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The N = 4 supersymmet& self-dual Yang-Mills theory in four-dimensional space with the sig- 
nature (2,Z) is formulated in harmonic superspace. The on-shell constraints of the theory are 
reformulated in the equivalent form of vanishing curvature conditions for three gauge connections 
(one harmonic and two space-time). The constraints are then obtained as variational equations from 
a superspace action of the Chern-Simons-type. The action is manifestly SO(2,Z) invariant. It can 
be viewed as the Lorentz-covariant form of the light-cone superfield action proposed by Siegel. 
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I. INTRODUCTION 

The interest in self-dual theories in a four-dimensional 
space-time with the signature (2,2) has risen consider- 
ably after the observation of Ooguri and Vafa [l] that 
the string with a local N = 2 world-sheet supersymmetry 
has only one state describing self-dual Yang-Mills theory 
(open string) and self-dual gravity (closed string). Soon 
afterwards Parkes [2] proposed a field-theory action,’ al- 
legedly corresponding to the amplitudes of this string. 
This action uses a special Lorentz-noncovariant gauge for 
Yang-Mills theory of the type first considered by Yang 
[4], in which only one degree of freedom is left (as op- 
posed to the three degrees of freedom in the covariant 
self-duality condition). In addition to the lack of covari- 
ance, this action contradicts standard dimensional count- 
ing, as noted in [5,6] (it requires a dimensionful coupling 
constant which is not natural in a four-dimensional Yang- 
Mills theory). 

In [7] Siegel put forward the idea that the N = 4 
string, when properly quantized, is in fact equivalent. to 

the N = 2 one. He further argued that the correspond- 
ing field theory is actually the N = 4 supersymmetric 
self-dual Yang-Mills (SSDYM) theory in the open case 
or N = 8 self-dual supergravity in the closed case. In 
[6] he also presented a Green-Schwarz-type formulation 
of that string.’ 

In general, the multiplet of N-extended SSDYM the- 
ory contains helicities from +l to 1 - N/2. So, it in- 
cludes all the helicities from +l to -1 in the maximal 

case N = 4 only. As a consequence, in the latter case 
the degrees of freedom appear in Lagrangian pairs and 
one is able to write down a Lorentz-covariant action for 
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‘A similar action for self-dual Yang-Mills theory had earlier 

appeared in a different context in [3]. 

zSome comments on the validity of the latter have recently 
been made in IS]. 
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Self-dual Yang-Mills theory and supergravity have 
been studied from a different point of view in a series 
of papers by Devchand and Ogievetsky [14-161. There 
the accent was on parametrizing all the solutions of such 
self-dual equations and eventually constructing some of 

those solutions. In a sense, they considered a kind of a 
twistor transform of the self-dual theories based on the 
harmonic superspace formalism. In this paper we shall 
use a similar formalism, but our main purpose will be 
to write down an action for the N = 4 SSDYM theory 
rather than to look for solutions to its field equations. 

In Sec. II we recall some basic facts about harmonic 
superspace. We apply the formal rules developed for 
the case of SU(Z)/U(l) harmonics [Ill, ignoring possi- 

ble subtleties due to the noncompactness of the coset 
SL(2,R)/GL(l, R) in the case of Lorentz harmonics under 
consideration. In Sec. III we use harmonic superspace 
to rewrite the constraints of N-extended SSDYM in the 
form of integrability conditions. It then becomes possible 
to formulate the theory in terms of three gauge connec- 
tions depending on one-fourth of the original number of 

the theory. So far this action has been presented either 
in component (i.e., not manifestly supersymmetric) [5, 
91 or light-cone superspace (i.e., not manifestly Lorentz- 
covariant) form [lo, 51. Our aim in this paper will be to 
write down the N = 4 SSDYM action in a form which 
is both manifestly Lorentz-invariant and supersymmet- 
ric. In some sense it is a covariantization of the light- 
cone action of Siegel [lo, 51, obtained with the help of 
harmonic variables for one of the SL(2, R) factors of the 
Lorentz group SO(2,2)-SL(2,R),xSL(2,R)R. Harmonic 
superspace [ll] has proven to be the adequate tool for 
manifestly supersymmetric formulations of many super- 
symmetric theories. The N = 4 SSDYM theory is just 
another example in this series. It should be mentioned 
that some time ago a different variational principle re- 
producing the self-duality condition on (nonsupersym- 
metric) Yang-Mills fields has been proposed in [12]. It 

used SU(2) harmonics and involved a nonpropagating La- 
grange multiplier. However, according to the analysis in 
[13], it does not describe any scattering and thus cannot 
be considered as a conventional field-theory action. 
2062 01996 The American Physical Society 
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Grassmann variables. This is in fact the covariantiza- 
tion of the light-cone superspace used by Siegel (see also 
[15]). In it the self-duality equations have the form of 
zero-curvature conditions for the three gauge connections 
(the harmonic connection and the two harmonic projec- 
tions of the space-time connection). This immediately 
suggests to write down an action of the Chem-Simons 
type. The GL(l, R) weight (closely related to the physical 
dimension of the fields) of the Chern-Simons form only 

matches that of the superspace measure in the maximal 
case of N = 4 SSDYM. So, this action only makes sense 
for N = 4, although the same const&ints and the same 
Chern-Simons form can be written down for any value 
O<N<4. 

