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Operator cutoff regularieation based on the original Schwinger proper-time formalism is exam- 
ined. By constructing a regulating smearing function for the proper-time integration, we show how 
this reguiarisation scheme simulates the usual momentum cutoff prescription yet preserves gauge 
symmetry even in the presence of the cutoff scales. The similarity between the operator cutoff regu- 
lark&ion and the method of higher (covariant) derivatives is also observed. The invariant nature of 
the operator cutoff regularization makes it a promising tool for exploring the renormalization group 
flow of gauge theories in the spirit of the Wilson-Kadanoff blocking transformation. 

PACS number(s): ll.lO.Gh, 12.20.D~ 
I. INTRODUCTION 

An essential step for identifying the physical contents 
of quantum field theory is the removal of ultraviolet (UV) 
divergences which are due to the presence of interac- 
tions. The procedure, known as renormalization, oper- 
ates on the use of some regularization schemes to control 
the infinities followed by a redefinition of the parame- 
ters contained in the original Lagrangian in such a way 
that physical quantities are independent of the regular- 
ization choice. Although various methods are available, 
it is often desirable to choose one which respects all the 
symmetry properties present in the original theory. For 
example, when studying gauge theories such as QCD or 
QED, a momentum cutoff regulator would not be appro- 
priate since it explicitly violates gauge invariance. One 
must therefore turn to gauge-invariant prescriptions such 
as dimensional regularization [l], C-function regulariza- 
tion 121, the prop&r-time method [3], or the Pauli-Villars 
procedure [4]. On the other hand, because of the dimen- 
sionality dependence on the definition of 75, difficulties 
are encountered when applying dimensional regulariza- 
tion to chiral theories. 

Despite the shortcoming of its gauge-noninvariant na- 
ture, the momentum cutoff has proven to be a useful 
regulator. In addition to being simple and more phys- 
ical, one not only can immediately identify the diver- 
gent structures of the theory, but also derive readily the 
renormalization-group (RG) flow equations which in turn 
give predictions of how the theory behaves in different 
momentum regimes. The renowned RG formalism pio- 
neered by Wilson and Kadanoff [s] is based on the use of 
this regulator. In addition, when probing physics in the 
infrared (IR), it is often advantageous to derive a low- 
energy effective theory by integrating out the irrelevant 
short-distance modes. The scale that separates the fast- 
fluctuating short-distance modes from the slowly varying 
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components appears naturally in the momentum cutoff 
regularization. 

Momentum cutoff regularisation can be formulated 
systematically by means of blocking transformation [6,7]. 
To illustrate the idea, consider the scalar field theory as 
an example. From the original field $(z) we first define 
a coarse-grained averaged blocked field &(z) for each 
given block of size kmd in d-dimensional Euclidean space 

with a smearing function pr’(z) as 

a(z) = +k(=) = J $‘(z - +w, Y 
J J = d%. (1.1) 

z 

The role of #(zr) is to provide an averaging of the fields 
within the block and retain the degrees of tieedom that 
are relevant for studying the physics near the energy scale 
- k. Having defined bk(z), the corresponding blocked 

action &[a] can be written as [S] 

,+[*I = D[g+] 6(&&c) - q,))e-S[~l. (1.2) 
J Jl z 

In the above, the infinite product of 6 functions strictly 
speaking only makes sense on the lattice where there are 
fewer blocked fields compared to the original fields. To 
render the procedure well defined, one may first replace 
this product by a Gaussian function [9] 

(1.3) 

where w is a large constant of dimension (mass)‘. The 
physical limit corresponds to taking w + ca. It is also 

known that, if pF’(z) is a smooth Gaussian function, 
there will be no sharp boundary between the integrated 
and unintegrated modes 151. On the other hand, the de- 
sired scale of separation is naturally set at p = k if one 
chooses 
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53 CONNECTION BETWEEN MOMENTUM CUTOFF AND OPERATOR.. . 2021 
&p(z) = 
J 

d% -ipz 

,p,<k ode ’ 

or pr)(p) = O(k - p), i.e., a sharp step function in mo- 
mentum space. Although such a sharp-cutoff will in gen- 
eral produce nonlocal interactions in &[a], the RG flow 
equation based on the infinitesimal variation of k can still 
be formulated, and has been successfully carried out by 
Wegner and Houghton in [lo]. When’no confusion arises, 

we adopt the same general notation pk (d) for both coor- 
dinate and momentum space representations, and distin- 
guish between them by the arguments they carry. 

Choosing (1.4) as the smearing function, the Fourier 
modes can be decomposed into 
where +4< and 4, are, respectively, the slow and the fast 
modes. This in turn implies 

&z(P) = PdPM = 4<@)> (1.6) 

which shows clearly how the fast modes are completely 
integrated over through blocking transforn+ion. Since 
it is generally a hopeless task to compute S&B] exactly, 
the complicated expression in (1.2) is frequently approxi- 
mated by loop expansion. At the one-loop level, we have 
s,[q = -In J %W[4>1 flW&) - @(~)I =P{-.%#< + +>I1 
z 

= :ln JDU<I&~<(P) -*CP)) @+>I 
P 

xexp t -SF<] - ; J’cww+<~>w + . . . P 3 
= -1n /D[~<]~+$<(P) - *(p))w-S16<] - +‘lnK(@<) + ...I 

J 
= sp’l+ ;n~l&a, +..., 

(1.7) 
where 

PS 

K(a) = ww%fJ(Y) * 

= [-a2 + v”(q]sd(z - y), 0.8) 

f ,J A ddp J 
A - = s, P = k (24d k dwd-‘, 

and n’ implies taking the trace over a restricted mo- 
mentum range k 5 p < A as well as all possible in- 
ternal indices. Without the prime notation, a complete 
momentum integratipn from zero to infinity is implied. 

