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Starting from the Abelian Higgs field theory we construct the theory of quantum Abrikosov- 
Nielsen-Olesen strings. It is shown that in four space-time dimensions in the limit of infinitely 
thin strings, the conformal anomaly is absent, and the quantum theory exists. We also study an 
analogue of the Aharonov-Bohm effect: the corresponding topological interaction is proportional to 
the linking number of the string world sheet and the particle world trajectory. The creation operators 
of the strings are explicitly constructed in the path integral and in the Hamiltonian formulation of 
the theory. We show that the Aharonov-Bohm effect gives rise to several nontrivial commutation 
relations. 

PACS number(s): 11.27.+d, 03.65.B~ 
I. INTRODUCTION 

One of the principal problems of quantum field theory 
is the search for the vacuum q function. This problem 
is especially important for the nonperturbative descrip- 
tion of gluodynamics and chromodynamics. The stan- 

dard way to obtain nonperturbative effects is to use some 
vacuum consisting of instantonlike classical solutions. In 
the present publication’we consider a vacuum consist- 
ing of Abrikosov-Nielsen-Olesen (ANO) strings. We start 
from the quantum Abelian Higgs theory, in which AN0 

strings are classical solutions. This theory can be consid- 
ered as a relativistic generalization of the effective theory 
of the superconductor near the critical point (Ginsbnrg- 
Landau theory), and we do not pay attention to the 

zero-charge problem. We work in Euclidian space and, 
taking into account the measure, extract from the func- 
tional integral the part corresponding to the topologi- 
cal defects which are AN0 strings. We can perform all 
calculations for the case when the worldsheets have the 

topology of the sphere. Actually, we perform in the con- 
tinuum limit the same transformations that have been 
used in the lattice compact QED [l] and in the lattice 

Abelian Higgs model [2]. It was shown that the partition 
function for the compact fields on the lattice can be fac- 
torized: Z,,, = Z,,,,&,,, where Z,,,,, is the partition 
function for the noncompact fields, and 2,,, is the par- 
tition function for the topological defects1 (monopoles in 
compact QED and strings in the Abelian Higgs model). 

‘The transformation of this type have been considered for 
the first time for the two-dimensional lattice XY model. It 
was shown [3,4] that the partition function of the XY model 
is equivalent to the partition function of the Coulomb gas. 
For the three- and the four-dimensional XY model it is also 
possible [5] to get the partition function for the topological 
defects, which are vortex lines and “global strings.” 
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In fast papers on the quantum AN0 strings [6,7], 
where the London limit (infinitely massive Higgs boson) 
was considered, it was shown that in the strong-coupling 
limit (thin and long strings) the strings can be described 
by the Nambu-Goto action. The exact action for the 
AN0 strings in the London limit is obtained in [8]. It 

was shown that in the string action there are terms de- 
pending on the powers of tensor of extrinsic curvature 
with exponents > 2. These terms ensure the stability 
of the classical string. The tree-level corrections to the 
AN0 string action were studied in 191. The duality trans- 

formation for the Abelian Higgs model was discussed in 

POI. 
It is impossible to get the quantum theory of the AN0 

strings from the actions discussed in [6-lo]. If we con- 

sider the limit of infinitely thin strings, the theory be- 
comes conformal, and it is well known that there tie diffi- 
culties with the quantiaation of this theory in four dimen- 
sions (4D): there either exists the conformal anotialy [ll] 
(in the case of Hamiltonian or path integral quantization) 

or Lorentz invariance is absent (in the case of light-cone 
quantization). So we start from the quantum Abelian 

Higgs field theory, and it seems that we get the string 
theory which cannot be quantized. As shown below, the 
solution of this paradox lies in the accurate change of the 
field variables to the string variables. 

