
PHYSICAL REVIEW D VOLUME 53, NUMBER 4 15 FEBRUARY 1996 

0556
Diagrammatic analysis of QCD gauge transformations and gauge cancellations 

Y. J. Fag* and C. S. Lamt 

Diagrammatic techniques are invented to implement QCD gauge transformations. These tech- 
niques cau’be used to discover how gauge-dependent terms are canceled among diagrams to yield 
gauge-invariant results in the sum. In this way a multiloop pinching technique can be developed to 
change ordinary vertices into background-gauge vertices. The techniques can also be used to design 
new gauges to simplify calculations by reducing the number of gauge-dependent terms present in 
the intermediate steps. Two examples are discussed to illustrate this aspect of the applications. 

PACS number(s): 11.15.Bt 
I. INTRODUCTION 

A typical computation in the standard model generates 
many gauge-dependent terms that get canceled at the 
end. The labor of calculation can be thus considerably 

reduced if suitable gauges are chosen to minimize the 
presence of these terms. As far as propagators go it is 
usually simplest to use the Feynman gauge. As to vertices 
and external gluon wave functions, more unconventional 
gauges can often lead to greater simplifications. 

The spinor h&city technique [l] is a case in point. 
External gluon wave functions are chosen in light cone 
gauges defined by lightlike reference momenta k, which 
may be different for different gluons. A judicious choice 
of k’s can reduce the number of terms present, and some- 
times even renders whole diagrams zero. This technique 
was originally designed [2,3] for tree-level calculations 
but with superstring [4] and first-quantized [5,6] tech- 
niques, it can be extended at least to one-loop diagrams, 
and with Schwinger representation, it can be extended to 
multiloops [6,7]. 

Further simplifications might be obtained by choosing 
gauges that affect the vertices. The best known example 
of this kind is probably the background gauge (BG) [8], 
in which a triple-gluon (3G) vertex attached to an exter- 
nal gluon contains four terms, two’less than the six terms 
present in a normal 3G vertex. This gauge is particularly 
convenient for one-loop n-gluon one-particle irreducible 

(IPI) amplitudes, where each 3G vertex present is such a 
BG 3G vertex. In addition to this reduction in number, 
of the four terms in such a vertex, only one involves the 
internal line and needs to be integrated over. For other 
diagrams a different gauge may be more coiwenient. For 
example, in some sense the Gervais-Neveu gauge [9] is the 
simplest one for n-gluon diagrams in the tree approxima- 
tion. It is quite remarkable that in tree and one-loop 
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order, the superstring formalism automatically chooses 
in mne sense these best gauges to compute 141. 

From these examples it is clear that the most suitable 
gauge to use depends on the process and the details of 
the Feynman diagrams. In order to devise new gauges 
suitable for a new set of Feynman diagrams, a systematic 
study of the mechanism for the cancellation of gauge- 
dependent terms is needed. Since Feynman diagrams are 
much simpler and more intuitive to visualize than the 
corresponding analytic expressions, it would be best for 
the same reason if such gauge cancellations can be cast 
in diagrammatic languages. This is what we intend to 
develop in the first part of this article. 

How this task is accomplished is well known in QED 
but not in QCD. In QCD, a one-loop pinching technique 
[lO,ll] is known to simplify calculations by converting 

ordinary vertices to BG vertices, though to our knowl- 
edge a general systematic study for multiloop is not avail- 
able. There are two reasons why cancellation of gauge- 
dependent terms and gauge transformations are consid- 
erably more complicated in QCD than those in QED. 
The first is the complication of color. Fortunately, this 
can be sidestepped by a color decomposition and by the 
use of color-oriented diagrams, as will be discussed in 
Sec. II A. The second complication is more substantial, 

and it relates to the problem of source diffusion. Un- 
like QED, where the charge always resides on the elec- 
tron lines, the presence of triple- and four-gluon vertices 
spreads the color globally throughout the Feynman dia- 
gram. In other words, it is the covariant divergence of 
the color current that is now zero, and not the usual di- 
vergence. This global nature means that the local cancel- 
lation of gauge dependence in QED is no longer sufficient 
for QCD. This additional complication of source diffusion 
fortunately cai be handled by introducing “propagating 
diagrams,” as will be discussed in Sec. IIB. 

One may also view the discussion below in another 
light. Imagine starting out from a classical Yang-Mills 

theory or a tree-order scattering amplitude. Ghost ver- 
tices are absent there. Suppose now loop diagrams are 
built up via generalized unitarity by gluing together tree 
diagrams. Ghost loops would still be absent after the 
gluing so why then do we need them? The reason must 
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be that without them the loop amplitudes will no longer 
be gauge invariant, but how do we see that? Part of what 
is being discussed below (Figs. 13-16) can be thought of 
as a way of seeing that. Alternatively, one may think of 
what is being done below as just another way of deriving 
the Becchi-Rouet-Stora-Tyutin (BRST) transformation, 
but this time microscopically, done vertex by vertex and 

diagram by diagram. 
The basic technique for separating the color and for 

creating the “propagating diagrams” will be discussed in 
the next section, throughout which the gluon propagator 
is taken to be in the Feynman gauge. This technique is 
then used to show diagrammatically known field-theoretic 
results. In particular, covariant gauges will be taken up 
in Sec. III, and multiloop pinching technique will be dis- 
cussed in Sec. IV, where we shall show how to create 
background-gauge vertices from ordinary vertices by the 

incomplete cancellation of divergent parts. In Sec. V, we 
shall discuss two examples how to use these techniques 
to design new gauges. These are just examples and there 
is no claim that the new gauges are the simplest possi- 
ble. Nevertheless, they do illustrate that simpler gauges 
can be designed, and hopefully by working harder, one 
can some day design the “simplest” gauge to be used for 
a given set of diagrams. This latter problem is being 
studied. 