Physically ,$[*I can be interpreted as an effective action 
parametrized by the averaged field @ at the scale k, and 
it provides a smooth interpolation between the bare ac- 
tion SI@] defined at k = A and the renormalized effective 

action &=o[+] which generates one-particle-irreducible 
Feynman graphs. Thus, the RG flow pattern of the-the- 
ory is readily obtained by studying the change of &JO] 
in response to an infinitesimal change of the IR scale k. 

With the advantages of choosing the sharp cutoff reg- 
ulator (1.4), one then inquires how it can be possible 
to extend this scheme to other theories possessing addi- 
tional symmetries. Such a formulation will have profound 
implications on gauge theories such as QCD, QED, su- 
persymmetry, or quantum gravity. It may even offer new 
insights to the long-standing issue of quark confmement 
in the IR limit of strong interaction since the approach 
naturally yields in effective low-energy QCD Lagrangian 
upon integrating out systematically the short-distance 
modes [ll]. Nonperturbative effects can be explored, too. 
There will be new higher-order interactions which are ini- 
tially absent from the original Lagrangian, and they may 
be of great import or even dominate in the IR regime 
despite the suppression at high energy. 

Unfortunately, deriving the RG equation based on the 
use of the momentum cutoff regulator is known to contlict 
with gauge symmetry. Yet the widely used dimensional 
regularization obscures the characteristics of the Wilson- 
Kadanoff RG albeit it is an invariant prescription. The 
first step toward applying the Wilson-Kadanoff RG to 
gauge theories is the implementation of both the UV and 
th6 IR cutoff scales without destroying gauge invariance. 
In [12], Oleszczuk demonstrated how this can be achieved 
via blocking transformation in a completely symmetry- 
preserving manner. The methodology of the “operator 
cutoff regularization” elegantly presented there relies on 
the construction of a smooth smearing function p(A’s), 
where A is to be identified with the usual UV regula- 
tor, and s the proper-time variable carrying dimension 
(mass)-‘. Embedding the smearing function into the s 
integration, one is led to the regularized parametrization 
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Tr(ln?d - 1nXo)loc 

J rn ds 
tc-- 

0 
Tp(AZs)Tr(e-xa -e@@), (1.10) 

where 31 is an arbitrary fluctuation operator governing 
the quadratic fluctuations of the fields and X0 its corre- 
sponding limit of vanishing background field. The sub- 
script “OC” stands for operator cutoff. For bosonic the- 
ories, 31 is a positive definite elliptic operator and 31-l 
defines the propagator. With a suitable choice of p(h’s), 
the conventional cutoff results may be recovered. 

In the present work we follow closely the techniques 
outlined in [12] and generalize the operator cutoff reg- 
ularization to arbitrary dimension d using the smearing 

function p!$(s, A), where k will be shown to play the role 

of an effective IR cutoff for the theory. In this manner, 
any possible divergence originating from momentum inte- 
gration, whether of UV or IR nature, will be turned into a 

singularity in s and subsequently regulated by pf’(s, A). 
However, unlike the momentum cutoff approach, oper- 
ator cutoff regularization is an invariant regularization 
since the proper-time variable s is independent of gauge 
transformation. Nonetheless, we emphasize that it is an 
invariant prescription provided that no cutoff scales are 
imposed on the momentum integral and the s integration 
is left as the last step. If the s integration is carried out 
first, divergences generated from taking the spacetime 
trace will manifest in the p integration and one may be 
forced to use some noninvariant regularization prescrip- 
tions. Even though the smearing procedure is now acting 
on the proper-time variable s, we retain the same general 

notation pp’ here since the role of pf’(s, A) in s is similar 

to what py’(z) [cf. (1.4)] does in the coordinate space. 
However, because of the difference in their origin, the 

functional forms of pp’(s, A) and py’(z) are expected to 
be rather different. It is important to keep in mind that 

the form of ,$‘(s,A) is not unique at all; prescriptions 
such as the Pauli-Villars regulator and dimensional reg- 
ularization can all be shown to fall under the generalized 
class of proper time by a suitable definition of smearing 
function [13]. Lucid discussions on the applications of 
proper-time regularization can also be found in [14]. 

What we shall demonstrate in this paper is that with 

a particular choice of #(s, A) operator cutoff regular- 
ization reproduces the usual one-loop blocked potential 
Uk(ip) which contains the IR cutoff scale k. When consid- 
ering U&(G) in terms of Feynman diagrams, both opera- 
tor cutoff and momentum cutoff regularizations yield the 
same results order by order in terms of coupling constant. 
The spirit of our operator cutoff formalism presented here 
is parallel to the idea of “invariant momentum space reg- 
ularization” treated by Ball in 1131. However, when the 
full blocked action is considered, deviation between mo- 
mentum cutoff and operator cutoff prescriptions occurs 
in the higher-order (covariant) derivative terms. We find 
that the effective blocked action regularized with the for- 
mer contains gauge-noninvariant terms which are com- 

pletely absent in the latter. 
The organization of the paper is as follows: In Sec. II 
using scalar theory as an example we derive the gen- 

eralized smearing function $)(s,A) which provides the 
bridge for establishing the functional equivalence be- 
tween the momentum cutoff and the operator cutoff reg- 
ularizations at the level of one-loop blocked potential. 
Similarity between the operator cutoff and the Pauli- 
Villas regularizations is discussed. An attempt to equate 
the two regularization schemes beyond the leading-order 
blocked potential is made in Sec. III. It is found that at 
each order in the derivative expansion a new smearing 
function must be introduced in the operator cutoff for- 
malism in order to give the same differential flow equa- 
tions as that provided by the sharp cutoff. In general, to 
ensure equality between the two schemes to arbitrary or- 
der (@)“, we need a total of n+l smearing functions; i.e., 

pp”‘(s, A) with rn = 0, 1, . . . , ‘fm. In Sec. IV we first reex- 
amine the gauge-noninvariant nature of the momentum 
cutoff regularization by identifying explicitly the symme- 
try violating components and their corresponding proper- 
time counterparts. An invariant operator cutoff scheme 
is then proposed to eliminate the gauge-noninvariant sec- 
tor and restore the symmetry. Similarity between the 
operator cutoff regularization and the method of higher 
covariant derivatives can also be inferred. Section V is 
reserved for summary and discussions. 