II. HARMONIC SUPERSPACE WITH 
SIGNATURE (2,2) 

The space with signature (2,2) can be parametrized 

by coordinates zea’, where cy and cr’ are spinor indices of 
SL(~,R)L and SL(~,R)R [the Lorentz group is S0(2,2)~ 
SL(2, R)L x SL(2, R)R]. The N-extended superspace has 
the coordinates 

p’ 
>e, 1 

pd” 
(1) 

where a are co- or contravariant indices of the automor- 
phism group GL(N, R). In it one can realize N-extended 

supersymmetry as 

The corresponding algebra of supercovariant derivatives 
is 

VW’;1 = 0, 

{&a> Dpb) = 0 , (3) 

{D:,Dpcb} = S&,. 

We choose to “harmonize” one-half of the Lorentz 
group, e.g., the factor SL(~,R)R. To this end we in- 

troduce real harmonic variables ufa’ defined as two 

SL(2, R)R spinors forming an SL(2, R)R matrix: 

u*“’ E SL(~,R)R : u+-‘u, = 1 (4) 

[raising and lowering the SL(2, R)R spinor indices is done 
with the E tensor]. The index f refers to the weight 
of these variables with respect to transformations of 
GL(~,R)R c SL(2,R)R, Thus, the harmonic variables 
defined in this way should describe the noncompact coset 
SL(2, R)R/GL(~, R)R. However, we are going to apply to 
them the formal rules of harmonic calculus on the com- 
pact coset SU(2)/U(l) [ll]. In a certain sense, this COT‘- 
responds to making a Wick rotation from signature (2,2) 
to (4,0). It is beyond the scope of this paper to give 
a rigorous justification of this approach. Nevertheless, 
the formal rules will allow us to write down a superspace 
action which has the correct component content. 

Here we give a short summary of the rules of harmonic 
calculus which we are going to use. Harmonic functions 
are defined by their harmonic expansion 

(5) 

By definition, they are homogeneous under the action of 
GL(~,R)R, i.e., they carry a certain weight q [in (5) Q 2 
01. From (5) it is clear that the harmonic functions are 
collections of infinitely many irreducible representations 
of SL(2, R)R (multispinors). 

The principal differential operator compatible with the 
defining constraint (4) is the harmonic derivative 

a++ = u+“’ a 
azl-n’: a++u+-’ = 0, a++u-d = u+a’ 

(6) 

The other harmonic derivative on the two-dimensional 

coset SL(2,R)R/GL(1,R)R is a-- (a--p’ = 

0 , a--u+“’ = u-“’ ), but we shall never make use of 
it? 

A direct consequence of the above definitions is the 

following lemma: 

a++f(*)(u) 

= O * 

f’*‘(u)=o, q<o 

f(q)(u) = f”:-4u&; ..u;;, , q 2 0 

(7) 

Finally, harmonic integration amounts to projecting 
out the singlet part of a weightless integrand, according 
to the formal rule 

s 
f&L f’q’(4 = 

0, q#O 
fsinglet, q = 0. 

This integration rule is designed to give a Lorentz- 
invariant result. It is compatible with integration by 
parts for the harmonic derivative a++. 

With the help of the above harmonic variables we can 
define Lorentz-covariant GL(l, R)R projections of the su- 
percovariant derivatives J&n (3): 

D+ = u+~‘D,~,, a+ = ~+“‘a D OI aa (9) 

Together with the harmonic derivative a++ they form an 
algebra equivalent to the original one (3): 

‘There exists yet another derivative compatible with (4), 
80 (a%;, = +a;,). As follows from (5), it just counts 

the GL(~,R)R weight of the harmonic functions, @f”)(u) = 

Qf%). 
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{D:,D;} = [~:,a;] = 0, {D:,D;} = ~;a,+ , (10) 

{D,+,D:} = [D,+,$] = [8;,8$] = 0, (11) 

[a++, D:] = [a++, D,+] = [I?++, a,+] = 0 (14 

To see the equivalence it is sufficient to apply the lemma 
(7) to the commutation relations (12) and thus restore 
the unprojected derivatives from (9). When removing 

the harmonics uial ,u+@ from a relation such as, e.g., 
ID,+, D:} = 0 we could, in principle, obtain terms pro- 
portional to ~0, in the right-hand side. However, the 
Lorentz index structure and the dimensions of the avail- 
able superspace operators do not allow this (except for 

possible central charge terms, which we do not consider) 
and we reconstruct the original algebra (3). 