An example of an effective theory of infinitely thin 
quantum 4D AN0 strings was suggested by Polchinski 
and Strominger [12]. It occurs that if one adds to the 
Nambu-Goto action an additional term, then this the- 
ory can be quantized in the &xniltonian formalism. For 
the Nambu-Goto action we have, on the classical level, 
the Viiasoro algebra (algebra of generators of conformal 
transformations) 

[p, LZQ] = (?I - m)Lf$ . (1) 

On the quantum level, taking into account the 
reparametrization ghosts, we have, for the pure Nambu- 
Goto action, 
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where D is the dimension of the space-time and L$’ are 
Virasoro generators which arise due to the ghost fields. 
If we add the term suggested in [12] with an arbitrary 

coefficient -y to the string action, Viramro algebra for 
the full generators I,Ft = IL;” + L;: takes the form2 

[lL;t,L~t] = (72 - 77+:;, 

+ D-26+qL7+5*+,o 
12 3 . (3) 

Therefore, by adjusting 7, we can cancel the conformal 
anomaly for D = 4 [12]. 

In Sec. II we show that such an additional term in the 
action naturally arises for the AN0 strings, if we take into 
account the Jacobian of the transformation from the field 
vari&les to the string variables. A preliminary, although 
not completely correct, calculation of this Jacobian is 
published in [13]. The usual terms are also present. The 
first two terms in the expansion of the action of the AN0 
strings [8,9], in powers of the average inverse string cur- 
vature, are the standard term proportional to the area of 

the string world sheet, and the rigidity term [14,15] with 
negative sign. 

In [16-201 the topological long-range interaction of the 
strings and charged particles was discussed. Tbis inter- 
action was discussed in [2] for the string representation of 
the 4D lattice Abelian Higgs model. In Sec. III we repeat 
the calculations of [2] in the continuum limit and show 
explicitly the existence of the Aharonov-Bohm effect in 

field theory. The reason for this long-range interaction is 
that the charges M = 3,2e,. . , (N - 1)e cannot be com- 

pletely screened by the condensate of the field of charge 
Ne; if MJN is an integer, then the screening is complete 
and there are no long-range forces. 

In Sec. IV we construct the operator which creates the 

string in a given time slice on the contour C. Tbis op- 
erator is the continuum analogue of the lattice operator 
considered in [5,2]. 

In Sec. V, we consider the theory in the Hamiltonian 
formalism and show that the string creation operator has 

nontrivial commutation relations3 with the Wilson loop 
operator; tbis is a direct consequence of the Aharonov- 
Bohm effect. We give several other examples of nontrivial 
commutation relations. 

*The algebra (3) was obtained in [12] in the leading order of 
the expansion in i?-‘, where R is the mean curvature of the 
strings. 

‘By a nontrivial commutation relation we mean a relation 
of the type AB -&BA = 0. 
where 5 = g(u) are the coorc&.$es of’ the two- 
dimensional singularities parametrized by ob, a = 1,2; 
a, = a/&,; @(z,z) is the function of z and the func- 
tional of %; C defines the position of the singularities; 9 = 

det Ilgczall; gas = &QaZ, and t,w = (~as/,h+W~as~v 
are the tensors of the induced metric and the extrinsic 
curvature on C (we have no intrinsic metric in the the- 

2 O’Y), tj4* = 2. Note that a&10* # 0 since B* is a singu- 
lar function. 

II. FROM THE ABELIAN HIGGS MODEL 

TO THE QUANTUM STRINGS 

The partition function for the four-dimensional 
Abelian Higgs model is given by the formula 

D,=a,-ieA,, (5) 

throughout the paper we assume the Pauli-Villars regu- 
larization, we discuss some details of the regularization 

in the Appendix. 
In Eq. (4) the integration over the complex scalar field 

+ = (+I exp(i0) can be rewritten as 

jV’Z’... =/DRe@VIm’+.. 

