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The statistical mechanical system associated with the two-dimensional supersymmetric Liouville 
theory is obtained through an infrared-finite perturbation expansion. Considering the system con- 
fined in a finite volume and in the presence of a uniform neutralizing background, we show that 
the grand-partition function of this system describes a one-component gas, in which the Boltzmann 
factor is weighted by an integration over the Grassmann variables. This weight function introduces 
the dimensional reduction phenomenon. After performing the thermodynamic limit, the resulting 
supersymmetric quantum theory is translationally invariant. 
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I. INTRODUCTION 

The two-dimensional Liouville field theory (LT) at- 
tracts considerable interest due to the important role 
played by it in the quantum theory of bosonic strings 
[l]. For space-time dimensions D < 10, the supersym- 
metric (SUSY) version of the Liouville theory plays a 
similar role in the quantum theory of fermionic strings 

[z]. The effective theory of free Fermi strings, which 
describes the sum over random surfaces with fermion&z 
structure, is described by the SUSY LT. The computa- 
tion of scattering amplitudes for fermionic strings is then 
reduced to the computation of correlation functions of 
the two-dimensional SUSY Liouville field theory. 

General results, some of them exact [3,5-lo], have been 
established in the literature of statistical mechanical sys- 
tems associated with two-dimensional quantum field the- 

ories, like the standard sine-Gordon (SG), SUSY SG, and 
Liouville theories (LT’s). 

The standard sine-Gordon theory has been known for 
a long time to be equivalent to the two-dimensional 
Coulomb gas of point particles in the grand-canonical en- 

semble [3]. Using perturbation expansion, the equation 
&state of tbis statistical mechanical system is obtained 

and predicts ihe existence of a Kosterlitz-Thouless (KT) 
phase transition [4] at a critical temperature 0,” = 8 ?r. 

The supersymmetric generalization of the two- 
dimensional sine-Gordon theory was considered in Re&. 
[5-‘71. In Ref. [7] it was shown that supersymmetry in- 
troduces the dimensional reduction phenomenon. The 
equation of state of the .corresponding statistical me- 

chanical system shows that the supersymmetry preserves 
the KT phase transition at the new critical temperature 
0,” = 47r. 

The statistical mechanical system associated with the 
two-dimensional Liouville theory was considered in Refs. 
[8,9]. The equation of state is obtained exactly [SI, show- 
inc the absence of a KT chase transition. and corre- 
spinds to the equation of &te of a two-dimemional ideal 

g=. 
The main purpose of this paper is to study the statisti- 
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Analogously to what happens in the LT [SI, in its su- 

persymmetric version the monotonicity of the potential 
piece associated with the primary boson field is responsi- 
ble for the infrared instability (non-neutrality) of the cor- 
responding statistical system. In order to ensure trans- 
lational invariance of the fundamental bosonic sector, as 
well as to prevent the intiared instability problem, a con- 
stant neutralizing background must be introduced. A 
subsidiary condition on the auxiliary field must be also 
introduced such that, in the thermodynamic limit, the 
supercharge annihilates the vacuum and supersymmetry 

is not destroyed in the resulting quantum theory. 
This paper is organized as follows. In Sec. II we ob- 

tain the grand-partition function describing the infrared 
stable (screened) statistical system associated with the 
SUSY LT. The exact equation of state is obtained. In 
Sec. III we show the existence of a translationally invari- 
ant ground state which implies also that the superfield 
satisfies a “free field weak condition.” We summarize and 
discuss our results in Sec. IV. 

II. VACUUM FUNCTIONAL AND EQUATION 
OF STATE 

In superfield notation, the two-dimensional SUSY LT 

is defined by the action’ 

cal mechanical system associated with the supersymmet- 
ric generalization of the Liouville theory (SUSY LT). 