The structure of the algebra (lo), (11) suggests sev- 
eral new realizations of the N-extended supersymmetry 
algebra in subspaces of the harmonic superspace involv- 

ing only part of the Grassmann variables 0. One of them 
is the chiral superspace which does not contain the vari- 
ables 0:. It is characteriied by the coordinate shift 

Chiral basis: zua’ --t zDla’ - $?F6a’a (13) 

In addition, we shall regard the following GL(~,R)R 

harmonic4 projections as independent variables: 

&a = u*zaa’ 
d I ,*a = 7&?=+ 

In this basis the covariant derivatives from (lo)-(12) be- 
come 

D+ = a+ + 6’“8+ CL 0 aar 
LI++ = a++ + @+*a+ + .+wu+ (1 

(14) 

Here and in what follows we use the notation 

Note the appearance of vielbein terms in the harmonic 
derivative D++ in (14). So, in this basis the chiral SW 
perfields defined by the constraint 

D:a = 0 =s + = @(I*~, 6’*“, u) (15) 

do not depend on 0:. In the chiral subspace the super- 
symmetry transformations are 

,@t” = -p/pa 
0 , 6te” = &-‘a ) &A;, = 0 (16) 

Another possibility offered by the algebra (lo), (11) is 
to eliminate the projections 0-” from the supersymmetry 

40f course, chiral superspace can be defined without har- 
monic variables [as follows from the algebra (3)]. However, 
the latter will be needed below for the purpose of writing 
down an action for the N = 4 SSDYM theory. 
where $@ = -@‘, @” = -46” (for N = 1 the scalars 4 
drop out). In the nonsupersymmetric case N = 0 only 
the last relation in (22) remains. For N = 0, 1,2 the 

theory is off shell, whereas for N = 3,4 it is on shell. In 

transformations. To this end one makes the shift I-~ + 
x-a + (1/2)QP, after which the spinor derivative D,+ 
becomes 0,’ = a/&P’. Then the analytic superfields 

defined by 

D,+@ = 0 * + = Q(z*“,~+~,~:,u) (17) 

do not depend on B-“. In this analytic subspace super- 

symmetry acts as 

A peculiarity of the harmonic superspace under consid- 
eration is the existence 1141 of an even smaller superspace 
containing only lP”. It is defined by imposing the chiral- 
ity (15) and analyticity (17) constraints simultaneously: 

D:+ = D,+* = a,+% = 0 +. @ = +(z+~,B+~,u). 

(19) 

Note that the third constraint is an inevitable corollary of 
the first two and of the anticommutation relations (10). 
In a suitable superspace basis supersymmetry is realized 
on x+’ and t?+” only: 

6x+‘- = -e”e+” , W” = ?&& , SUM! = 0 a (20) 

Such superfields are automatically on sheli, since 

III. SELF-DUAL SUPERSYMMETRIC 
YANG-MILLS THEORY 

A. Superspace constraints 

N-extended (0 5 N 5 4) supersymmetric Yang- 
Mills theory is described by the algebra of the gauge- 
covariantized superspace derivatives from (3): 

{OZ, $1 = EapP , p:, V,,l = ca&, , 

Iv:, V/Yb) = Q-V,, , (22) 

a’n, VB’b) = Qpl&lb , [V&m Vpp,] = “a’J3’Xba 1 

;:aa,, V,,, = ap,Fmp + c+F,y~ , 
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addition, in the case N = 4 one !hould require the two 
sets of six scalars to be related,’ ba* = (1/2)Cbcd& 

Self-duality means that half of the field strengths van- 

ish, e.g., all those appearing in (22) multiplied by E+ 

[of course, the N = 4 relation @* = (l/2)Cbcd~.~ does 
not hold any longer]. Thus we obtain the constraints of 
SSDYM theory: 

I%, qd = 0, 

{v:,vP’b) = We@ , 

1% VW1 = 0 , (23) 

IV&, VP%) = Gz’p4J.s , 

[Vcd,, V7pfYl = ~dP’XBa , 

IV,,, , Vpp] = e‘+pFa,p (24) 