= [p~D~q]Ds.. . 
s 

The functional integral over 0 shbuld be carefully defined, 
since 0 is not defined on the manifolds where 

Im@=R&=O. (7) 

These two equations define the two-dimensional mani- 
folds in the four-dimensional space-time and we should 
integrate over all functions that are regular everywhere 
except for these two-dimensional manifolds. These two- 
dimensional singularities are nothing but the AN0 string 

worldsheets, since the Higgs field is zero at the center of 
the AN0 string. 

In Eq. (6) we integrate over the regular functiom 
R&(z) and Irn@( and it can be shown (E-10,21] that 
the singularities in the function 0(z) defined by Eq. (7) 
should have the form 
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‘(~,~)....l 
For simplicity, we consider the London limit (X + rn and the radial part of the field @ is iixed)4 

2 = const x J aA,~Bexp{-Jd’s[~F:,+~/a~8+eA,IZ]} , 

where $ = (I@12). Now we discuss the measure of the integration over 0. From (6) it follows that the norm for 

the field 0 is /1&9)12 = Sd4~)@[2(b0)2. In the London limit there are two independent variables: the regular and the 
singular part of 0, 0 = 0’ + Ba, and 

116e112 = const x J d%(be~ + 6ey = lpeq2 + 116ey 

From Eqs. (8) it can be easily seen that the interference term / d4r6e’6e” vanishes: 

s 
d4r6e’6e’ = const 

J J 
d% d4y60’a,,a+,pA-‘(a: - y)&p 

= const d% J S d4y(a,a,E~,,pdep)a-‘(I - y)ac,, = 0 , (10) 

we USA the fact that a,,avlSer = 0, since 60’ is a regular function. Therefore, s 2x3.. = s ZX?YZJ,B~~~ ., and IIOW we 
can show that the integral over the singular part 0” can be reduced to the integral over the string worldsheets. We 
have no monopoles in the theory; therefore, due to the conservation of the magnetic flux, the AN0 strings are closed, 
and the singularities, defined by Be [C in Eq. (8)], f mm closed two-dimensional surfaces. In the infinite space-time ‘??,’ 
the strings which are closed through the boundary conditions have the infinite action, therefore we do not take them 
into account. 

Now, let us transform the partition function of the field theory (9) to the partition function of the string theory. 

In order to change the integration variables, we substitute the unity into the functional integral (9) [see Eq. (S)]: 

Here j[&] is the Jacobian which corresponds to the change of the field variables to the string variables, and in J’DZ 
we assume summation over the topologies of the string worldsheets. Using the 6 function in (11) and the definition 
of 6’* (8), we integrate over P in the partition function: 

I 

=fge-S[B ,... ] = J ~ev~ese-SIO’+B’ ,... ] 

= const J ~er’DC,,e-SIB~+e’(~...,...l = const J ~er=~J(j)e-SIB*+~, 
(14 

where J(Z) = .f[CIIY). 
Fixing the gauge &9r = 0, it is easy to perform integration over A,,; the result is 

where (A + m2)Z$‘(z) = 6c4)(z), and rn2 = e2$ is the mass of the gauge boson. The action which enters the 
partition function (13) was already discussed in [8,9], the new object in (13) is the Jacobian J(Z). It is easy to see 
that J(Z) defined by (11) and the resulting partition function (13) are invariant under the reparametrization of the 
coordinate o on the worldsheet. As shown in the Appendix, J(5) can be evaluated if the string worldsheet C has the 
spherical topology. The calculations are performed in the conformal gauge, 

and the result is 

912 = 921 = 0, 911 = 922 = fi , (14) 

J(2) = const exp (15) 

*For an arbitrary X all the transformations remain the same, but in the final expression for the partition function (13) we 
have an additional functional integral over the radial part of the field a. 
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the parameters pi are defined in the Appendix, 111 is the 

regularization parameter, and R is the average curvature 
of the strings. 