‘The conventions used are the following. The Hermitian 7’ 

matrices are 7’ = (y t ), 7’ = (8 i’), and 7’ = 

A Majorana spinor is defined by I/J = , 

such that $. = y” +* = $J. 
2037 @ 1996 The American Physical Society 
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In terms of component fields, the real scalar superfield is 
given by 

qz,o) = p(z) + s+(z) + ;ooF(z) , (2,.2) 

where ‘p is a scalar field, li, is a two-component Majorana 

fermion, and F is a subsidiary scalar field. The super- 
space Grassmann coordinates are given in terms of the 
Majorana spinor 0 = (O,O*)T. The covariant derivatives 
are 
v- = a,. - e*a- , 

(2.3) 

The component field representation is obtained by ex- 

panding the function& of the superfield in a Taylor series 
withrespect to the Grassmann variables. Using (2.2) and 
(2.3), expanding the superpotential in (2.1), we obtain, 
after integration over the Grassmann variables, 
A = Id% [++) aOlp(z) + ?@)Q~$(~) - iF2@) - @=(z) &+) - $%fld(z)+(~)@‘(‘)] (2.4) 

Taking the minimum of the action with respect to F we obtain 

F(z) = a,peP+) (2.5) 
Thus the subsidiary field can be eliminated from the action (2.4) and ~e get 

The above action is not invariant under translation of the primary bosonic ‘p field. As we will see, the monotonicity 

of the potential associated with ‘p is responsible for the infrared instability (non-neutrality) of the corresponding 
statistical system. This is more conveniently performed using the superfield notation. 

To begin with, let us consider the modified action 

(2.7) 

@e,(S) = ;/dzrd2w(ww* - ef?*)C+,~) (2.8) 

The volume is V = Jd*zd%BB* = T X2. The action (2.7) 1s invariant under translation of ‘p and in the limit 
‘R + co reduces to the original action (2.1). 

The first term in expression (2.8) introduces the uniform neutralizing background via 

which ensures the infrared stability of the associated statistical system. The second term in (2.8) introduces a 

subsidiary condition on the auxiliary field F’, such that the correct supersymmetry properties are implemented in the 
resulting quantum theory. 

Let us consider the Euclidean vacuum functional written in terms of the action (2.7): 

2=z,-‘~[dB]exp(-~d2rdzB(~~(i,B)~+~~~(r,8)+uo~~~~(‘.8)-Y”(8)l)] , (2.10) 

where 20 is the free (a~ = 0) vacuum functional. The statistical mechanical description is obtained by making the 
gas expansion [3] 

Inserting the expansion above into (2.10), we obtain 
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where the free correlation function rfL is given by 

(I 

” 
r~y”l,e*;...;I”,en) = 0 I-J ,fl[*(@+*“(Ql 0 

kl I) 

( 

0 

(2.13) 

and (. .),, denotes the average with respect to the free theory. The free n-point function (2.13) can be written as a 
quadratic functional integral over &he superfield. Using (2.8), we can write 

with 

and 

~~sL)(t, 0; zl, 6~. ; zn, en) = p(t, 8; zl, el;. ; tn, 63 + f(s,, ,en) (2.15) 

P(Z,e;tl,el;...;e,,e,)=p~ [a(z)(,-.i)6(2)(e-e~)-~6(2)(e)] , 
i=* 

(2.16) 

f(e,,.. ,e,) = c 2 s@)(e,) 
*=I 

(2.17) 

The distribution p given by expression (2.16) corresponds to a neutral “charge” density in superspace: 

J, 
d2~d2eP(t,e;Il,e1;...;Zn,en)=~ (2.18) 

The neutral charge density pb associated with the LT is obtained from (2.15) via 

+)htl ,..., ~*)=JdZe~s~)(r,e;xl,e1;...;2,,*,) (2.19) 

Performing the quadratic functional integration in (2.14), we obtain 

r~L(~1,81;...;z,,B,)=exp{~JdZrd28da~id’B’ 

x~((SL)(t,e;tl,e,;...;In,e,)a(~,e; d,e’) J-(~~)(z’, 0’; zl, el; i z,, en)} (2.20) 

The infrared and ultraviolet regularized Euclidian massless superpropagator is given by [5,7] 

A(Z,,e~;xj,e~)=-~l~~~(~:j+E2) ) (2.21) 

where the distance between two points (zi, e,) and (zj, ej) in superspace is given by [6,7] 

Rjj = $ _ $ + @rp@j . (2.22) 