II. OPERATOR CUTOFF REGULARIZATION 

Consider for simplicity the one-component scalar La- 
grangian 

c. = ;(a,# + V(b). (2.1) 

The one-loop contribution to the blocked action can be 
written as 

.P’[q = &&K(O) k 2 

where + is the blocked field. Consider for simplicity the 
low-energy limit where the blocked action can be approx- 
imated by derivative expansion: 

‘sip] = s, (qJ (8,,*)” + h(a) + O(@) , (2.3) 
> 

with Zk(@) being the wave-function renormalization con- 
stant. The leading-order contribution is then the one- 
loop blocked potential 

Uf’@,) = 1 J ( 2 P 

‘1* PS + V”(@) > p2 + V”(0) . (2.4) 

Differentiating the above with respect to the arbitrary IR 
scale k leads to the flow equation 

,mm -=-$kdh(;‘+;$))). (2.5) 
8k 
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This linear differential equation is obtained based on 
the so-called “independent-mode approximation” since it 
incorporates only the contribution from one-loop order 
and ignores the continuous feedbacks between different 
modes. A RG-improved equation which takes the inter- 
actions between fast and slow modes into consideration 
is given by the modified expression [15] 

,awv -=-~k’ln(~~$$))). (2.6) 
ak 

In [16] where field theory at finite temperature was con- 
sidered, it was found that the independent-mode approx- 
imation breaks down in the high-temperature limit and 
one must resort to the finite-temperature RG improved 
equation similar to (2.6) in order to account for the im- 
portant daisy and superdaisy graphs. 

However, when gauge theories are considered, the mo- 
mentum cutoff regulator is not directly applicable for 
generating a flow equation such as (2.6) since it does 
not respect gauge symmetry. The key issues which we 
wish to explore are the following: Are cutoff scales trimly 
in conflict with gauge symmetry? Can we formulate a 
scheme which contains cutoffs yet allows for the inves- 
tigation of RG flow for gauge theories in the spirit of 
Wilson-Kadanoff blocking transformation? We now turn 
to the operator cutoff regularization which offers the hope 
of introducing the cutoff scales in a symmetry-preserving 
manner. 

The basis of the operator cutoff formalism is provided 
by Schwinger’s proper-time regularization [3] in which 
one employs the following identity for computing the one- 
loop contribution: 

Tr(ln31 - ln?&) = - J * ds 
yr+-“8 - e -“). (2.7) 

0 

The idea of operator cutoff regularization is to modify 
the above expression by introducing into the proper-time 

integration a regulating smearing function $(s, A) such 
that 
 

Tr’(ln?L - ln%) + Tr(ln% - ln&))oc = - J m ds (cq 
p (s,A)Tr(e-x8 - e-+@), cw 

Cl 

i.e., a complete trace can now be taken after inserting py’(s,A) into the s integration. The absence of atiy cutoff in 
the p integration is a sine qzla non for preserving gauge symmetry. As an illustration, we consider the Lagrangian in 
(2.1). Following the procedures outlined in [12] and using 31 = p2 + V”(a), the one-loop blocked potential becomes 

Uf’(*) = i 
!( P 

In $ +,F,:F; 
> 

+ -1 J - ds (d) 

2 0 
QPk @A) J e-P1a(,-v”(+ _ e-v”(o)a) P 

1 J - ds = -2(4?r)@ ,, ~Pp(S,q(e-wQ). - e-““(w), (2.9)
where we have used 

J P(p2)me-P’s = rh + d/2) g-(m+~,s) 
(4+lzI’(d/2) 

(2.10) 

The cutoffs are now taken over by the smearing function. With the k dependence of .!&[a] contained entirely in 

pf’(s, A),‘probing the RG flow of the theory amounts to studying the change of pf’(s,A) with varying the IR cutoff 
k. Thus, the differential flow equation of the theory can be written as 

To deduce the form of $‘($,A), we now equate (2.11) with (2.5) which is derived using the cutoff approach: 

(2.12) 
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or, equivalently, 

= -&(ka,)d&+. (2.13) 

We shall choose a set of boundary conditions for p!$(s, A) 
which renders (2.9) finite through the calculation. Since 
the proper-time variable s has dimension (length)‘, UV 
divergence corresponding to the short-distance singular- 

ity appears at s = 0. Thus, setting pf’(s = 0,A) = 0 
will eliminate the unwanted UV singularity as 8 + 0. On 
the other hand, since we wish to modify only the UV be- 
havior of the theory while leaving the IR physics intact, 

it is appropriate to have &!,(s + co, A) = 1. Finally, 

we demand &?*(s, A) = 0 since the one-loop contribu- 
tion must vanish at the UV cutoff scale A to give back 
the original bare theory. Solving (2.13) subject to the 
conditions imposed above leads to 

,$‘(.s, A) = p(d)(A2s) - ptd)(kzs) 

(2.14) 

where 
I 

=1 
Q-G Il, c!] = d!7x”-‘e-z (2.15) 

is the generalized incomplete r function. Notice that in 
the physical limit k -t 0 and A + ca, we have 

pr$o(s,A + ca) = 1, (2.16) 

and the operator cutoff regulmization is reduced to that 
of Schwinger’s proper time. In this limit UV and possible 
IR divergences may appear and additional counterterms 
must be added to subtract off the infinities [3]. 