Now we study the expansion of the action in powers 
of (rni?-‘. A similar expansion was studied in [8,9], but 
we include in the expansion the terms which come from 
l&(z). In the leading order, the action is local and, if the 
surface C has the spherical topology, we use expression 
(15) for J; the result is 

-P J, d2+(&t,v)2 . (1’3) 

Here p’ = ~0 - pl, the string tension fio comes &rn 
the expansion of the action (13) [8,9], in the regularize- 
tion scheme accepted in [8] po = 47$ln(A~/m2); ~0 
is renormalized by pL1 which enters the Jacobian (15). 
p = ?r/4e= + &lnh,Rf&r where the first term on the 

right-hand side (RHS) comes &om the expansion of the 
action, the second one is due to the Jacobian. 

The first term in (16) is the usual Nambu-Goto ac- 
tion; the second term, as we said, is important for the 
quantization, and the third one is the rigidity term (see 

[14,151). 
If we consider the strings without rigidity, p = 0, we 
get the theory studied in [12]. It occurs that the coeffi- 

cient of the second term in (16) corresponds to y = 22 
in the Viiasoro algebra (3); therefore, the conformal 
anomaly is absent and the theory can be quantized in 
D = 4. It should be emphasized that this term appears 
from the Jacobian J(E). 

It is obvious from the derivation of J(Z) that it has uni- 
versa1 nature, i.e., it is independent on the model under 
consideration. The Jacobian J(S) arises when we pass 
from the integration over the field variables to the inte- 
gration cwer the string variables. Therefore, we expect 
that any field theory which has the stringlike solutions is 
equivalent to the ‘string theory which can be quantized in 
D = 4. As mentioned in [8], the action which enters the 
partition function (13) leads to the stable AN0 strings, 
but the dominant vacuum co&guration is branched poly- 
mers formed by the string worldsheets. It would be in- 
teresting to study the dominant vacuum configuration of 
the strings, taking into account the Jacobian J(S). 

III. THE AHARONOV-BOHM EFFECT IN THE 
ABELIAN HIGGS MODEL 

Now we consider the Abelian Higgs model with the 
Higgs boson carrying the charge Ne, the partition func- 
tion now is 
Z=JDA,~Bcxp(-Jd4r[~~~~+~(~~B+NeAp)’]}. (17) 

There exists a nontrivial long-range topological interaction of Nielsen-Olesen strings with particles of charge Me, if 
M/N is noninteger. This is the four-dimensional analogue [16-X7] of the Ahamnov-Bohm effect studied for the lattice 
Abelian Higgs model in [2]. Now we derive the long-range interaction, using the string representation of the theory. 
Consider the Wilson loop for the particle of the charge Me: 

WM(C) = exp iMe 
t I 

d%&z)A,(z) } ex (1 = p ‘M +~‘%(4} > 

where the current is the 6 function on a contour C, 

j;(z) = cdtip(t)6@)(z - i(t)) , J (19) 
and the function z,,(t) parametrizes the contour. 

Substituting (18) into the path integral (17) and changing the field variables to the string variables, as described 
in the previous section, we obtain 

(wM(c)) = $ J XJ(~) exp( - J ~0 J d4y [+E,.(~)D~)(~ - y)~~,(y) 
M2e2 

+~3,cw% - Y)&Y) + ri$j;(z)Dg)(z - Y)a&w,pz&y) + 27+L(C,C) 1 , (20) 

where rn = Ne7 is the boson mass, and 

IL&C) = ; J J d% d4yE,,,pC,,(z)j~(y)ap~~)(s - y) 

1 
=...--.. 

4+ J J d% (21) 
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is the ,Ii&ing number of the string worldsheet C and the 
trajectory of the charged particle C, this formula repre- 

sents a four-dimensional analogue of the Gauss linking 
number for loops in three diinensions. The first three 
terms in the exponent in (20) are short-range interac- 
tions and self-interactions of strings and the teSted parti- 
cle. The fourth term is the long-range interaction which 
described the four-dimensional analogue [16-191 of the 
Aharonov-Bohm effect: strings correspond to solenoids 
which scatter charged particles. lL is an integer, and if 
M/N is an integer too, then there is no long-range in- 

teraction; this situation corresponds to such a relation 
between the magnetic flux in the solenoid and the charge 
of the particle when the scattering of the charged particle 
is absent. 