II. DIAGRAMMATIC ANALYSIS IN THE 
FEYNMAN GAUGE 

A. Color-oriented vertices 

If a QCD Feynman amplitude 7 is given a color de- 
composition into a set of independent color tensors Ci, 
7 = Ci &a;, then each of the color-independent subam- 
plitudes ai is known to be gauge invariant [1], though 
how this is achieved diagrammatically, so that individ- 
ual gauge-dependent diagrams add up to give gauge- 

independent results, is much less known. In order to 
study this we must first learn how to compute the sub- 
amplitudes a; diagrammatically. 

The relevant diagrams to compute ai from are the 
color-oriented diagrams. They differ from the ordinary 
Feynman diagrams in having fixed cyclic ordering of 
the gluon and the ghost lines at all the vertices. Ver- 
tices with such ordering imposed are the color-oriented 
vertices; Feynman diagrams made up of color-oriented 
vertices are the color-oriented diagrams [1,7]. A sin- 
gle Feynman diagram gives rise to many color-oriented 
diagrams, differing from one another in the cyclic or- 
dering of the gluon and the ghost lines at the vertices. 
Color-oriented vertices arise from ordinary triple-gluon 
and ghost vertices by a decomposition of their color fac- 

tor, fobc = -i[Tr(T”T”T”) - ‘&(T”T’T*)]. The nor- 
malization used here is ~(T“T*) = 6”*. This pro- 
duces two trace terms with fixed cyclic ordering of the 

fundamental color generators T”, corresponding to the 
two color-oriented vertices. Similarly, the decomposi- 
tion of the color factor fahd = (-i)z[Tr(TaTbTCTd) - 
la) lb) 
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=- 
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FIG. 1. Color-oriented vertices for QCD 

Tr(TbT”TcTd) - Tr(T”TbTdTc) + Tr(TbT”TdTc)] gen- 
erates color-oriented vertices for an ordinary four-gluon 

vertex. The color factor at a fermion vertex is given by 
T”. It cannot be further decomposed so there is only 
one color-oriented vertex per ordinary fermion vertex. In 

that case it does not matter where the gluon line is drawn 
with respect to the quark line. 

In a U(N) theory, each color-oriented diagram gives 
rise to only one color tensor Ci, determined entirely by 
the cyclic ordering of the external lines. Thus each ai 
is given by the sum of color-oriented diagrams with a 
fixed external-line ordering. For SU(N) theories, a color- 
oriented diagram may contain more than one color tensor 
Ci, but in what follows we shall only consider those ai 
given by the sum of all color-oriented diagrams with a 

fixed ordering of the external lines. 
With color thus factored out, vertex and propagator 

factors depend on spin and momentum but no longer 
on color. The propagators are the usual ones, being 
-l/(7 p - rn), -lfp’, and gap/pa, respectively, for 
fermions, ghosts, and gluons. Up to a sign the color- 
oriented vertices coincide with the ordinary vertices with- 
out their color factors, which can be read off directly 
from the coefficients of the interaction Lagrangian den- 
sity. In this convention, the i’s and (2~)‘s for the co- 
variant T-matrix element are all collected in a prefactor 
[-i/(2m)4]L, where e is the number of loops. The color- 
oriented v&ices are displayed in Fig. 1; their analytical 
expressions are given by 

FP = g w , PJ) 

T~PJPI,Pz>P~) = g [sc&m -PA, +SP&Z -& 

+gw(P3 - PdPI , (2.2) 

GdPd = 9 (PdP I (2.3) 

Qcxm = g2 [%cc,gpa - g.+ps-,a - snssoy] . (2.4) 
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All momenta in these formulas are outgoing, except those 
along the quark lines where they follow the directions of 
the fermionic m~cnvs. The lines in Fig. l(c) may have two 

possible orderings, as shown. We shall occasionally refer 
to the one with a positive sign, as given by Fig. l(c), to 
have the tight orientation, and the one with a minus sign 
to be of the wrong orientation. 