To explicitly demonstrate that OUT smearing function 

$(s, A) simulates a sharp momentum cutoff regulator, 
we substitute (2.14) into the last expression of (2.9), 

(2.17) 

which, upon switching the order of integrations between 
s and E and equating z with the momentum variable p, 
gives back (2.2). Thus, we conclude that the proper- 
time smearing function derived in (2.14) completely re- 
produces the usual blocked potential Uk(G) at the one- 
loop level. That the dummy integration variable z hidden 

in pr’ (s, A) turns out to be the momentum variable p can 
be seen from a direct substitution of (2.14) into the sec- 
ond equation on the right-hand side of (2.9) which yields 
(2.18) 

The equation readily shows how p is intimately connected to I through the transfer of cutoff dependence. 

It is instructive to examine how the propagators and the one-loop kernel are modified in the presence of pf’(s, A). 
Straightforward calculation leads to 

and 

where 

J 
1 

F(a, b, c; 0) = B-‘(b, c - b) d&-‘(1 - .)b-a-l)(l_ ,&)-” 
0 
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is the hypergeometric function symmetric under the ex- 
change between a and b, and 

rw34 _ J 1 
%Y) = r(a:fY) - o &F’(l - tp-1, (2.22) 

the Euler p function. For n = 1 and 2, (2.19) yields, 

respectively, 

=+((&)d’Z-(&)d’2}, (2.23) 

and 

(2.24) 

By further restricting ourselves to d = 4 where 

p@)(s A) = (1 + k2s)e-kaa - (1 + A.2s)e-“za, Ic 1 (2.25) 

the operator cutoff regularized propagator and the one- 
loop kernel take on the structures 

1 1 1 

7-i =--m Tl.+ k= 
oc 

- (31 +^zhy + (X $2 (2.26) 

and 

Tr(ln3t-In%)loc=Tr 
-i[ 

ln 
Xfk= ?lofh= 

310+k2 31+A2 1 
A’(% - ‘Ho) 

- (Tl+ A2)(?& + A”) 

2 

+ (31 “; &&F$$) (2’27) 
The above equations imply that one may regard A as 
the mass of sane unitarity-violating ghost states, which 
can be seen from the relative negative sign in the mod- 
ified propagator. However, in the limit A + ca, the 
ghosts decouple from the theory, as they should. The 
IR cutoff scale k which can also be thought of as be- 
ing the “fictitious” mars ascribed to the fields is a useful 
regulator particularly when the theory contains massless 
particles. Physical observables must be computed, how- 
ever, by taking the limit k + 0. From (2.26), one may 
also say that the effect of A is equivalent to introducing 
higher derivative terms into the theory. In other words, 
the Lagrangian density (2.1) may be replaced by the car- 
responding regularized counterpart: 

Lr., = $b 
[ 
-a2 + $-a”)2 

+-&-a”)” 1 4+ V(c)). (2.28) 

The interpretations on the role played by the cutoff 
scales in the operator cutoff approach are reminiscent to 
that of the Pauli-Villas regulator. In fact, one can show 
that the conventional Pauli-Villars scheme is a special 
case of the proper-time regularization having a smearing 
function of the form [14] 

&“@,A) = )-(Q& - bie-+), (2.29) 

with Ai and ki carrying the fame meaning as the operator 
cutoff scales. In order to render the theory finite, the 
coefficients ai and b; as well as i, the number of ghost 
terms, must be appropriately chosen. Equation (2.29) 
implies 

1 -..+ pv = T & ~mdss”-~(aie-~:’ _ ,,ie--6-)e-“d 

= 7 [ (31 :k;)n - (TL $A;)-] 
(2.30) 

and 
Tr ln(% - ‘flO)lPV = - F Jdm $(aie-& - bie-“?“)~(@ - e-‘)(-) 

(2.31) 

which resemble (2.26) and (2.27) by simply taking ai = bi = i = 1. The minute difference can be attributed to the 
extra terms that are linearly dependent in .s in the definition of the smearing function. 

For a general fluctuation operator of the form 31 = 310 + X6X, one can easily show that ~f)(s,A) reproduces the 
usual niomentum cutoff results order by order in X by comparing the general expansion 

(2.32) 

with 
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Tr’{(x,%L)n} (2.33) 

in the operator cutoff approach. As an explicit check, we again consider the XC@’ theory in d = 4 with k = 0 as an 
example and obtain the following one-loop corrections to the two- and four-point vertex functions: 

“~~=s~~/~~=~Jn~(,.+~~+,~)~ 

and 

Jr(b) - -‘x” oc- 2 
3x2 J p (pz :/L’)~ A2 ’ =-- p2 + p2 + A= >( 1 + 74P2 + 2) 

2 p2+/S+Az 

: -. 

(2.34) 

(2.35) 
which are in complete agreement with the momentum 
cutoff results. Thus, we see that operator cutoff regu- 
larization reproduces the usual momentum cutoff results 
order by order in the coupling constant expansion. 

III. OPERATOR CUTOFF AND DERIVATIVE 
EXPANSION 

It was demonstrated in the last section that the smear- 
ing function $‘(s, A) derived in (2.14) imitates the mo- 
mentum cutoff at the level of one-loop blocked potential 
Uk(Q). In this section we take into account the 8’ deriva- 
tive term and inquire how to further construct the linkage 
between the two regularization schemes. For the com- 
putation of the wave-function renormalization constant 
.&(a), a small inhomogeneity is assumed to be present 
in the background field. Various methods for deriving 
Zk(Q) are available [17]. Below we rederive Zk(@) using 
the two prescriptions prescribed above and compare their 
results. As we shall see, discrepancy between the two 
schemes appears already at the level of Zk(@) if only one 
smearing function pf’(s,A) is used throughout. Equal- 
ity between the two formalisms up to O(@) is restored 
provided that an additional smearing function be used. 