Another consequence of the Aharonov-Bohm effect can 

ch be obtained, ifwe consider the operator F.v(S) [19] whi 
creates the string with the magnetic flux 2nlN.e moving 
along a f&d closed surface S. F&S) is the analogue of 
the Wilson loop which creates the particle moving along 
the closed loop C. An explicit form of TN(S) is [19] 

There exists an operator which can be calculated em& 
[18]; this operator is the normalized product of the Wil- 
son loop W&Z) and TN(S): 

~NN(S)~fvm 
Ai”M(S~C) = (FpJ(S))(WM(C)) (23) 

Here (FN(S)) is a constant which depends on the reg- 
ularization scheme. Substituting this operator into the 
functional integral (17) and integrating over the fields A 
and 0, we obtain 

(ANM(S,C)) = exp (2ni$L($,C)) (24) 

The meaning of this result is very simple. If the surface 
S lies in a given time slice, then 

&vv&%C)) = exp ( ~Qs) 

(see [19,lS]), where &s is the total charge inside the vol- 

ume bounded by the surface S; if L(S, C) = n, then there 
is the charge Mne in the volume bounded by S: 

IV. THE STRING CFiEATION OPERATOR 

In Sec. II we have derived the partition function of 
the Abelian Higgs model as a sum over the closed world- 
sheets of the AN0 strings. Now we construct the oper- 
ator which creates the string on a closed loop at a given 
time; after a while the string shrinks. The vacuum, ex- 
pectation value of this operator is the sum over all SUP 
faces spanned on a given loop. A similar operator for the 
lattice theory was suggested in [5,2]. The construction 

is quite the same as that of the soliton creation operator 
suggested by Fr&lich and Marchetti [22]. First we con- 
sider the model [lo] which is dual to the original Abelian 
Higgs model. It contains the gauge field BP dual to the 

gauge field A,,, and also the hypergauge field h,,, dual to 
0’. As in Eq. (12), we change the integration in 6” to the 
integration in 5. The details of the duality transforma- 
tion are given in [lo]. Taking into account the Jacobian, 
we get 
Z = J ‘Dh’DBD%J(j.)exp {J [ - d% +l;va + y (h,, - a,B, + @,B,)2 + 2?rih,,C,,(r, j.) , (25) 

where H,,,, = a&, + aA-, + a&,, is the field strength of the hypergauge field h,,. The action of the dual theory 
is invariant under the gauge transformations, B,(s) + B,,(z) + O,,a(z), h,,(e) + hpY(z), and under the hypergauge 

transformations, B,(r) + B,(z) -T,,(I), hpY(z) --t hpY(z) + Qyv(r) - O,y,(z). 
The AN0 string carries magtietic flux, and in order to construct the creation operator, it is natural to use the dual 

Wilson loop: 

wm = exp { i J d4+&#$)} , 
where t&e current j:(z) defines the loop C [19]. This operator is gauge invariant but it is not hypergauge invariant, 

and its vacuum expectation value is zero. To construct the hypergauge invariant operator [5,2], we follow an idea of 
Dirac [23], who suggested the gauge-invariant creation operator of a particle with the charge M: 

(P&(x) = @M(X) exp iMe i J d!yG,(x - y)A~(y) 3 , (26) 

here &G;(x) = 6@)(x), and the gauge variation of the matter field a(z) + @M(Z) exp{iMea(r)} is compensated by 
the gauge variation of cloud of photons A,. Now we use a similar construction, namely, we surround l%(C) by the 
cloud of the Goldstone bosom 

u(c) = vvD(c) exp {; J d”yG$2(z - y)h;&)} (27) 
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It is easy to see that U(C) is hypergauge invariant if the skew-symmetric tensor Gy (r) satisfies the equation5 

&Gik(z) = j,“(z). It is convenient to choose Gsk(z) as the surface, spanned on the loop C: G: = JS, d~‘j(Z.)J(~)[z - 

Z(u)] [cf. Eq. (S)]. Since the string creation operator should act at a definite time slice, the surface defined by G:(z) 
and the loop C should belong to that time slice.’ 