Since the self-duality condition F,,p, = 0 on the Yang- 
Mills field is a dynamical equation, the constraints (23), 
(24) now describe an on-shell theory for any value 0 5 
N < 4. This supermultiplet contains helicities from +1 
down to 1 -N/2. Clearly, it only becomes self-conjugate, 
i.e., spans all the helicities from +l to -1 in the rnax- 

imal case N = 4. As a consequence, in the latter case 
the degrees of freedom appear in Lagrangian pairs and 
one is able to write down an action for the theory. So 
far this action has been presented either in component 
(i.e., not manifestly supersymmetric) [5,9] or light-cone 
superspace (i.e., not manifestly Lorentz-invariant) form 
[lo, 51. Our purpose in this paper will be to write down 
the N = 4 SSDYM action in a form which is both mani- 
festly Lorentz-invariant and supersymmetric. To this end 

we shall first relax (23), (24) in order to go off shell and 
then we shall find a variational principle tiom which (23), 
(24) will follow as field equations. 

Our first step will be to obtain a set of (anti)- 
commutation relations completely free from curvatures 
with the help of the harmonic variables introduced’ in 
Sec. II. Defining the harmonic projections [cf. (9)] 

v+ = u+“‘v,*, , v+ = u+*‘v,,< ( CL u 

we obtain, from (23), (24), 

Ix,v;~ = 0 I 

{V”,, v;} = s;v,+ , 

1% “iI = 0 , 

P,+,v:J = 0 3 

Fc, $1 = 0 I 
[V,+, V,+] = 0 

(25) 

(26) 

(27) 

(28) 

(29) 

(39) 

(31) 

‘This is the analogue of the reality condition on the scalars 
in N = 4 SYM theory in the case of Minkowskian signature 
(1,3) [18]. In the case of signature (2,Z) the scalars are real 
by definition. 

“Our treatment of the SSDYM constraints is, up to a certain 
point, similar to that in [15]. 
In fact, these constraints are equivalent to the initial set 
(23), (24). To see this one takes into account the linear 
harmonic dependence of the projected covariant deriva- 
tives (25) and then pulls out the harmonics u+ from the 
relations (27)-(31). In doing so the terms proportional 
to ~0, appear on the right-hand side of Eqs. (24). The 
information contained in (25) can also be encoded in the 
form of commutation relations with the harmonic deriva- 
tive a++ [cf. (12) and recall (7)]: 

[a++, q = (a++, V,‘] = [a++, V,‘] = 0 (32) 

This means that we first assume that the gauge connec- 

tions AZ, A+, A,+ are arbitrary functions of the harmonic 
variables uz,. Then the role of the constraints (32) is to 
reduce this dependence to a trivial one. In fact, we can 
go a step further and start from a framework in which not 
only the gauge connections but also the gauge group pa- 
rameters have an arbitrary dependence of the harmonic 
variables. This implies that the harmonic derivative a++ 
is covariantized as well: 

V++ = ,++ + A++@, 0, u) 

Then Eqs. (32) are replaced by covariant ones: 

[v++, vg = 0 , (33) 

[v++, q = 0 , (34) 

[v++, V,+] = 0 (35) 

In order to go back to the frame in which the harmonic 
dependence is trivial it is sufficient to eliminate the newly 

introduced harmonic connection A++(z, 8, u) by a suit- 
able harmonic-dependent gauge transformation: 

A++(cz,C?,u) = e -A\(z,s,u)a++,A(z,e,u) 

This is always possible, since there is only one such con- 
nection (no integrability conditions). Then we recover 
the original constraints (32), from which we deduce the 
trivial harmonic dependence of the remaining connec- 
tions AZ, AZ, A+ 

For our pup&s it will be preferable to stay in the 
frame with nontrivial harmonic dependence of the gauge 
objects. Even so, the constraints (26)-(31) and (33)-(35) 
still allow us to choose alternative special gauge frames. 
One possibility typical for other harmonic gauge theo- 
ries (see [ll, 19,201) would be to use the zero-curvature 
constraint (29) and gauge away the connections AZ (“an- 
alytic frame”). In such a frame the notion of an analytic 
(B-a-independent) superfield (17) is preserved. However, 
we do not find it useful in the present context. Instead, 

we can choose a chiral gauge frame in which the con- 
nection AZ vanishes [its existence is guaranteed by the 
zero-curvature condition (26)]. Although this could be 
done even before introducing harmonic variables, the rel- 

evance of the latter will become clear shortly. SO, using 
the chiral basis (13) for the spinor derivatives, we can 
trivialize the covariant derivative V:: 

chiral gauge: A: = 0 + V: = a: (36) 

Note that in this new gauge frame (36) the gauge parame- 
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ters are chiral (i.e., independent of 0:) but still harmonic 
dependent, h(z,0**,u). Further, from (28), (36), and 
(33) we find 

a:Ap’ = a:A++ = 0 =c. A;t = A,+(z,e+“,u) , 

A++ = A++@, e*“,u) (37) 