B. Divergence relations 

A gauge transformation changes the longitudinal po- 

larization of a gluon. The corresponding change to a 
subamplitude is obtained by computing the divergence 
of a color-oriented diagram, which in turn is obtained by 
computing the divergence of the color-oriented vertices. 
These divergences are obtained from Eqs. (2.1)-(2.4), to 

be 

(~~)~e = 9 [-(“I ‘pl - m) + (-Y .p3 - m)i , (2.5) 

(Pzm&(P*,pz,P3) = g gaypi -9 SaTPi 

-(PI), G,(PI) 

+(P& G&ps) > (2.6) 

and 

@d@d~d + (~d~G.r(~d + g pt = 0 9 (2.7) 

+g Tw,a@~,~z +P~>PA = 0. (2.8) 

The resulting terms have been arranged to be propor- 
tional either to a propagator or a vertex so that these re- 
lations can be expressed diagrammatically, as in Figs. 2- 
5. A cmss in a gluon line represents the divergence, i.e., 
a factor p, for the gluon with outgoing momentum p and 
Lorentz index a. A cross at the end of a (dotted) ghost 
line is meant to be a cross on the gluon line it is con- 
nected to. Namely, if p is the outgoing momentum of the 
(crossed) ghost line, and a the Lorentz index of the gluon 

line it is conixcted to, then a cross at the end of the ghost 
line indicates a factor -pa. Whenever the propagator of 
a line is to be included, a dot is put at the end of the 
line. The propagators in Figs. 2(b), 2(c), 3(b), 3(c), 4(c), 
5(b), and 5(c) have been canceled out to obtain these 

Cb) 

FIG. 2. Divergence relation for the gluon-quark vertex. 
FIG. 5. Divergence relation for the four-gluon vertex. 
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FIG. 3. Divergence relation for the triple gluon vertex. 
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FIG. 4. Divergence relation for the ghost vertex. 
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sliding diagrams, so called because they can be obtained 
by converting the original gluon line into a sliding ghost 
(dotted) line. Figures 3(d) and 3(e) serve to propagate 
the cross along the original gluon lines and will thus be 
called the propagating diagrams. A propagating cross al- 
ways drags a ghost line behind it, replacing the original 
gluon line. In order to distinguish this ghost line i?om 
the one occurring in ghost loops of Feynman diagrams, 
we shall occasionally refer to it as the wandering ghost 
line. 

QED requires only Fig. 2. What makes QCD compli- 
cated is the presence of many more vertices and diver- 
gence relations, and the existence of these propagating 
diagrams relating to the source diffusion problem dis- 
cussed in the Introduction. 

With the possible exception of Fig. 4, these divergence 
relations have a regular structure which we shall call the 
canonical stmcture. On the right-hand side of these di- 
vergence relations, there are always two sliding diagrams 
with opposite signs, arranged so that the signs obtained 
from a triple-gluon vertex are opposite to the signs ob- 
tained from a four-gluon vertex. There are no propagat- 
ing diagrams for the four-gluon vertex, but both of the 
propagating diagrams emerging from the triple-gluon di- 
vergence relation carry a + sign. It turns out that it 
is this regular canonical structure that guarantees the 
gauge invariance of the sum of diagrams. 

In the sliding diagrams, the wandering ghost line serves 
to inject a coupling-constant factor g as well as the.mo- 
mentum of the original gluon (pz) into the line it is tan- 
gential to, but otherwise it is inert. Thus if the ghost 
slides into a momentum-independent vertex, or is tan- 
gential to a line whose momentum the vertex does not 
depend on, then to within a factor of g, the new ver- 
tex with the extra ghost line is equal to the old vertex 
without it, as shown in Figs. 6-8. However, triple-gluon 
vertices are momentum dependent so Figs. 5(b) and 5(c) 
are not identical, though their difference is simply given 

by 5(a). 
The signs appearing in Figs. 3(d) and 3(e) require an 

explanation. First, the crosses in these diagrams are, 
respectively, -(pl)* and -(ps)?. Second, the original 
gluon propagators for line one in Fig. 3(d), and line three 
in Fig. 3(e) are now replaced by ghost propagators, re- 
sulting in an extra minus sign for both. Third, an extra 
minus sign is attached to the ghost vertex in Fig. 3(d) 
because of its wrong orientation. Putting these three 
things together, the signs in front of Figs. 3(d) and 3(e) 
are both +, a fact which becomes very important later 
on for ghost cancellation. 

Equations (2.5) and (2.6) (Figs. 2, 3) can be used re- 
peatedly to compute the divergence of a color-oriented 
diagram. This iteration terminates when the cross either 
rests on (i) an external (wandering) ghost line, or on (ii) 
a four-gluon vertex like Fig. 5(a), or on (iii) a ghost ver- 
tex like Fig. 4(a), or that (iv) there is no longer any cross 
in the diagram. If (iv) happens, it is possible for the slid- 
ing ghost line to end up (iva) at another external line, 
(iv b) at a fermion vertex like Fig. 6, (iv c) at a four-gluon 
vertex like Fig. 7, (ivd) at a ghost vertex like Fig. 8, or 
(ive) at a three-gluon vertex like Fig. 5(b) or 5(c). 
%.. ‘\ 
A- 
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= 
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=g. i 

IS, 

FIG. 6. Relations between sliding diagrams. 

C. Notation and conventions 

By a “diagram” we always mean a color-oriented di- 
agram from now on. By the “sum of all diagrams” we 
always mean the sum of all color-oriented diagrams with 
the same ordering of the external lines as the original 
diagram. 

There are more diagrams in this paper than equations. 

In order not to confuse diagram numbers with equation 
numbers, we will adhere to the convention that a number 
not prefixed by Fig. or Eq. is taken to mean a diagram 
number. 