A. Momentum cutoff regularization 

To compute Zk(*) via the momentum cutoff regular- 
ization, we adopt the approach originated by Fraser [18]. 
The manner in which the derivative terms are extracted is 
based on the notion of treating the momentums and field 
variables as noncommuting operators & and C~J obeying 
the commutation relations 

and 

[6,&J = -ia,& (3.1) 

[&,p] = -a% - 2ifs,a,&, (3.2) 

where a caret has been added to the operators to distin- 
guish them from the ordinary c-number variables. Re- 
peated use of the above relations leads to 
($2 + pll), =: ($2 + pl,), : -;+ - 1) : ($2 + py-2 : a20” 

-in(n - l)lj, : ($2 + 3,‘)n-z : &P 

-g+L - l)(n - 2) : ($2 + p,,y : &ps)2 

-?jn(n - 1)(7~ - 2)9j, : ($ + P)*-3 : apavp 

-+(n - l)(n - 2)(n - 3)l;,py : ($ + ir,,)n-4 : a,i?a,p + O(@), (3.3) 
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where : : implies a “normal ordering” procedure such that all 6 dependences are moved to the left of the &dependent 
terms. This is a necessary step for evaluating the functional trace in (2.2) since the momentum integration is to 
be performed before I. Once the normal ordering procedure is done, we may simply drop the carets and treat the 
quantities on the right-hand side of (3.3) as ordinary c numbers since any further application of (3.1) or (3.2) will 
only generate higher-order derivative terms which do not affect the computation of Zk. 

With the help of the identity 

ln(# + pl,) = lili ; ($2 + pl,),, 

‘the one-loop contribution to the blocked action becomes (dropping the carets) 

s~‘Pl = ij l l’( ln@’ + V”) + (’ $:?I $r (a,v”)2 + (3t;(zPi +yJrazv,, + .(,)} 

1 ’ 
c... 

2 JSI ,+z + vtt) + @ - 3)~’ + dV” 

2 P 3d(p2 + V”)4 
(a,vy + o(a4)) 

The above expression is obtained by first dropping the surface terms with 

followed by simplifying the momentum integrations using the O(d) invariant property: 

where f(pZ) is an arbitrary scalar function and 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

While the first term in the last equation of (3.5) matches the usual one-loop logarithmic contribution for the blocked 
potential Uk(@), the second term represents the correction to Zk(@). Taking the familiar X@ theory as an example, 
with V”(a) = p2 + XQ2/2, we have 

Zf’(@) = E J ’ (d - 3)~’ + dV” 

3d p (p2 + V”)4 ’ 

which, upon differentiating with respect to k, yields the differential flow equation 

,a-w) _ -Sikc,X~~~ @ - 3)k2 + dv” -- 
ak 3d (k2 + V”)4 

For d = 4, (3.9) becomes 

Zf)(@) = X2@ k4 + 3k2V” + Vnz 

192112 (k2 + V”)3 ’ 

(3.9) 

(3.10) 

(3.11) 

which agrees with that obtained in [12,17,18] in the limit k + 0. Since the contribution to Zk(@) is UV finite, one 
can safely take the limit A + co. 

B. Operator cutoff regulariaation 

In the alternative operator cutoff approach, derivative terms also arise from commuting the operators & and 6. 
The one-loop contribution to the blocked action in the proper-time representation is given by 

jf).“+ = -1 J - ds 

2 0 
,Tr’(C k+a+v”(w _ ,-M~+v”(o)].), 

where the normal ordering procedure can be carried out as 
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,-(pl+v”). = fy EJ*~(ljZ + iq- 

*SI 

(3.13) 

Dropping the distinction between operators and c numbers as before, the one-loop correction to the blocked action 
becomes 

Sf)p] = -i J. Jdm $ J,‘e-+(e-Y”* - 1) + &J. ~mdes~‘e-~‘~e-Y”~[3a2v” - zs(a,v”)z] 

-ih;i/,-ds+ 
-p2sp2e-V”~pa2v” - 3s(a,vf’)z]. (3.14) 

In the above, the second and the third integrals together contribute to Z?‘(m). Equation (3.14) reduces to (3.5) if 
the s integration is carried out first and simplified by the help of (3.6). H owever, our goal here is to find out how 
the regulating smearing function(s) should be implemented in the s integrations in order to allow for a complete p 
integration without imposing any cutoff scales. The precaution to be taken here is that due to the different powers 

of p dependence, there is no Reagan a priori that the same smearing function pf’(s, A) can yield a wave-function 
renormalization constant Z&(a) identical to (3.10) which was derived from momentum cutoff. That a new smearing 
function must be called for at each level of derivative expansion is actually hinted fcom the integral transform&on 

J ’ (P2)” = _L J p (P2+4” rb) 0 mdss”-le-m J ‘(gp-p% 
1 m 

-+rocl I 
dsa”-‘e-y&qs,h) Sp(py3-~2. 