Substituting the operator (27) into the dual partition function (25) and performing the inverse duality transfor- 
mation, we get the vacuum expectation value of the string creation operator in terms of the original fields A and 
8: 

where the tensor G$” is equal to G, ‘j if fi = i and Y = j xe spatial indices, and Gp = Gz” = 0 for any fi. If we 
change the field variables in (28) to the string variables, we get a sum over closed surfaces C: 

(U(C)) = ;/oiJ(i)exp(-n%raj 4 J d 2 d4y{[Ccy(z,i$ + G~(z)]Dj,$(z - y)[C““(y,~) + G$“(y)]} . (29) 
The summation over all closed surfaces C’“, plus the 
open surface G”” with the boundary C, is equivalent to 
the summation over all closed surfaces and over aE2 SUP 
faces spanned on the loop C. Therefore, the operator 
U(C) creates a string on the loop C. Using the string 
creation operators, it is easy to construct the operators 
which correspond to the processes of decay and scattering 
of the strings. 

Note that from the Eq. (28) it follows that the vat- 
uum expectation value (U(C)) in the Euclidean theory 
is positively defined. The fact does not mean the exis- 
tence of the string condensate, the situation is similar 
to the case of the Frohlich-March&ti monopole creation 
operator [22], see discussion in [24]. 

If the string condensate is not zero then the infinitely 

large strings contribute to the vacuum state. Formally, 
the string condensate exists if in the limit 13: - yI + co: 

(U&T,) U+(G)) + A + Be-‘P + , (30) 

A # 0. In Eq. (30) Cl and Cz are finite loops at which 
we create and annihilate string and z(y) is any point qn 
the loop Cl (C,). 

V. AHARONOV-BOHM EFFECT IN THE 
HAMILTONIAN FORMALISM 

In this section we consider the AN0 strings in the 
framework of the canonical quantization. We start with 
the standard commutation relations: [n’(x), Ai( = 
4,6(x-y), d = F”’ and [r&),$(y)] = -id(x - y), 
n+ = (Do+)‘. Using the string creation operators (22) 

and (27), we construct several operators, which satisfy 
the commutator relations of the type A. B - B. A& = 0. 
Similar operators are known for 3D Abelian models, see 
for example [25]. The physical phenomenon leading to 
the nontrivial commutation relations in the non-Abelian 
theories was discussed by ‘t Hooft [26]. 

First, let us consider the operator U.,(C) which creates 
the AN0 string on the loop C: 

u.,,(C) = exp{ !$ /dSz;eijkG;(++)} , (31) 

here GF(z) is the same function as in Eq. (27). The 
operator (31) is a special case of the creation operator: 

U[A”‘] = exp {i / d%A~(z)nx(.)} , (32) 

where A”(z) is a classical field. It is easy to see 
that UIAC’]IA(z)) = I+) + A”(z)). In (31) we have 

A;‘(z) = (2n/Ne)c;jkGz(cc), and the magnetic field ox- 
responds to the infinitely thin string on the loop C: 
Bi(r) = (27r/Ne)jf(z); the current j$ is defined by 
Eq. (19). 