A diagram is said to be on shell if all its external lines 

are on shell. It is said to be on-shell OT crossed if all its 
external lines are either on shell, or are off-shell gluon 
lines carrying a cross. Most of the following results ap- 
ply either to on-shell diagrams, or on-shell or crossed 
diagrams. 

D. Gauge transformation of color-oriented diagrams 

We consider now how a color-oriented diagram changes 

when the wave function of an external gluon line under- 
goes a gauge variation. The change is proportional to the 
divergence, represented graphically by a cross at the end 
of the external gluon line. This produces many diagrams 
by using 2 and 3, each satisfying one of (i)-(iv) noted 
above at the end of Sec. IIB. 

Cd Cb, CE) 

FIG. 7. Diagrams with a ghost line sliding into a four-gluon 
vertex. 
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la) tb) 

FIG. 8. Ghost vertex with an extra ghost sliding in. 

We shall now illustrate how the net change from the 
sum of all diagrams may vanish if the diagrams are taken 

to be on-shell. This gccws because each resulting dia- 
gram either vanishes by itself, or they combine to cancel 
each other in pairs or in threesome. In the process we will 
also discover what remains if some of the external lines 

are taken off shell. These will turn out to be precisely 
those diagrams required by the BRST transformations. 

These conclusions are certainly of no surprise. What 
we gain by carrying out these analyses is the knowledge 
how this is realized diagrammatically. 

It is simplest to consider first diagrams satisfying con- 
dition (iv). When (iva) is satisfied, the wandering ghost 
ends on an unamputated external line of the diagram. 
If this external line is off shell, tbis diagram survives 
as is demanded by the BRST transformation. On the 

other hand, if this is an on-shell line of a scattering di- 
agram, then the propagator must be amputated at the 
one-particle pole according to the Lehmann-Symanzik- 
Zimmermann (LSZ) reduction formula. But with a wan- 
dering ghost present, the pair of ghost and of external 
lines no longer possesses a particle pole so these diagrams 
do not contribute to on-shell (amputated) scattering am- 
plitudes. 

Next, suppose (ivb) happens.. Then using Fig. 6, 

a pairwise cancellation takes place as shown in Fig. 9, 
where diagrams 9(a) and 9(b) to the left of the arrow are 
the diagrams from which diagrams 9(c) and 9(d) come 
from one step back in the transformation. Note that 
Fig. 9, and similarly for all the diagrams considered be- 
low, is meant to be a part of a much larger color-oriented 
diagram, and not necessarily a whole diagram by itself. 

Similar pairwise cancellation occurs for (ivc) and (iv d) 
as shown in Figs. 10 and 11. Using 5, case (iv e) combines 
(L-l) 

FIG. 10. Local gauge cancellation near a four-gluon vertex. 

with case (ii) to give a threesome cancellation as shown 
in Fig. 12. 

Strictly speaking, there is one more case under (iv d) 
which we have not yet considered, namely, when the wan- 
dering ghost line slides into a quadrant bounded by the 
outgoing ghost line, as shown in 15(a) and 15(b). This 
case will be considered at the end. There are two reasons 
for the asymmetry between this case and 11, both arising 
from the asymmetry of the ghost vertex, which depends 
on the momentum of the outgoing ghost but not on the 
incoming ghost, nor on the gluon. As a result, the slid- 
ing term in 4 slides only to the left but not to the right. 
Moreover, Fig. 8 is true, but there is no corresponding 
relation when the wandering sliding ghost lies between 

the gluon and the outgoing ghost. 
We must now deal with cases where the wandering 

ghost line ends at a cross. Case (ii) has already been dealt 
with but we still have to consider cases (i) and (iii). Case 

(i) is simple. If that external line the cross eventually 
ends on is on shell, then an external gluon wave function 
e(p) is present, satisfying p. e(p) = 0, so the diagram 
vanishes. If the gluon line is not on shell, this diagram 

I 
,I ,_I- : 

” + - ..-. ____ + I :’ 
/’ 

._... LC. = 0 
tc) (d) 
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FIG. 12. Local gauge cancellation near a three-gluon vertex. 

cc, 

FIG. 13. Cancellation involving ghost loop. Same as Fig. 4 
with ghost loop explicitly drawn in. 

FIG. 14. How 13(b) and 13(c) are produced from 
color-oriented diagrams. 
CC, 

.-..-.u_.

.______.._......._ 

fd) 

FIG. 15. How 16(a) and 16(b) are produced from 
color-oriented diagrams. 

survives as required by the BRST transformations. 
The identity in Fig. 4 is required to deal with case (iii). 