Expanding the superpropagator in terms of the Grassmann variables, we can write 

qt,e;d,e’) = -$inp:+~,(z) +9.(zr8;z’,e’) , (2.23) 

where 

D,(t)=-&ln(lr]z+~z) , (2.23a) 
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cqz, 0; d, 0’) = -& [e*e”dz,z.. - ee’d,,,,] - #J(e) b@)(e)) 6p(z - 2) , 

d =,., = (zo - 4 + +I - 4) 
It-t’12+$ ’ 

6jZ)(z-2’)=~[/r-Z:;2+C2]2 

Inserting (2.23) into (2.20), the free correlation function is then given by 

(2.2313) 

(2.23~) 

(2.23d) 

and 

(2.24) 

(2.25) 

The free correlation function I$ given by Eq. (2.25) corresponds to the Boltzmann factor of the screened two- 

dimensional one-component plasma [lo] associated with the LT [8,9]. Th e neutrality condition (2.18) ensures that 
the po-dependent terms cancel and the n-point function (2.24) is free of infrared instabilities. 

The fist term in the exponent of (2.25) re p resents the interaction energy of the equally charged gas particles and the 

second one the interaction energy between gas particles and uniform background. The divergent e and R-dependent 
terms appearing in (2.24) represent, respectively, the particle-particle and background-background self-energies, and 
must be eliminated by a renormalization prescription. In order to eliminate these unphysical contributions, we 
introduce the renormalized coupling constant [8,11] 

(2.27) 

Using the scaling zi = Ri;, the Euclidean vacuum functional (2.12) can be written as 

In terms of the new variables, the contribution of Grassmann variables is given by 

+ /d%d%‘d~)(i-2’)]~ (2.29) 
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The (z)” factor in Eq. (2.28) is due to the scaling in the 
integration elements in Eq. (2.12). 

Identifying the renormalized coupling constant a with 
the fugacity and 0’ with the inverse temperature, the 
vacuum functional (2.28) can be regarded as the grand 
partition function of the “screened”one-component gas 

in which the Boltzmann factor is weighted by a func- 

VV~(it,...,2”)=J~4~ d eiwv(il,e,;...;i,,e,) 

i=’ 
h 

(2.30) 

In order to display t e effective volume dependence of 
the grand-canonical partition function (2.28), we must 
expand the weight function (2.29) in terms of the Grass- 
mann variables. The only terms which give a nonzero 

contribution to the integrals over the Grassmann vari- 
ables in Eq. (2.30) are those with n even and are propor- 
tional to V-?. Taking this into account, the volume de- 
pendence can be factorized in the weight function (2.30), 
and we can write 

\ I, , 

(2.30a) 

where W is independent of volume. The grand-partition 

function (2.28) can be rewritten as 

2$x(!)l’ls(.~~) > (2.31) 

where S @ In) is independent of volume and is given by 

‘s(“IA) =J$i,<l fid%r:(i,,....i,“) 

xW(&, ,izn) (2.32) 

Thus. as a consequence of the Grassmann algebra intro- 
duced by the weight function (2.30), only configurations 
with n even contribute to the partition function. As we 
shall see, this restriction imposed by the weight function 
implies the dimensional reduction phenomenon. 

Next, we shall obtain the equation of state govern- 
ing the statistical mechanical system associated with the 
SUSY LT. To this end we introduce the grand-canonical 

potential 

a==-KTln2, 

such that the pressure is given by 

(2.33) 
ai-2 
P = - m asp = Icrz- 

,( > 

1 82 
(-> 

av (2.34) u,p 

The partition function 2 describing the statistical me- 
chanical system associated with the LT [8] can be ob- 
tained directly from Eq. (2.28). Getting out the weight 
function (2.30) that carries the Grassmann variable de- 

pendence, we obtain, f?om (2.28), 

- (-@ 1, zn 
2 = li&--c 2 

0 J 
- 

n=O ( n)! 57 ,pi,<l fi d2ii 

a&. ,q , (2.35) 

where the Boltzmann factor rt is given by Eq. (2.25). 
In the case of LT, inserting (2.35) into (2.34) we obtain 

the equation of state [S] 

PV = (N)K7-, (2.36) 

where N = n is the total number of particles and the 

average number of particles is given by 

with 

Contrary to what occurs in sine-Gordon theory 131, the 
equation of state (2.36) indicates the absence of a critical 
temperature predicting that the system does not undergo 
a Kosterlitz-Thouless phase transition. 