The commutation relations for the operator (31) with 
the operators of the electric charge Q = 1 d%i&r” (x) and 

the magnetic 5ux @; = J d%c&A”(x) also show that 
U*,(C) creates a string which carries the magnetic flux 
2x/Ne on the contour C: 

[Q(~o>~),Uatr(C)l = 0, 

[@(zo,x),U*tr(C)] = ~jmJ.“.(C) (33) 

Note that, the string creation operator (28) considered 
in the previous section can be rewritten as 
‘In this and in the next sections, Latin indices vary from 1 to 3 and Greek ones vary from 0 to 3. 
‘The solution of the equation &Gik(z) = j:( I 1s nonunique, moreover we choose a two-dimensional surface as the support ) 

of G”, the solution which has three-dimensional support can be of the form Gik = ~d3y@j~l(y)7J~)(x - y), where 2):) = 
-l/4+ - yl. It is easy to find that all these ambiguities do not change physical results. 
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.,~)=~~,{-J,~[~(,,.~~,,,G,,~,)z-~,]} , (34) 
and it is clear that, up to an inessential factor, it coincides 
with the definition (31). 

Now we consider the commutator of the operator 
U.~,(CI) and the Wilson loop WM(&) (18), the contours 
CI and Cs belong to the same time slice. Using the re- 
lation eAeB = eBeAe[A~Bl, which is valid if [A,B] is a c 
number, it is easy to get 

U&qW&,) - .iE(C,,C,)W~(C2)Uat.(C1) = 0 ( (35) 

where 

and 

IL(G,Cz) = 2 J S dxi Cl 4 dy;p p!l$ x 
is the linking nimber of the loops Cl and Cs. The com- 
mutation relation (35) is the direct consequence of the 
Ahtionov-Bohm &tit; the wave function of the particle 
of the charge Me acquires the additional phase ehiMjN if 
it goes around a solenoid with the magnetic flux 2n/Ne. 

The next example is the commutation relation of the 
Dirac operator @&M(x) (26) which creates the particle 
with charge A4 at the point x, and the operator 3N(S) 
which creates the string on the surface S. In Minkowski 
space, the operator IN has the form [an analogue of 

Eq. WI 

3,v(S) = exp { & s, d~,+&&9} (36) 

If the surface S belongs to the same time slice as the 
point x, then 

3‘“(S)‘q&) - @‘M(x)3&f(S)P(~+) = 0 ( (37) 

where 8(S,x) = (2nM/N)O(S,x). The function O(S,x) 
is the “linking number” of the surface S and the point x: 

O(S,x) = 
-i 

1 if I lies inside volume bounded by S, 
0 otherwise. 

(33) 

It is obvious that the commutation relation (37) is also 
a consequence of the Aharonov-Bohm effect. 

Now consider the composite operator 

JhfN(X,S) = q&)3N(S) I (39) 

where the surface S lies at the same time slice as the 
point x. Using commutation relation (37) it is easy to 
find that 
-HM~,N(X2,S2)HM~,N(X*,Sl)eiCI1 = 0 1 (40) 

where [,z = (27rM~/N)O(x1,&) - (2nMz/N)O(xz,Sl). 
If the point x1 lies in the volume bounded by &, the 
point x2 lies out of the volume SI, Ml,2 = 1 and N = 

2, then Eq. (40) leads to the fermionlike commutation 
relation 

(41) 

The commutation relations (40) and (41) can be ex- 
plained as follows. The operator 3~(s) creates the 

closed worldsheet of the AN0 string and the configwa- 
tion space of the (charged) particles become not simply 
connected. Similar reamns lead to nontrivial statistics in 
2+1 dimensions [27]. Note that all operators and com- 
mutation relations considered in the present section can 
be constructed in the free theory, but the states created 
by the operators L&.(C,) and TN(S) are very unstable in 
this case. In the Abelian Higgs theory, the AN0 strings 
exist as a solution of the classical equations of motion, 
and this fact justifies the study of the commutation rela- 
tions which contain string creation operators. 
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APPENDIX 

Below we show how to derive the expression (15) for 
.7(Z). We start from the following definition of .7(Z) [see 
Eqs. (11) and (12)]: 