Equation (27) then has the general solution 

A; = a,‘@, e+a , ti) + e,-a,+ cz, e**, g (38) 

Substituting (38) into (29), using (14) and collecting the 
terms with 0, 1, and 2 0: , we obtain the constraints 

a,+a;+a,+a:+{a,+,a;j=o, (39) 

aa+A; - ap’cza’ + [a,+, A;] = 0 , (40) 

a,+A; - a;A; + [A,+, A;] = 0 (41) 

The first of them implies that the part u~(z,@*~,u) of 
AZ (38) is pure gauge and can be gauged away by a 
suitable gauge transformation: 

bA,+=a,+h+[A,+,A] (42) 

with a chiral parameter A. From now on it will be con- 
venient to work ins the semianalytic gauge: 

a,+(z,e*a,u) = 0. (43) 

Then from (40) we find 

azAp+ = 0 + A,+ = A;(z,e+“,x) (44) 

The next step is to insert all the above results in Eq. 
(34). The @F-independent term gives 

a+A++ = 0 =s. A++ = A++(z,e+“,u) e. (45) 

and the term linear in 0: yields the constraint 

a+A++ - D++A,+ + [A,+, A++] = 0 . OI (4’3) 

Among the remaining constraints only that on the con- 
nections AZ (41) is independent, Eqs. (30), (31), and 
(35) then follow. 

Comparing the harmonic treatment of the SSDYM 
constraints given here with the more traditional approach 
to harmonic gauge theories in [ll, 19,201, we see that here 
we gauge away the spinor connection A,+ only partially 
(43) [the remaining part of it is related to the vector con- 
nection A,+, see (38)]. At the same time, the other spinor 
connection AZ is fully gauged away [chiral gauge (36)]. 
This mixed chiral-semianalytic gauge explains why we 
needed to keep a nontrivial harmonic dependence when 
introducing the chiral gauge (36). In fact, we could go 
one more step further and fix a fully analytic gauge in 
which the entire spinor connection AZ [or, equivalently, 
the vector connection AZ, see (38)] is gauged away. This 
is permitted by the zero-curvature condition (41). In 
this case we would obtain a twistor transform of the on- 
shell SSDYM fields [see the discussion around Eq. (67)]. 
However, for the purpose of writing down an action we 
should keep the set of three gauge connections AZ, A++ 
which are functions of only one-fourth of the Grassmann 
variables: 

A,+ = A,+(z,B+,u) , A++ = A++(z,e+,u) (47) 
These connections undergo gauge transformation 

dA,+=a,+A+[A;t,A], 

6A++ = D++A + [A++, A] , (43) 

A = A(%, 0+, u) , 

which are compatible with the chiral-semianalytic gauge 

(36), (43). The connections are put on shell by the three 
zero-curvature conditions: 

a+A++ - D++A,+ + [A,+, A++] = 0 , 

a:A; - ap+A: + [A,+, A;] = 0 

(49) 

(50) 

All this represents an equivalent reformulation of the N- 
extended SSDYM theory and will serve as the basis for 
our action in the case N = 4. Before addressing the 
issue of the action, we would like to make a number of 
comments. 

B. Supersymmetry transformations 

The gauge connections (47) do not transform as su- 
perfields under the right-handed part (parameters e;) of 
the supersymmetry algebra (16). Indeed, A,+ in (38) is a 
supercovariant object but its component a,+ from the 0: 
expansion is not: 

Here we have explicitly written out the supertranslation 
terms. Earlier we fixed the gauge (43) which is violated 
by the inhomogeneous term in (51). In order to correct 
this we have to accompany the supersymmetry trans- 
formation by a compensating gauge transformation (42) 
with the parameter 

A = (e-y)A,+(z,e+,7L) (52) 

This gauge transformation affects the connections AZ, 
A++ as well, so their supersymmetry transformation laws 
are modified: 

6~; = (ge+*a; - E+ba,-)A,+ 

+ce-*&(a,+$ - a;A; + [AZ, A;]) , (53) 

JA++ = (ge+ba; - ,+ba;)A++ 

+(e-“$)(D++Ap+ - ap+A++ + [A++,Ap+]) 

+(e+bcf)Aa+ (54) 

The terms containing 8- are proportional to the con- 
straints (49), (SO), so they drop out. Remarkably, the 
connections A,+(z,O+,u), A++(z, B+,u) transform as if 
‘the supersymmetry transformations (16) did not involve 
c7- at all: 

JA+ = (6fe+baj - cr e+“aJA,+ , (55) 

&A++ = (Efe+ba; - ,+*a;)A++ + (e+*cf)Ap+ (56) 

It must be stressed that these objects should not be con- 
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fused with the chiral-analytic superfields defined by Eq. 
(19). The latter do not depend on xma and are thus au- 
tomatically on shell. For our purposes it is essential that 
the superfields A,+, A++ can exist off shell too. Therefore 
we shall never require a:A = 0. 