It is importarit in this connection to note that the ghost 
line appearing in 4(a) must be an internal ghost line, 

forming a closed loop as in 13(a). This means that the 
identity in 4 will always look like the identity in 13, so 
the only question left is where 13(b) and 13(c) will come 
from. With the presence of the ghost loop in 13(a), there 
must be a diagram where the ghost loop is replaced by a 
gluon loop, as in 14(a). Using 3(d) and 3(e) repeatedly~ 
on 14(a), we shall end up with a diagram that’ looks like 
13(b)=14(b). The minus sign in front of 13(a) comes 
from the ghost loop factor and there is no corresponding 

minus sign for the gluon loop in 14(a). In addition to 
13(a), there is a diagram like it but the gluon with the 
cross is linked up directly with the other gluon, as in 
14(c). The - sign in fxont is again because of the ghost 

,a, ,b, 

FIG. 16. Pairwise cancellation for the other situation of 
case (ivd). 
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loop. Using 3(c) and then the equality in Fig. 8, 14(c) 
produces 14(d)=13(c). The three diagrams in Fig. 13 
cancel one another by using Fig. 4. The same idea will 
go through if the arrow of the ghost loop in 13(a) runs 
clockwise instead. 

There is one final case which we have not yet dealt 
with, namely, the other situation of case ,(ivd) which 
we skipped before. Consider 15(a), where the explicit - 
sign in front is agaip the ghost-loop factor. Using 3(b), 

this is transferred to 15(b)=16(a), with the wandering 
ghost between the gluon and the outgoing internal ghost 
line. Its cancellation comes from the gluon-loop diagram 
shown in 15(c). Using 3(d) and 3(e), 15(c) is transformed 
into 15(d), which by 3(b), becomes 15(e)=16(b). Now 
16(a)+16(b)=O because the vertices in these two dia- 
grams are simply the same vertex drawn a bit differently. 

Note that none of the diagrams in the identities 
Figs. 2-16 ever appear twice, so double counting can 
never occur. Moreover, each conceivable configuration 
appears in one of these identities, so by using all possible 
identities, there can never be an uncanceled term. For 
that reason the sum of all on-shell diagrams with a cross 
at the end of a gluon line must be zero. 

The “proof” above is not mathematically rigorous in 
that we have not explicitly enumerated all the possible 
topologies and structures of diagrams. Nevertheless, it 
fulfils our main &rn in demonstrating how gauge cancel- 
lation between diagrams occurs in each specific instance. 

III. COVARIANT GAUGES 

The gluon propagator in a covariant gauge is (ga@ + 
tp”$/p2)/p2. In the last section, divergence relations 
and gauge invariances of the external gluons were shown 
in the Feynman gauge [ = 0. The effect of [ # 0 will 
be discussed in the present section, using the same tech- 
niques developed in the last. 

The only additional tool needed for the following anal- 
ysis is the double-divergence relation 

(PS)7(PZ)PT,P7(Pl,PZ,PS) = 9 (PdmPf 

-(P&(P~)~G&) , (3.1) 

obtainable from Eq. (2.6) by taking the divergence with 
respect to ps on both sides. Diagrammatically, this can 
be represented by Fig. li’, which is the same as Fig. 3 

with 3(b) and 3(e) removed and with an additional cross 
added to the third gluon line. A convenient way to re- 
member this is to regard Fig. 3 to be true at all times, 
with or without an additional cross on line 3, with an ad- 
ditional stipulation that the ghost line on the right-hand 
side~must avoid coming into contact with any additional 
cross. This stipulation effectively eliminates 3(b) and 
3(e) as required. 

This double-divergence relation allows us to generalize 

the result of the Sec. IID into the following rule. 
Rl. The sum of all on-shell 01‘ crossed diagrams with 

a cross on one of the external gluon lines is zero, if all 
gluon propagators are taken in the Feynman gauge. 

This result is more general than what has been dis- 
la) Cb) IC) 

FIG. 17. Double-divergence relation of the triple gluon ver- 
tex. 

cussed because the external lines with a cross on them 
do not have to be on shell, so diagrams of types (iva) 
and (i) with the wandering ghost resting on them will 
no longer vanish. However, such diagrams can never oc- 
cur because of Eq. (3.1), which, as noted before, may be 
taken to say that the wandering ghost line must avoid the 
additional crosses now situated at the end of the off-shell 

gluon lines. 
This result can be used to show the independence of 

the gauge parameter .$. 
R2. The sum of on-shell or crossed diagrams is inde- 

pendent of the gauge choice of every gluon propagator. 
The gauge-dependent part of a gluon propagator is of 

the form ~pp”#/pz/pz. Except for the additional factor 
c/p2/p2, the c-dependent part can be represented dia- 
grammatically by breaking the internal line into a pair of 
external lines, each with a cross at the end. In this way, 

two diagrams are generated by each gluon propagator: 
one being the original diagram with the propagator in 
the Feynman gauge, and the other obtained by breaking 
tbis propagator into a pair of external lines with a cross 
at the end of each. 

If a diagram has rn propagators, then tbis procedure 
breaks it up into 2”’ diagrams. When we sum up all 
possible on-shell-crossed diagrams, the sum becomes 2’” 
sets of sums, each of which satisfies Rl, thus establishing 

R2. 

IV. PINCHING TECHNIQUE AND THE 
BACKGROUNDGAUGE 

The technique developed in Sec. II can also be used to 
manipulate the divergence part of a triple-gluon vertex. 
Such vertex manipulations had previously been used to 
simplify one-loop calculations, and in that context it is 
known as the pinching technique [lo]. To one-loop order 
it has been shown ~that pinching technique gives rise to 
the background gazge (BG) Ill]. In what follows, we 
generalize this approach to m&loops to show how to 
convert the normal vertices into the BG vertices. 