[J(W = J~~pYC,&,~) - &“(%3} , (Al) 

where C,,(z, 2) and C,,(r, ti) are defined by (8). 
First we represent functional b function in (Al) as 
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s{c,,(z,g - C,,(q5)} = const 
J 

Dk:,,(r)exp {i J d4+&“[C,“(~,Q) - %&, a} 

= const 
J 

Dk,,(r) exp (is, d2ak,,[+)]&t,,, - i l, d2~‘kp~[~(o’)]&w} , (A2) 

where 9 and t,, are the same as in (8), h,b = &fi,,&,g,, h = det Ilhaal], and 7,,” = (Q,/J~E)&~~&&. Functional 
integration over k,, leads to 

[J(Z)]-’ = const D& 
s rI 

S(JiErLW - v%L”) (A3) 
L-c” 

Consider now the functional integral 

(A4) 

Due to the second S function, &T~” = fitpv, and we should assume some regularization’ of the first 6 function: 

6(1 - (g/h)3) = 61eg(0). The next transformations can be accurately performed in the discretized space,” but we 
simply introduce the parameter A which plays the role of the inverse thickness of the string or the ultraviolet cutoff: 

(A5) 

where @ = A*ln[6reg(0)], S(C) = /0d2u’m. Th e t erm exp{~&(X)} in (A5) is due to the infinite product of 
Sreg(0) over all the points on the surface C. If we now set 

A = const exp{-@(X)} , (A6) 

then I@) = [J(S)]-‘, and 

[J(5)]-’ = const 
I 

D&,exp{-@(C)}S(h3 - g3) n 6(~~y - tr”) C-47) 
P<V 

The transformations (A4) and (A5) seem to be not very strict: we have to use 6’“g(O) and the regularization 

parameter A. A more accurate derivation of (A7) can be done if we notice that (Al) and (A2) is the theory of the 
Kolb-Ramond field k&j), which interacts with the Nambu-Goto string, the bare string tension being equal to zero. 
It is important that (A7) is the string theory in which, as we show, the conformal anomaly naturally arises. This 
conformal anomaly cancels the conformal anomaly of the original theory (9) and (13). 

Substituting into (A7) the unity of the form 

we obtain 

‘For example, Jr”+) = (M/JZ;;)exp{-M21sla}, M + 00, 
‘The analogous trick was used in [28]. 
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It is possible to make the transformation 

s 
‘Dh,aJ(h,b - &&A&$‘~,,J 

( 
7,m -~a~1i,a*~~)~~p{-,J,d2gl~}... 

= const 
J 

~h.~~7,,exp{-~d2d[~~~~~+~~~habBg~~~~~~+~~~~u4~~~~~Bb~~]]-.. . (AlO) 

I 
The fields hnb and 7,,” have no kinetic terms in the action, 
and therefore they acquire their classical values (see [ll], 
or Chap. 9 of [29]). If surface C has spherical topology 
we can fix the conformal gauge globally on the surface. 
To this end, we substitute the following unity into the 
integral: 

1= J W(h:,)J(hf, - &)Aw , (Al
where Dj means integration over all possible 

reparametrizations, and hi, is the’change of the met- 
ric under a particular reparametrization f. In the last 
formula, the Faddeev-Popov determinant AFP appears, 
which is the exponent of the Liouville action in confor- 
ma1 gauge with the central charge -26 (see [29]). The 
next step is the integration over jj,,. The first two terms 
in the exponent (AlO) give the Liouville action with the 
l) 

central charge equal to D = 4 (see [29]). And the third 
term leads to the term 

in the Jacobian. The integration over h and 7wv leads to 
expression (15). 

Note that all transformations can be performed in an 
arbitrary gauge if, instead of (All), we use the gauge- 
fixing term in the form: 

here AFP is the exponent of the Liouville action in the 
considered gauge. 
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