Thus, Eqs. (55) and (56) are the transformation laws 

of “semicovariant” superfields. Another way to say this 
is to point out that commuting two such supersymmetry 
transformations one obtains the required translations in 
the direction I-~ only with the help of the constraint 
(49) and of a compensating gauge transformation (42) 
with parameter A = (e;“e!& - c;~E~~)A~ [this follows 
from (52) as well]. From this point of view the harmonic 
derivative D++ (14) is not supercovariant either, i.e., it 
does not commute with the translation part of the trans- 

formations (55), (56): 

ID++ > cfe+baj - E+bab-] = -cfe+bap+ + @a; 

(57) 

The supersymmetry transformation rules (55), (56), 
in which 0- never appears, were obtained using the on- 
shell constraints (49), (50). When writing down the 
N = 4 action in Sec. IV we shall treat the connec- 

tions AL(z, e+, u), A++(r, B+, U) as unconstrained ob- 
jects. Nevertheless, we shall apply the same supersym- 
metry rules to them. What is important in this context 
is to make sure that the left-hand sides of the constraints 
still form a supersymmetric set, i.e., that they transform 
into each other. Indeed, this is easy to check using the 
transformation laws (55), (56), (57). 

c. components 

Now we would like to give a direct demonstration that 
the constraints (49), (50) do indeed describe N-extended 
SSDYM theory. To this end we shall exhibit the com- 
ponent content of the gauge superfields Az(x,e+,u), 

A++(z,e+,u). Let us first consider the simplest case 
N = 1. The harmonic connection has a very short Grass- 
man* expansion: 

A++ = a++(+~) + B+u+(qu) (53) 

The fields in (58) are harmonic, i.e., they contain in- 
finitely many ordinary fields [recall (5)]. However, we 
still have the gauge transformations (48) with the pa- 

rameter 

A = A(r,u) + e+p-(z,u) (59) 

Let us compare the harmonic expansions (5) of the 
bosonic components in (58) and (59): 

a++(qu) =ugp&P’@(x) 

+ + - +u&.u4~21&,)a n’P’7’6’(5) + ( 

A(r,u) =X(z) + q~,u~,,x~‘~‘(+) 

+“tu,,~,,l”a’~Xa’P’7’6’ (I)+... 
Clearly, the parameter X(~,U) contains enough com- 
ponents to completely gauge away the harmonic field 

a++(%,~) [note that the singlet part X(z) in X(z, u) is not 
used in the process; it remains nonfied and plays the role 
of the ordinary gauge parameter]. Similarly, the param- 
eter p-(z, U) can gauge away the entire field a+(z,~). 

Thus, we arrive at N = 1 Wess-Zumino gauge: 

A++=O. (6”) 

The other gauge connection has the expansion 

A,+ = A&u) + e+xe(s,u) . (‘3) 

The harmonic dependence in it can be eliminated by us- 
ing the constraint (49). Substituting (60) and (61) into 
(49), we obtain D++Az = 0, from which follow the har- 

monic equations 

a++&((2,u) = 0 + .A,+(%,%) = u+a’.4,,+) , 

a++h(2,g = 0 =+ X~Z,U) = ~44 (62) 

Then, inserting (62) into the remaining constraint (50), 
we obtain the self-duality equation for the Yang-Mills 
field &+ (z) and the Dirac equation for the chiral spinor 

xc&) : 

F”‘P’ = a-(a’&, + d+‘df, = 0 , V-“‘xm = 0 , 

(63) 

where V,,, = a,,. + [A,,, , ] denotes the usual Yang- 
Mills &variant derivative. This is precisely the content 
of the N = 1 SSDYM multiplet. 

It is not hard to find out the supersymmetry trans- 
formation laws of the componknt fields A,,,, xe. To 
this end we note that in order for the supersymme- 
try transformation (56) not to violate the Was-Zumino 
gauge (60), we have to make a compensating gauge trans- 
formation (48) with parameter A = (B+P)d; [where 

d; = U-“‘J&(X)], Then the combination of (55) with 

this gauge transformation gives 

hA,f = -r+x‘, - B+@(a;d; + a;d; + (d,,d;]) 

This, together with the field equation for A (63) leads to 
the transformation laws 

where F,p is the self-dual part of the Yang-Mills curve- 
ture. 