= (4r;gd;;;A(n) o J - ds sn-l--m--d/le--oap~~)(s,*), 
which is satisfied provided that 

(3.15) 

pyys, a) = 2sm+d’2 J’(zye-r28 = r(m : d,z)r (rn + ;; P~,AS) Kiqm + d/2) I 
(3.16) 

One may explicitly check that by using ppl)(s,A) [with pp) (8, A) = py’(s, A)] for the third integral in (3.14), the 
original cutoff expression is recovered. With 

gqq = -1 
2 JJ 0 0 - !$/$qsJ) J,e-P’s(e-v”e _ 1) 
1 - 

+i5 c o JJ ds~pp)(s, h) l e-pzae-V”~[3a2v” - z+a,v”)“] 

1 - --JJ nd 2 0 
dss pk 2 (d'l)(S,A) ~e-pa~p2e-v"~[4azv" - 3s(apv")2], 

UPon Performing the P integration followed by a differentiation with respect to k, we arrive at 

,aSm _ St a!+ a 
k% + ;k%$(a,~)2 + . . .} 

1 JJ = ds 
=-2(4?r)d/2 z o 

app) 

mkr("- 
V's - 1) 

+24(4;)d,2 ~(~~V")Z~eodps2-df2e-v"~ &!&? &?!?i$ , 1 

(3.17) 

(3.18) 
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where the expression is simplified by the help of 

0 = 
J 

a,(e-v”aapvy = 
z J cv”*[a2v” - (a,vys]. (3.19) 

2 

From (3.18), it is clear that despite the presence of the derivative terms pk (d’o)(~,A) is still given by (2.14) for the 
equality in k(aUk/ak) to hold. As for Zk((P), comparison between (3.18) and (3.10) gives 

,m 

ak 
= _ %&d&2 Cd - W + dv” 

(k* + I“‘)4 

(3.20) 
Use of the identity 

1 1 OJ -- F - l-(n) o J dss”-‘e-“8 (3.21) 

then leads to 

kappl) 2kapp0) 
ak ak 

+ 4(kZs)d/2 
~(d,2) (d - k2+-kzs 

=- 
4(k2s)1+d/2e-k,e 

WW) 
(3.22) 

or 

pF1)(s,A) = 
Q+d/2 1 

J .wu + d/2) I 

z2e-*% 

1 

= r(i + d/2) 
r (3.23) 

which agrees with (3.15) for rn = 1 and contirms that 
more than one smearing function must be used to yield 

the same Z,(%) in both formalisms. Had ,$‘($,A) been 
used alone, the resulting one-loop correction which we 
denote with a bar symbol would have been 

p(m) = A@ 2k2 + V” 

1927G (k2 + V”)Z 

XQZ 2k4 + 3k2V” + P2 
=- 

192+ (k2 + VI’)3 ’ 
(3.24) 

instead of (3.11) even though the limit .Z&(@) = 

X2@z/192?r2V” is insensitive to whether p, (4’1’(.9, A) is ac- 
tually employed or not. A comparison between (3.24) 
and (3.11) reveals that the discrepancy between Zk(@) 
and Z&(O) comes from an O(k4) mismatch in the nunera- 
tm. The discrepancy can be traced to be originated from 
terms that are multiplied by p2 in the derivative expan- 
sion, i.e., the last two terms inside the curly brackets in 
(3.13). These are the quantities that vanish most rapidly 
in the IR limit k --f 0 in the differential flow equation. 

The insufficiency of using just $(s, A) can be under- 
stood as follows: From (2.10), one readily sees that after 
the p integration, all pz-dependent terms generated &an 
derivative expansion will acquire an extra factor of sm1 
conipared with the ones without the p2 dependence. Sub- 
sequent s integration using (2.14) then yields one power 
(z” + V”) for each s-l. However, when z is equated with 
p, the cutoff result can no longer be recovered without 
the unjustified substitution of pz by p2 + V”. Therefore, 
to account for those higher-order contributions that van- 
ish more rapidly as k + 0, it is necessary to introduce 

pyJ’(s, A). 
In the case where d = 4, we have 

@$,A) = (1 + k2s + $k4s2)e-“yd 

-(l + A29 + ;A?)e-*Q, (3.25) 

which differs from &‘(s,A) by ,the higher-order s2- 
dependent terms. These terms, as already demonstrated, 
are essential for regaining the expected cutoff depen- 

dence. That $‘l)(s, A) provides a faster UV and IR 
convergence can be seen from the fact that the smearing 
functions are of the form of the generalized incomplete l? 
function which can be expanded as [19] 

rn+1 1 
@“‘(s, A) = e+” 2 E(k2s)’ 

rn+1 1 

-.el* =& $P”)*. 

This yields 

(3.26) 

J 
rn 

dsp~“)(s,A)t+ 
0 

=; [(&$+‘- (&)m+2], (3.27) 

which indicates that the larger the rn, the more rapid 
the convergence [12]. We also comment that choosing 

rn in pf’“‘(s, A) is analogous to choosing the number of 
ghost terms in the Paul-Villars regularization since in 
both approaches the divergence is eradicated by increas- 
ing the power of p dependence in the denominator. For 
example, while only one ghost term is sufficient to regu- 
larize the logarithmic divergence found in the four-point 
vertex function for the X@ theory in d = 4, the quadrat- 
ically divergent integral characteristic of the two-point 
function calls for at least two ghost terms to ensure the 
proper convergence [20]. 
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The requirement of using more than one smearing func- 
tion to attain equality between the momentum cutoff and 
operator cutoff regularizations at the level of Zk(+) may 
teem disturbing at iirst glance since its generalization to 
higher orders of derivative expansion will become more 
complicated. However, we remark that the computation 
of Z&(a) is generally dependent on how the derivative 
terms are isolated; disagreements exist even within mo- 
mentum cutoff regularization itself. For example, impos- 
ing momentum cutoff on the approach used by Fraser in 
[18] would have led to 

A@= 3k2V” + I@ 
‘!?‘(‘) = 192+ (@ + V”)3 ) (3.28) 

which also differs from (3.11) by a higher order O(k4) 
term in the numerator. To reconcile the difference, we 
tist observe that since the flow pattern of Zh(+) allows 
for the determination of the anomalous dimension yk via 

the ambiguity in the k dependence of Zk(G) must be in- 
timately connected with the scheme dependence in the 
computation of mK. This is precisely what was concluded 
in 1211 where the explicit cutoff dependence in yk beyond 
the lowest order was demonstrated. Such a dependence 
should ccnne as no surprise since the RG coefficient func- 
tions such as the anomalous dimension and p functions 
are generally regularization dependent beyond the lead- 
ing order. Nonetheless, taking the physical limit k + 0 
for all three cases, we have 

zp>&o, = Zf’,(ip) = i!‘=‘,p) = &$. (3.30) 