For SUSY LT, inserting (2.31) into (2.34), we obtain 
the equation of state 

PV= ~(N)KT, 

with N = 211 and the average number of particles is given 
h.r 
“’ 

(N)=z-‘c j$N(~)‘h*) (2.40) 

Comparing Eq. (2.39) with Eq. (2.36) we see that SUSY 
LT exhibits the dimensional reduction phenomenon with- 
out a Kosterlitz-Thouless phase transition. 
III. TRANSLATIONAL INVARIANCE 

The equation of motion for the operator-valued superfield is given, by 

v+v- q5, e) + 4 :,fl[*(Z,@)-*,(@)l: -!!?.$t) 

J 

,j2t,jZW :,~[*&+%(@I :) 

-y /dazdZwc5(2)(u) : e P[*(w-*“(w)l := 9 , (3.1) 
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which implies the subsidiary condition 

: ,P[vP(+%l : - 1 
v Ii J 

zt ;eP[v(4-v.l: 
(34 

In order to show that in the thermodynamic limit the resulting quantum theory is invariant under translation, let 
us consider the vacuum expectation value 

,a[4(.j,wj)-~.(wj)l,p[~(z,e)-~“(s)l 0 , 

I> 
(3.3) 

0 

in which the expansion (2.11) was introduced. In the above expression the normal-ordered exponential operators are 
defined by [8,11] 

Performing the quadratic functional integration on the lie correlation function appearing in expression (3.3), we 
obtain 

(oI,P[*(,,e)-*,(e)lI0)=2-‘2~ f+$ /~&i&iexp{; ~dZ&&‘daw 
n=o c-1 

xj(s~)(~,w;z,e;~~,wl;...;t,,w,)A(~,w;-~’,~’) 

xj(s~)(z’,w’;I,e;tl,wl;...;~~,w”) >> 

where the new distribution is given by 

~(:(SL)(Z,W;2,e;a,wl;...;~“,w”)=p(,,,;.,,;.l,,l;...;,,w”)+~(e;wl ,..., WJ , 

with 

(3.5) 

(3.6) 

” 
~(~,w;2,s;e,,wl;...;~~,W”)=pC 6(2)(~--Ei)b(Z)(W-wWi)-~ 

i=l { 

6(Z) (cd) 

1 

+p 1 p+ - +yw(w - 0) - 60 v 1 ’ 

f(fAW, 

Computing the integrals in (3.5) and using the renormalized coupling constant (2.27), we get 

(0, : ,P [*W)-*u(‘J)l : lo) = 2-l 2 k$ / fi dzy d2Wi 

n=cl i=l 

(3.7) 

(3.3) 
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Making the change of variables ti --t ti - I, we obtain that the vacuum expectation value given by (3.9) is 
independent of .z in the thermodynamic limit. Expanding the exponentials in (3.9) which carry the dependence on 
the Grassmann variables, we find 

v~~~ol : 
,P[%8-% WI : 10) = A$2)(()) + B , (3.10) 

where A and B are constants corresponding, respectively, to the terms of the series (3.9) with odd and even powers 
of the coupling constant. 

Taking the vacuum expectation value of the superfield equation of motion (3.1) and using (3.9), in the thermody- 
namic limit we obtain the “free field weak condition” 

(01 D+D- qz,e) lo) = 0 . (3.11) 

In terms of primary fields, we obtain, ftom (3X), 

(0l-y%,~(z) IO) = c@(Ol : ,~~~(+~“I : ?,6(z) IO) = 0 , (3.12) 

(01 IJcp(z) IO) = af12 ((01 : ,‘?[+-~"I : F'(z) IO) - $ /d'z(O : ep[v(z)-v"] : F'(z) IO)) 

+a@ 
( 

(Ol~(z)$(z) : ,@[+--I IO) - ; jd%(Ol~(x)+(z) : ep[+'(z)-v"l : IO)) = 0 (3.13) 

According to Eq. (3.13), in the thermodynamic limit we obtain (OllplO) = const, and the resulting quantum theory 
is translationally invariant. 