The ma&na1 case N = 4 follows the same pattern. 
There one can fix the N = 4 WZ gauge: 

A++ = (e+)z+bob(z) 

+(e+),g*‘x:,(z) 

+(e+)4u-“‘u-~‘G,yy(%) ) 

(64) 
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p+y = ;o+‘B+“, 

(s+)z = $,&9+b~+“o+d, 

p+y = ~,a~de+v+bo+Ce+d 

The other gauge connection has the expansion 

A,+ =dl;(z,u) + B+a~a&,~) + (O+)“nbB,,(z,u) 

+(s+):7,-- (z,u) + (e+)%y(z,u) (65) 

With the help of the constraint (49) one eliminates the 
harmonic dependence in (65): 

d;t(z,u) =~+“‘&& , xc&,4 =x.&) , 

q&(%4 = ~-p’Vaa’40b(l) 1 

T,y”(zz,U) = ;“-%L-%,,#x;‘(“) , 

C,-3(x, u) = ~u-~‘u-~‘u-~‘V,,,G~~, (z) (66) 

In addition, the constraint (50) implies that the physical 
fields +,a , xan , & satisfy their equations of motion. 
The fields A,,, and G,rp, describe a self-dual and an 
anti-self-dual gauge fields, respectively. Thus we find the 
complete content of the N = 4 SSDYM multiplet, as 
given in [lo, 5,9]. Following the N = 1 example, it is not 
hard to also derive the supersymmetry transformation 
laws from [5,9]. 

Here we would like to comment on another possibility 
to fix the gauge. Above we showed that a n&xupersym- 
metric off-shell gauge of the Was-Zumino type is nec- 
essary in order to obtain the standard components of 
the theory. However, on shell there exists an alternative, 
manifestly supersymmetric gauge. Indeed, the constraint 
(50) tells us that A,+ is pure gauge on shell. If we fix the 
supersymmetric on-shell gauge: 

A:=O, (‘3’) 

the remaining constraint (49) becomes simply 

i?+A++ = 0 OI w 

It means that the components of A”” are harmonic fields 

4(x+“, u) independent of I-=. As explained in (Zl), such 
fields are automatically on shell. In fact, what we en- 
counter here are twistor-type solutions of massless equa- 
tions of motion.’ 1171. Thus, we can say that the con- 
nection A++ now contains the set of twistor transforms 
of all the fields of the N-extended SSDYM multiplet. In 
other words, the solutions to the SSDYM equations are 

‘We should repeat here that our harmonic variables are de 
fined on the noncompact coset SL(~,R)R/GL(I,R)R. There- 
fore the analogy with the standard twistor approach [17], 
based on the compact coset Sz - SU(Z)/U(l), remains 
formal. 
encoded in a single on-shell superfield A++. The situa- 
tion here closely resembles the harmonic version of the 
twistor transform of the ordinary (N = 0) SDYM equa- 
tions, where all the self-dual solutions (e.g., instantons) 
are parametrized by a single object V++(+t;, ~2,) [19]. 
This line of study of the SSDYM system has been pro- 
posed and pursued in [14,15]. In the present paper we 
are interested in an action for the N = 4 theory, therefore 
the on-shell gauge (67) will not be implemented. 

D. Action for N = 4 SSDYM 

Up to now the whole discussion applied equally well to 
all values 0 5 N 5 4. The unique features of the case 
N = 4 only become important when one tries to write 
down an action. At the component level this is mani- 
fested in the fact that the N = 4 multiplet contains all 
the helicities from +l (described by the self-dual field 
A) down to -1 (the field G). It is precisely the field 
G,,o, which can sbwe as a (propagating) Lagrange mul- 
tiplier for the self-duality condition on A,,, Similarly, 
the spinor fields XE, and ,&, form a Lagrangian pair. 
The form of this action first given in [5,9] is 

The purpose of the harmonic superspace formalism de- 
veloped above was to write down an action for N = 4 
SSDYM with manifest Lorentz invariance and supersym- 
metry. So far we have rewritten the on-shell constraints 
of the theory in the equivalent form (49), (50). Now we 
want to obtain these dynamical equations from a varia- 
tional principle. Equations (49) and (50) have the form 
of vanishing curvature conditions. Note also the impor- 
tant fact that we have three gauge connections A++, AZ 
and, correspondingly, three curvatures made wt of them. 
All this suggests to write down the Chem-Simons form 

L+~(~,B+,~) = br (A++~+“A,+ - ~A+~D++A: 

+A++A+“A,+) (70) 

Since the connections in (70) are ,not covariant super- 
fields, we should find out how the Chern-Simons form 

transforms under supersymmetry. Using (55), (56), (57) 
it is easy to check that 

SL+~ = (@+*a; - ,+*a;)~+4 

++0+%;)8+“‘Ik(A,iA;) , 
2 (71) 

i.e., it transforms into a total derivative with respect to 
the variables zfa and 8+“. Similarly, the gauge trans- 
formations (48) give 