Even though the one-loop correction to the wave- 
function renormalization exhibits different k dependence 
for different methods, we argue that when dealing with 
real physical situations the precise form of the differen- 
tial flow equations for the higher-order derivative terms 
should not be taken too seriously. The concept of deriva- 
tive expansion carried out in (2.3) has practical use only 
when one is interested in exploring the lag:-distance ef- 
fects in the IR regime. The expansion of &[a] in pow- 
ers of a,+ can only generate higher-order corrections to 
the dominant blocked potential U,(a). In addition, we 
have seen that after taking the physical limit A + co 
and k + 0, Uk,,(@?) and Zk,,(+) are all the same irre- 
spective of how they are computed. Hence, for all prac- 
tical purposes one may safely ignore the small higher- 

order mismatches and employ $‘($,A) alone to compute 
U&(G), Zh(*) as well as other higher-order coefficients. 

While py’(s, A) can be regarded as a sharp momentum 
cutoff for the leading order U&(a), it corresponds to a 
smooth momentum regulator for Zk(@) and beyond. In 
the next section where gauge theories are explored, we 
shall see how these small mismatches precisely corre- 
spond to the gauge-no&variant contributions that must 
be purged in order to preserve gauge symmetry. 

Another aspect concerning the use of a sharp cutoff 
in the derivative expansion is the emergence of nonlo- 
cal interactions as we lower the scale k which defines the 
sharp boundary between the high and the low modes. 
The presence of nonlocality in Sk[*] is reflected by the 
necessity of incorporating interactions to all ranges, and 
hence, the simplifying picture of utilicing a reduced set 
of degrees of freedom to characterize &[a] may be lost., 
However, the objection against the use of a sharp cutoff 
in conjunction with derivative expansion can be overcome 
by the following argument: In the perturbative approach 
the loop integrations are performed between the IR and 
UV cutoffs for summing up an infinite number of Feyn- 
man graphs for the partition function. While the UV 
cutoff is eliminated by renormalization, we would like to 
remove the IR cutoff as well in order to study the theory 
in the thermodynamical limit k --t 0 where all physical 
observables take on their limiting values. The goal of us- 
ing a sharp IR cutoff precisely allows us to explore these 
physical observable in the vicinity k - 0. Whatever 
nonlocality may arise from this sharp cutoff regulariza- 
tion will also be present in the thermodynamical limit 
with any other regularization schemes since the physics 
in this regime is independent of how one achieves the 
elimination of all the high modes (221. Similar viewpoints 
have also been presented by Morris in [23], where the dif- 
ficulties and inadequacy of choosing a smooth regulator 
were addressed. In fact the “most promising” method 
proposed there coincides with the formalism we have de- 
veloped earlier [15] and presented here, namely, a deriva- 
tive expansion around k = 0 with a sharp cutoff as the 
candidate for the low-energy effective theory. 

IV. OPERATOR CUTOFF AND GAUGE 
SYMMETRY 

In the previous sections we have seen that by employ- 

ing a set of smearing functions pk (d’m’(~, A) in the oper- 
ator cutoff regularization, the one-loop cutoff structure 
can be recovered to arbitrary order in the derivative ex- 
pansion. However, the major distinction between oper- 
ator cutoff and momentum cutoff regularisations is that 
while the former is a special case of the proper-time regu- 
lator and thus symmetry preserving, the latter is not. We 
now turn to gauge theories and explore the role dictated 
by symmetry. 

In the course of evaluating the effective action for gauge 
theories, one frequently encounters the fluctuation oper- 
ator 

X=-D2+fiZ+Y(r), (4.1) 

where D,, is the covariant derivative for the gauge group, 
$ may be the mass for the scalar field coupled to 

the gauge field A;(z), and Y(z) a matrix-valued func- 
tion of z describing, say, the interaction between the 
scalar particles. The index a runs over the dimension 
of the gauge group. One may also write Y = Y”T” 
where T” are the generators of the gauge group satisfy- 
ing tr(T”Tb) = -Jab/2 with tr denoting the summation 
over internal indices only. When operating on Y, the 
covariant derivative gives D,Y = a,,Y + [A,, Y], where 
A, = gA;T” with 9 being a coupling constant. The un- 
regularized one-loop contribution to the effective action 
can be written as 
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The diagonal part of the “heat kernel” in the above can be written as 

(4.2) 

where we have employed the plane wave basis lp) with (s]p) = .&PS and the commutation relations [13,24] 

(Dp, &] = ipp, [31,, @] = p2 - zip. D. 