A. BG vertices 

The BG color-oriented vertices consist of the original 
vertices in Fig. 1 [Eqs. (2.1)-(2.4)], plus the additional 
vertices in Fig. 18 given by the formulas 
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FIG. 18. Color-oriented BG vertices with at least one ar- 
rowed (external) line. 

IW)1 = g [s&s - PI)P 

--2shP(P2)7 + %37(Pdal > (4.1) 

[18(b)] = g (PI - PS)P > (4.2) 

[13(c)] = g2 [-sp,gcrs - %&,a + %wm]> (4.3) 

[18(41= -2g2 sp-,sas > (4.4) 

P8(41 = 9’ w, 9 (4.5) 

w91 = 2 SP-, I (4.6) 

[18(g)] = -‘@ go, (4.7) 

Gluon lines with an arrow are to be distinguished from 
gluon lines without an arrow. In this section we follow 

the traditional usage to assume all arrowed lines to be 
external gluon lines, though the reverse is not true. The 
correct vertices to use in BG are obtained through ex- 
plicit calculations. The results of these calculations are 
summarized diagrammatically in Figs. 18 and 1, provided 
we adopt the following convention. Vertices attached to 
external gluon lines should be taken from 18 whenever 
possible, but if they are absent from 18, then they should 
be taken from 1. For example, triple-gluon vertices with 
two external gluons and quark-gluon vertices with an ex- 
ternal gluon are not to be found in 18, so they should be 
taken from l(b) and l(a), respectively. 

It is this distinction between external and internal glu- 
ous that produces so many vertices in the BG. In spite 
of this complication, it is often still simpler to calculate 
loop processes with a large number of external gluon lines 
in the BG, because of its reduced dependence on the in- 
ternal momenta of a triple-gluon vertex. BG is also the 
gauge that emerges naturally in superstring calculations 

for 1PI diagrams [4]. 
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The equivalence between the ordinary and the BG ver- 
tices can be stated as follows. 

B. R3 

The sum of on-shell OP crossed diagrams are. not af- 
fected when the vertices attached to any number (n) of 
external gluon lines are changed from the ordinary ver- 
tices (Fig. 1) to the BG vertices (Figs. 1 and 18). 

C. Creation of the new BG vertices 

To demonstrate R3 we need to know how the new BG 
vertices in Fig. 18 are related to the ordinary vertices 
in Fig. 1. These relations can be obtained from a re- 
lation between l(b) and 18(a), or equivalently between 
Eqs. (2.2) and (4.1), shown graphically in Fig. 19. For 
this purpose, it is necessary to introduce a new vertex 
with two gluon lines and one ghost line [19(b) and 19(c)], 
joined together by a circle representing the factor fg gpy, 
where ~1, v are the Lorentz indices of the two gluon lines. 
The sign is taken to be + for 19(c) and - for 19(b). This 
sign convention is chosen to be the same as the ordinary 
ghost vertex l(c) if the incoming ghost line is replaced 
by the arrowed gluon line. In the terminology introduced 
below Eq. (2.4), 19(c) has the right orientation and 19(b) 
has the wrong orientation. From now on we shall refer 
to the vertices 19(b) and 19(c) as the funny vertices. 

Figure 19 is used to convert an ordinary vertex 19(a) to 
a BG vertex 19(d). The two extra terms 19(b) and 19(c) 
will be shown to be instrumental in converting other or- 
dinary vertices into BG vertices. This proceeds by in- 
duction on n, the number of external lines at which such 
conversion of vertices is desired. 

Suppose n = 1 and an ordinary vertex 19(a) attached 
with a single external gluon line is converted into the BG 
vertex 19(d). The effect of the extra term 19(b) will now 

(a) Cb) 

+ JL = I 
(c) ldl 

FIG. 19. Relation between the triple-gluon vertices l(b) 
and 18(a). 
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FIG. 20. Generation of the ghost vertex 18(b). 

be explained, and an analogous result exists for 19(c). If 
we remove the bulk of the vertex 19(b) from a diagram 

except for its cross, Ri is applicable to the remaining 
diagram, so the extra diagrams generated by 19(b) will 
add up to zero, except when the crmses in 19(b) are 
returned by propagation to the same vertex via a gluon 
loop. In that case 19(b) gives rise to 20(a), in which the 
gluon loop linking the two sides of the funny vertex is 
now converted to a ghost loop trailing the cross. There 
exists another diagram where the gluon loop is replaced 
by the ghost loop, in which the ordinary ghost vertex 
20(b) appears. The combination of 20(a) and 20(b) now 

gives rise to the BG ghost vertex 20(c). An extra minus 
sign from the ghost loop has been incorporated in front of 
20(a) to make the combiied sign + as shown. However, 
analytically 20(a) contributes a minus sign because of the 
wrong orientation of the funny vertex. 

The only other way the cross in 19(b) can return is 
through a sliding diagram 3(b) at the last step, thus pro- 
ducing 21(a) or 22(a). Since the propagating cross always 
drags a ghost line behind it, the gluon loop through which 

the cross returns has now been changed into a ghost loop 

and an examination of Eqs. (4.6) and (4.6) shows that 
21(a) is the same as 21(b)=18(e) and 22(a) is the same 
as 22(b)=la(e) and 22(c)=18(f). 