6L+4 = a+%(D++AA:) - :D++T~(~+~AA,+) , 

(72) 



3 ACTION FOR N =4 SUPERSYMMETRIC SELF-DUAL YANG-. . . 2069 
which is a total derivative with respect to the variables 
CE; and ~2,. This allows us to write down the supersym- 
metric and gauge invariant action as an integral over the 
<‘l/4 superspace” x*=, e+=, u;,: 

S = 
J 

d%dud%+ L+4(x,B+,u) (73) 

Obviously, the variation with respect to the superfields 
A++, A,+ produces the desired field equations (49), (50). 
Let us now make sure that the action (73) has the correct 

physical dimension. Indeed, the gauge connections have 
dimensions,[A++] = 0 (the harmonic variables are dimen- 
sionless), [A,+] = 1, so the dimension of the Lagrangian 
is (L] = 2. At the same time, the superspace measure 
has dimension 4[dz] + 4[d6’] = -4 + 2 = -2, thus exactly 
compensating that of the Lagrangian. Another property 
closely related to the physical dimension is the harmonic 
weight of the Lagrangian. By definition, the harmonic 
integral in (73) would only give a nonvanishing result if 
the integrand has zero weight [recall (S)]. This is indeed 

true, since the weight +4 of the Lagrangian is cancelled 
out by the weight of the Grassmann measux d48+. The 
last point clearly shows that an action of this type is only 
possible in the maximal case N = 4, although we could 
have written down the Chern-Simons form (70) for any 
0 5 N 5 4. The light-cone action of [2,10,5] can for- 
mally be written down for 0 5 N < 4 too, although then 
it requires a dimensionful coupling constant, which is not 
natural for a Yang-Mills theory in four dimensions (see 
the discussion in [5,6]). 

Finally, we shall show that the component form of the 
action (73) is the same as (69). Inserting the Wess- 
Zumino gauge (64) for A++ and the expansion (65) of 
AZ into (73) and doing the Grassmann integral, we ob- 
tain 

S = 

J { 

d%du TI +#?‘V+=B;=~ + x-=V+=x=,, 

+G--F++ -,C-d=a++A+ 
01 

-T--“na++Xaa _ IB-aaaa++B;a, _ ab a 
4 4 X,Xd 

I 
> 

(74) 

where dab = ;&+#J~, V+= = a+= + [.a+=, 1, F++ = 

a+=A: + /t+=A,+. The fields B;,&,u), C-3”(z,u), 
~--“O(z,a) are clearly auxiliary. They give rise to the 
harmonic equations 

a++d+ = 0 a++xma = 0 OI T a++B-=“b - v+-p = 0 

which allow us to eliminate the harmonic dependence of 

d;t and x== and to express Bmaab in terms of @” [see 
(SS)]. Afterwards the harmonic integral in (74) becomes 

trivial and we arrive at the action (69). 

IV. CONCLUSIONS 

In this paper we presented a harmonic superspace for- 
mulation of the N-extended supersymmetric self-dual 

Yang-Mills theory in a space with signature (2,2). We 
were able to write down an action for the case N = 4 with 
manifest Lorentz invariance and supersymmetry. The 

most unusual feature is that the Lagrangian is a Chern- 
Simons form. In this the N = 4 SSDYM theory r&embles 
the N = 3 SYM theory [signature (1,3)] formulated in a 

harmonic superspace with harmonics parametrizing the 
coset SU(3)/[U(l) x U(l)] [ZO]. The main difference is 
that in the N = 3 SYM case the Chern-Simons form is 
made out of harmonic connections only, whereas in the 
N = 4 SSDYM case we used two space-time and one har- 
monic one. In both cases the manifestly supersymmetric 
formulation greatly facilitates the study of the quantum 
properties of the theory. 

We remark that a similar formulation exists for the 
N = 2 free “self-dual” scalar multiplet defined in [5,9]. 
It can be described by the anticommuting harmonic su- 
perfields A,i(r,O+,u), A’(r,6’+,u), where i is an index 
of, e.g., an internal symmetry group SL(2, R). The action 
is very similar to (73): 

s = 
J 

d%dud%+ 
( 

A+“~+OA,~ - ~A=“D++A,~ 
> 

(75) 

The most complicated case of a self-dual theory in the 
space with signature (2,2) is N = 8 supergravity. As 
shown in [5], using a light-cone superspace it can be 
treated in the same fashion as the self-dual scalar and 
Yang-Mills theories. In a future publication we shall 
present a harmonic superspace formulation of N = 8 
self-dual supergravity. It will allow us, in particular, to 

systematically derive all the supersymmetry transforma- 
tion laws of the component fields (they were given in [5] 
only partially). 
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