and Ci=l(ij) = n. As discussed in Sec. III, 
in order to convert any of the self-energy bubbles II, into 
fig< we must supply the appropriate pinch terms of order 
irn [see Eq. (4.1)], and subsequently subtract them from 
other appropriately chosen graphs. These extra vertex- 
like pinch terms, of the form V(D;‘, cancel one of the 
Do in the string, and give rise to strings of the form 

Don,,Don,lDo{...}D,n,~-lD,[n,,-,V~lDo{...} 

xDo{..~}Don,_,D,n~,Do; 

whereas the D;‘B~D;l boxlike terms cancel two of the 
internal Do, thus leading to a string of the type 

Doni,D,ni,D,{~~~}Doni,-,DoIn~,-,~~n,+,l 

xDo{...}Don,-,Doni,Do. 

The terms inside square brackets in the above expressions 
contribute to the quantities l?&+ic), fi&+i~+Lj, and 

~~~&~+i~+i6+d~ respectively. They will correspondingly 
be added to the strings 

Doni,Doni,Do{...}Doni,-,Do[n,,~_~+i~)lDo{...} 

xDdi,-,Doni,Do > 

Do~~,D~~;~D,{...}D,~,~_~D,[~,,,+~~+~,]D~{. .} 

xDo{...}Doni,-,Don,Do > 
in order to eventually convert I$_,+_ic), I&+ir+,), 

=*d Q..,+~,+c,+,) intO n(~+q, ++il++ =*d 
II(,z-l+;l+;l+,), respectively. For example, the vertexlike 
piece V,<D;’ will give rise to a string of the form 

which will be added to the string DJI~,D&I~i,+i,,Do 

{. .}D,IIi,_,D,IIi,Do, as part of the lil;>+isj term, 

whereas the boxlike piece f?ED;’ will produce a string 

which will be added to the string DoII(i,+i,+i,~Do{. .} 

D,,IIi,_,D,,II<,Do, as part of the ti;l+i2+isj terms. 
We see therefore that the terms that one needs to add 

to a string of order rz, which contains more than three 
self-energy bubbles, will be absorbed by other strings of 
the fame order, containing a smaller number of bub- 
bles. Therefore, the only time that one will obtain 
terms which must be added to the string containing the 
single self-energy lI(<l+i2+..,+i.-l+i~) = II,,, e.g., they 

are part of R,‘, is if the string has a maximum rum- 
ber of three self-energies [(a) or (b) above]. A string 

of type (a) has the form L;$,+ = D&DoII-&Do 

and produces a fiG,n--kj term, given by RG,n--kj = 

+IkV,‘-, + vpn,-,]. Of course, for every L{$+ 

there is a $&), giving rise to fiE,n-kj = ig-k,nj. 

So, the total contribution of strings of type (a) to fit is 

We now turn to the strings of type (b); their general 
structure is L[i!n-j,j-tj = D,II,D,II,mjD,IIj-,D,, and 

the contribution to @ comes from the boxlike pinch 
contribution L?zmj to the self-energy lI,-j, in the mid- 

dle of the string. So, the contribution Re,,-,,,-,, from 
Lw (I,n-j j-e) is give* by figlnmj j-c) = -&nj-tUf-j, and 
the tot&l contribution from &kings of type (b) is 

Clearly, & = kf,+, + fiL,(,), which is Eq. (5.19) 
k = n). 

APPENDIX B: ONE-LOOP FUNCTIONS 

(for 

Using the sum convention of the momenta q+pl+pz = 

0, we first define the useful integrals 



GAUGEINDEPENDENT APPROACH TO RESONANT.. 2147 
12 

I,j(q) = fi4-* 
s 

d”k 1 
- 