We have therefore completed showing R3 when n = 1, 
because none of the other BG vertices in 18 are present 
for n = 1. 

We will now proceed to n = 2 and assume the first 
vertex to have already been converted into BG vertex. 
We must now examine the effect of converting the sec- 

ond vertex from ordinary to BG vertex, again using the 
relations in 19. Clearly as in the case n = 1, there is no 
problem in converting the second vertex into BG vertex 
if it was alone. But with n = 2, there is now the possi- 

,,: 
L 

,Z,’ __-___ -*” = ------i- _-___

(a) (bJ 

FIG. 21. Generating the ghost vertex 18(e). 
= l&L. - . _ _ _ 

 

CC) 

FIG. 22. Generating the ghost vertices 18(e) and 18(f). 

bilitv of an interaction between the two vertices to cause 
a change. 

To start with, we can no longer use Fig. 3 to propagate 
the cross beyond the first vertex because the tride-rhmn 
vertex here-is already a BG vertex. We must therefore 
work out a relation analogous to 3 but valid for the BG 
triple-gluon vertex. This is obtained from Eq. (4.1) and 
shown in 23, with 23(f) being -g g,,(pz)‘. It is impor- 
tant to note that this divergence still possesses a regu- 
lar structure. As before, we have the sliding diagrams 
with opposite signs [23(b) and 23(c)], the propagating 
diagrams with plus signs [23(d) and 23(e)], but there is 
now a new stagnant diagram involving the funny vertex 
[23(f)] with a single ghost line that goes nowhere. The 
analytical expression for this term is -pgg,,, with a mi- 
nus sign on account of the wrong orientation of the funny 
vertex. Note also that the gluon line in 23(d) has an ar- 
row but not the one in 23(e), “because” that is how it is 
inherited from 23(a). 

Although this is getting ahead of ourselves, it would be 

FIG. 23. Divergence relation of the BG triple-gluon vertex 
18(a). 
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FIG. 24, Divergence relation of the four-gluon vertex l(d) 
expressed in terms of BG vertex. The cross is opposite to the 
external he in the four-gluon vertex. 

useful for the ‘sake of comparison to examine this mod- 
ified canonical structure for other divergence relations 
obtained from Eqs. (4.1)-(4.7), and shown in Figs. 24- 
29. There are unfortunately many divergence relations, 
but this cannot be helped because there are many BG 
vertices, and because there are many external-line-cross 
combinations in taking the divergence of l(d). Never- 
theless, all these relations possess the sliding diagrams 

with the canonical signs, the propagating diagrams with 
plus signs, and the stagnant diagrams with minus signs. 
External lines are inherited, vertices that do not make 

Cd) 

FIG. 25. Divergence relation of the four-gluon vertex 18(d) 
expressed in terms of the BG vertex. 
cb) 

FIG. 26. Divergence relation of the four-gluon vertex l(d) 
expressed in terms of BG vertex. The cross is adjacent to the 
external line in the four-gluon vertex. 

sense will not appear, and in the case of the divergence 
of a four-gluon vertex, the cross is not allowed to prop- 
agate through an arrowed line. This last rule is “why” 
there are no propagating ghosts f&n the top to the bot- 
tom gluon lines in 24, for example. The reason “why” 
there is no propagating ghost from the top to the left 
line in Fig. 26 is because the resulting BG ghost vertex 
does not exist (the arrowed line is not adjacent to the 

outgoing ghost). 
The signs contained in this modified canonical struc- 

ture are precisely correct to make the extraneous dia- 
grams cancel, extraneous meaning those not needed to 

- “A-L--*xr- + --f 
fd) (6) 

FIG. 27. Divergence relation of the four-gluon vertex 18(c) 
expressed in terms of the BG vertex. 
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FIG. 28. Divergence relation of the ghost vertex 18(e) ex- 
pressed in terms of the BG vertex. The cross is adjacent to 
the arrowed line. 

- = + 
‘,., 

la) IbI CC) 
FIG. 29. Divergence relation of the ghost vertex 18(e) ex- 

pressed in terms of the BG vertex. The cross is opposite to 
the arrowed line. 

+ 
“Y.. 

--5---~ 

+-A--*x 

r- 

ld) Ce, Cf, 

/ 

+ 
___I / 

--r- 

-+--+ 

;: 
C&7) ,b, 

FIG. 30. An example of local gauge cancellations, leaving 
behind just a propagating term to work on another vertex. 

FIG. 31. Equality of a ghost line sliding into the ghost 
vertices 18(e). 
. ..-- $;; - . ..-. i:‘- - ...-i:~ = o 

‘X__ 

ta, ,h, (0, 

FIG. 32. Equality of a ghost line sliding into the ghost 
vertices. 

- 

(a) tb) tb) 

FIG. 33. Equality of a ghost line sliding into four-gluon 
vertices. 
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(a) Cb) CC) 

FIG. 34. Equality of a ghost line sliding into four-gluon 
vertices. 