As a consequence of Eq. (3.11) and the subsidiary condition (3.2), in the thermodynamic limit the subsidiary field 
acquires a zero vacuum expectation value 

lilil(Ol F’(z) IO) = a@ ,@[%+)-‘+‘.I : I,,) - ; 
J 

dzt(ol : ,~[%+)-‘?‘..I : I,,)} = 0 , (3.14) 
which ensures the correct supersymmetry properties. 

The itinitesimal supersymmetry transformations are 

G=l-!b 1 (3.15a) 

w = (F - VQf)C 1 (3.15b) 

63 = --ilyY3,?l, ) (3.15c) 

where C is an anticommuting parameter. Denoting the 
supercharge by Q, we can write, from (3.15~) and (3.14) 

~olIre,~llo,=~~~~~ol~‘lo)=o, (3.16) 

since (OlQ~~plO) = 0. Thus, the supercharge Q annihi- 
lates the vacuum and supersymmetry is not destroyed in 

the thermodynamic limit. 

IV. CONCLUSIONS AND OUTLOOK 

The standard sine-Gordon theory has been known for 
a long time to be equivalent to the two-dimensional 
Coulomb gas of point particles in the grand-canonical 

ensemble. Using the same methods applied in this pa- 
per, the equation of state of this statistical mechanical 
system is obtained as 

PV = (1 - Z) (N)X7. (4.1) 
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Although this equation of state exhibits a simple form, 
it is not a trivial equation since all interactions are con- 

tained in the infinite series (perturbative expansion) en- 
closed in the (N) term. The negative P-dependent factor 
characterizes the existence of a Kosterlitz-Thouless (KT) 
phase transition at a critical temperature corresponding 
to 0’ = 8~. 

Ti supersymmetric generalization of the two- 
dimensional sine-Gordon theory was considered in Refs. 
[5-71. In the latter paper, one of the main results is that 
supersymmetry introduces a dimensional reduction phe- 
nomenon in the corresponding equation of state, which 

is given by 

PV = (; - g) (N)xT (4.2) 

The existence of a KT phase transition is preserved in 
the supersymmetric extension. 

Let us resume what happens in Liouville theory and 
SUSY LT. 

The quantum statistical mechanical system associated 
with the two-dimensional Liouville theory was considered 
in Refs. [8,9]. The equation of state is obtained exactly 
and is given by 

Pv = (N)xT. 

In this case there is no KT phase transition. 

(4.3) 

Considering the supersymmetric system in presence of 
a uniform neutralizing background and confined to a fi- 
nite volume, we showed that the corresponding grand- 

partition function is infrared finite and describes a 
one-component gas, in which the Boltzmann factor is 
weighted by an integration over the superspace Grass- 

mann coordinates. Tbis weight function introduces the 
dimensional reduction phenomenon and the statistical 
system obeys the equation of state 
PV = ; (N)m- (4.3a) 

After performing the thermodynamic limit, the resulting 
supersymmetric quantum theory is translationally invari- 
ant. 

Nevertheless, the grand-partition function (2.31) con- 
tains ultraviolet singularities, since in the limit e + 0, 
the weighted Boltzmann factor (2.32) becomes singular 
in regions where two or more charges become close to 
each other. 

A detailed nonperturbative analysis of the ultravio- 

let singularities in the statistical mechanical system as- 
sociated with the sine-Gordon and SUSY sine-Gordon 
theories was performed in Refs. [7,12]. In the range 
2?r 5 0’ < 47r the ultraviolet divergences in the SUSY 
sine-Gordon theory factorize and may be eliminated by 
an infinite subtractive renormalization in the correspond- 
ing Lagrangian. 

The partition function describing the one-component 
gas associated with LT exhibits a short distance behavior 

more divergent than that of the Coulomb gas associated 
with sine-Gordon theory. However in SUSY LT, due to 
the integration over the Grassmann coordinates, the ul- 
traviolet divergence structure resembles the sine-Gordon 

ones. In this way, it seems’to be interesting to apply the 
method developed in [7,12] to SUSY LT, in order to in- 
vestigate whether the ultraviolet divergences factorize in 
this case and, eventually, can be eliminated by a renor- 
malization prescription. 
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