i(~7r)~ (k2 - M,?)[(k + q)” - Mi”]’ 

Jidq’pl’pz)= J d”k 1 . 
i(2?r)n [(k +p1)2 - M,“][(k -p2)2 - M;](kZ _ A,$)’ WI 

J&(q’pl’pz) = s 

d”k kV 

i(2n)n [(k +p# - M,?][(k - p# - M;](kz -M;) 

=PYJ;;k(q,Pl>Pz) + PtJs;E(q,P1,Pz) (B3) 

where the loop integrals are analytically continued in dimensions n = 4 - 2~. Armed with the one loop functions 
given in Eqs. (Bl)-(B3), we can now present the analytic expressions for the functions B, B*, and M* [22]. They 
are given by 

(BI) 

M-(w-,p+)=g;($Jww, + “2,s’ 1 
,Jwwz + ,Jwwx + czJzxw (B4) 

w ‘,,, )> 
M+h-,p+) = L M-(w+,p-), (B5) 

%ux(q>p-,p+) = c 9: 3J 

“=y,Z 1 
m[p-,(J i&v - z wwv) +p+,(J$w, + ;Jwwv) 1 

-sd3p-xJiGwv + 3p+~Ji$w, + 2qAJwwv) - g,x(3p-,Ji,, + 3p+,J&,, - 2qvJwwv) 
I 

, 

W) 

B;,,(q>p-,p+) = c g: sv+,kJi,, + Jwwv) +~+,(3J$w, - ~Jwwv)] 
“=7.Z 1 

+m [P-v(3Jb + Jwwv) + 3p+,J&w, - 2qvJwwv] 

%P[P-x(J;;wv + 2Jwwv) +p+xJ+ WW” - 2qxJwwv] } , 

B;,,(w-,p+) = - B,x,(q,p+,p-), 

(B7) 

638) 
where the coupling constants have been abbreviated by 
g7 = g,,,s, = e and gz = g,,,c,,,, with sw = sin&,, c, = 
cos O,, and &,, being the electroweak mixin 

B 
angle. The 

arguments of the functions J, Jijk, and Jijk should be 
evaluated at (q,p-, p+). 

The one loop functions I<j, Jijk, and .JGk defined 
in Eqs. (Bl)-(B3) are closely related to the Passarino- 
V&man [46] integrals. In this way, if we adopt the 
Minskowskian metric g’y = diag(1, -1, -1, -1) in our 
conventions, very similar to Ref. [47], we can make the 
identifications 

JGjk(q,P1yP2)=-& Co(pt,q’,p~,M~,M~,Mj2), 

G-0) 

J&(m,pz) = - & [pflC~l(pf,q2,p~,Mk2,M~,M~

+q”C,,(pl,q2,p~,M~,M,2,M32)] 

CB111 
From Eq. (Bll), it is then easy to derive that 

J,;&w,m) -~[C~(pf,q’,p~,M~,M~,M~) 

-C~z(pf,q2,p:,M,2,M~,M32)], (B12) 

J,:,(m,m) = & C,z(p:,q”,p;,M,“,Mz?,M;). 

(BI3) 

APPENDIX C: WARD IDENTITIES FOR THE 
ZWW VERTEX 

) 
Using the PT, one can derive all the relevant Ward 

identities related to the ZWW vertex, which warrant an 
analytic GI result. These identities are listed below: 
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(CI) 

cc21 

(C3) 

(C4) 

(C5) 

VW 

(C7) 

-&pEp$F;:-“+ + M&il,f=+] = M&&p+) -Mn&p-) 

-iCP+ -p-)qfyA(d + ~f$(d]. VW 

The PT three-point function for the ZWW coupling is related to the conventional vertex in the Feynman gauge 
via the expression 

qLF+(%P-,P+) =r~~-W+(F=l)(~,P-,P+) - swe,[U~~“(g)B,,x(q,p-,p+) 

+uu;:“(P-)B=,x(9,P-,P+) + v~~~(P+)B;,,(P,P-,P+)] 

- GJg!z~w+(4>P-,P+) [ hw(*) + 4JW(P-) + &wy(P+) 

+eJwz(P-) + czJwz(P+)] + g,c,[M~g,,P+xM-(q,P-,P+) 

+ @vg,xp-vM+(w-,p+) + ~~~,mM(~,p-,p+)]. (Cl11 

In Eq. (Cll), I’;vy-w+(E=l) 1s the conventional one loop ZWW vertex calculated in the Feynman gauge. The loop 

functions I;j, B*, M+ are given in Appendix B, except M. The analytic result for the latter may be obtained by 

WAP-,P+) = ;d[Jmw(w->p+) + JZHW(Q,P-,P+)]. VW 
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