FIG. 35. Equality of a ghost line sliding into the ghost 
vertices 18(e). 
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FIG. 36. Generating the ghost vertex 18(g). 

produce new BG vertices. For example, consider the 
combination of diagrams 30(a), 30(b), and 30(c). By 

using 3 and then 23,30(b) produces 30(e) and 30(f), and 
30(c) produces 30(g). Using 26, these combine to can- 

cel, leaving behind only the propagating diagram 30(h) 
to move on to other vertices. 

Similar cancellation takes place in all other cases, if we 
take into account other identities shown in 31-35. 

It is important to remark that in the definition of the 
BG vertices 18-22 and 36-38, as well as in the divergence 
relations 23-29, all the external lines may be taken off 
shell. 

Let us now return to the construction of the BG ver- 
tices for n = 2, and consider the effect of the cross 19(b) 

originating from the second vertex reaching the first (BG) 
vertex. Because of the modified canonical structure of 26, 
things proceed similarly to Rl and R2. Various situa- 
tions can happen when this cross returns to vertex 2 via 
a gluon loop. A sliding contribution just before it returns 
to the second vertex’gives rise to 21, 22, and 36. 

If the first vertex is just to the right of the second “er‘- 
ta, then in using 19 to convert the second vertex, the 
contribution of 19(c) followed by 23 on the first vertex 
produces terms like 37(b), 38(b), and 38(c). When com- 
bined with ordinary four-gluon vertex attached to these 
two external lines, the BG vertices 37(c) and 38(d) are 
produced. 

This completes the demonstration of R3 for n = 2. 
For n > 2, it is easy to see that nothing new can happen, 
in the sense that three or more vertices can interact only 
pairwise, so the result is expected to be true for all n. 

V. EXAMPLES OF NEW GAUGES 

The technique developed in Sec. II was used in Sec. 
III to show the independence of the gauge used in gluon 
propagators, and in Sec. IV to convert ordinary vertices 
to BG vertices. There is no reason why it cannot be used 

(al (bJ (CJ 

FIG. 37. Generating the four-gluon vertex IS(c). 
__ -___ 
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FIG. 38. Generating the four-gluon vertex 18(d). 

to study other gauge problems, including our eventual 
hope to find the “best” gauge for computing a specific 
set of gauge-invariant diagrams. 

In the present section, we will discuss two unconven- 
tional gauges, one for four-gluon tree amplitude and the 
other for two-loop gluon self-energy diagrams. The new 

gauges carry fewer terms than either the ordinary or the 
BG gauge. Though they may not be the “best” gauge 
possible for the specific problems, nevertheless, they do 
illustrate the fact that improvements can be made on 
existing gauges using the techniques developed in this 
paper. 

The tree-diagram example is given in Fig. 39, where 
the arrowed vertices are given in 18 [Eqs. (4.1) and (4.4)]. 
It can be shown using the techniques above that a new 
gauge containing the vertices in these diagrams does ex- 
ist, viz., the three diagrams in 39 do sum up to give the 
four-gluon on-shell scattering amplitude. 

Note that this is not the BG gauge. Since all the four 
lines in 39(a) are external, vertex l(d) should be used in 

the background gauge instead of 39(a). Moreover, each 
of the two 3G vertices in 39(b) and 39(c) contains two 
external lines, again l(b) rather than 18(a) should have 
been used in the background gauge. In other words, there 
is no difference between the BG and the ordinary gauge 
in this process. 

Figure 39(a) contains one term but the corresponding 
vertex in BG contains three terms. Each of 39(b) and 

(a) (ba) fCJ 

FIG. 39. Four-gluon tree amplitude in a new gauge. 
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FIG. 40. Diagrams with two gluon loops for the gluon 
self-energy~ in the BG gauge [(a) and (b)] and in the new 

g=we Kc) and (41. 

39(c) contains 4’ = 16 terms whereas the corresponding 
diagrams in BG each contains 6’ = 36 terms. Thus the 
new gauge depicted in 39 saves a total of 42 terms out of 
the 75 terms needed in the BG. 

The two-loop example is given in Fig. 40, where for 
easy drawing, solid lines are used to denote gluons. Fig- 
ures 40(a) and 40(b) are the two-gluon-loop diagrams in 
BG, whereas 40(c) and 40(d) are the same diagrams in 
the new gauge. Again the arrowed vertices are those dis- 
played in 18. The two-loop gluon self-energy contains a 
total of 18 diagrams in BG, but owing to incomplete can- 
cellation of the divergence terms when we shift gauges, 
new vertices and new diagrams are generated and a total 
of 23 diagrams appeared in this new gauge 1121. Never- 
theless, the new gauge still contaitis few terms in total, 
because the largest number of terms for each gauge al- 

ready occurs in the diagrams shown. The BG contains a 
total of 1367 terms, of which 1152 are contained in 40(a) 
and 40(b). In contrast, the new gauge contains a total 
of only 860 terms, of which 512 are contained in 40(c) 
and 40(d). In other words, 62% more labor is required 
to compute the two-loop self energy in BG than in the 
new gauge, and clearly even more labor is required to 
compute it in the ordinary gauge. 

Other details of this gauge and the two-loop computa- 

tion will appear separately. 
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