The factor 1 indicates that the operator D, acts on the identity. Inserting (4.3) into (4.2), we are led to 

where the first term in the integrand represents an overall constant and can be subsequently dropped. The above 
expression suggests that it is possible to expand the effective action in terms of inverse mass provided that the 
background fields A,(s) and Y(z) vary slowly on the scale fi- I. Thus, we may write the effective action as [25,26] 

(4.6) 

where c3, are the traces of dimension 2n gauge-invariant operators and can in general be written as 

0, = jyqq), 
(4.7) 

with r,!“’ being the numerical coefficients associated with b$), the set of linearly independent traces. As an example, 
using the field strength F,,“, Y, and D, one can construct the following: 
With the integrand written explicitly in terms of 
symmetry-preserving quantities, gauge invariance of the 
effective action is automatically satisfied by choosing an 
invariant regularization scheme. One possible candidate 
for regulating the second expression on the right-hand 
side of (4.5) is by dimensional regulariaation since the 
noninvariant momentum cutoff is undesirable here. How- 
ever, if we consider the first equation in (4.5) instead, the 
most natural way to do away with the divergence is to 

introduce a set of smearing functions pk (d’m)(~, A) for the 
proper-time integration, as suggested before. The ad- 
vantage of going to the proper-time formalism is that in 
addition to allowing the theory to be regulated in a com- 
pletely invariant manner by preserving the full symme- 
tries, even gauge symmetry, of the original Lagrangian, 
it also admits cutoff scales. The symmetry-preserving 
nature of the regulator can easily be seen from the ab- 
sence of cutoff scales in the p integration and the transfer 
of spacetime singularity into a singularity in the proper- 
time variable which is independent of symmetry trans- 
formation on the background fields. The insertion of the 
regulating function may be thought of as solely for the 
purpose of “technical” convenience to cope with the di- 
vergence manifested in the s integration. Any possible 
violation of symmetry within the operator cutoff formal- 
ism can take place only if the smearing function depends 
on certain parameters such as the background fields or 
p. In such case, the regularized action will vary under 
symmetry transformation. 

Below we regularize the theory with both the gauge- 
noninvariant momentum cutoff and the invariant oper- 
ator cutoff regulators to establish a connection between 
them. 
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A. Mane&urn cutoff regularization 

The one-loop contribution to the effective blocked action regularized by momentum cutoff can be written as 

$1) = 1 ’ 
k 2 SI 

tr{ln(p’ + $ - 22~. D - Dz + Y)}l 

=-gpy tr{e-(P~+~~)a~(Zi~D+D~--Y)a}n. 
(4.9) 

Following the details presented by Nepomechie 1241 and Mukku [27], we first employ the Baker-Campbell-Hausdorf 
formulas 

(4.10) 

e~+~+~=e~+~ l+c+ [GAI + ‘CfI +c+ [[C~Al,Al + l[G=4~~1 + [[C,Bl,Al -- 
2 2 3! 3! 3! 

+ 
IK BI, BI + I’? K-4 41 + IC, K BI1 + IC, AIC + [CP BIG + - - 

3! 3! 3! 2 2 

and expand the heat kernel as 

h(s;z,z) = ,-(pl+d)be(2ip.D~Da--Y)sn 

D4s2 [D2, Y].? 
l+D=s-2p p D D s’+~-- !J” II ” 2 

-~{[[D2,D,],D,] + 3D,[D2,D,] + 3D,D,D2 - [D,Dv,Y] 

(4.11) 

-[&r YID, - P,P~D,DJLD~,}~~ + 1, (4.12) 

where the contributions with odd powers of p are neglected since they give vanishing contribution after momentum 
integrations. Substituting the above into (4.9) and carrying out the s integration, we obtain 

‘$1) = 1 ’ 
k 2 JJ 1 tr 2PMP” 

2 P 
1nk’2 + P2 + y) - p2 + ;z + yD2 + (p2 + p2 + y)2 D,Du 

-2(pz + ;z + y)2(D4 - lD”>Yl) + acp F;r+ y~,([[DZ,~~]>Dv] + 3D,[D’,D,] 

+3D,D,D2 - [D,D,, Y] - [D,, Y]D,) - 4pPpupapp D 
(p2+bG+Y)4 ti 

D,D,D, + 

1 

a, (4.13) 

which by rotational O(d) symmetry can be further simplified to 

SW = 1 ’ 
k 2 

JJ 1 
tr ln(p2 + p2 + Y) + 

2 P (P2+Pt+Y)z [ 

(2 - d)P2 ;w fVD2 _ ;(D4 _ [Dz,yI) 

I 

+3d(pz +$ + y~,(~lDZ~=‘~lrDwl + W.dD2J,l + 3D4 - ID’,Yl - IDp,Y]Dp) 

-d(d + 2);!$ + y)4 ID4 + P&)2 + D,@D,l fl, (4.14) 

and evaluated with (3.7). Finally, using 

D,Y = (D,Y) + YD,, D’Y = (D’Y) + 2D,YD, - YD’, FPy = [D,, Dy], (4.15) 

Eq. (4.14) becomes 
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where 

$)=1 ’ 
2 JJ t*{l*(P2 + P’ + Y) + alD2 + az(DZY) + %D,,YD, + a4YD2 

+arD’+ aaD,D2D, + a7Fp,F,,,}l, (4.16) 

al = (2 - 4P2 - w + Y) 
d(P2 + p2 + Y)Z ' 

a2 = (3d - 6)~’ + 3d(pZ + Y) 
6429 + p2 + Y)3 ’ 

(4.17) 

(4.18) 

a3 = -a4 = 
(d - 4)P2 + d(f2 + Y) 

d(P2 + p2 + Y)3 ’ 

a5 = _ (3d - 2)(d - 4)~~ + 2p2(d + 2)(3d - 8)(/l’ + Y) + 3d(d + 2)($ + y)” 
6d(d + 2)(pz + p2 + Y)” 

(4.19) 

(4.20) 

and 

a6 = 4PVd - 4)P2 + Cd + 2w + VI 
3d(d+2)(p2+9+Y)4 ’ 

(4.21) 

2(P”)” 
=’ = -d(d+ 2)(pZ + /2 + Y)“’ 

(4.22) 

The additional noninvariant operators Oz, D,,YD,,, YDz, D4, and D,D2D, generated by the momentum cutoff 
regulator in (4.16) can be readily seen from a simple comparison with (4.6) which consists of gauge-invariant quantities 
only. Nevertheless, taking the limit’A + rn and k --t 0, th e coefficients associated with these gauge-noninvariant 
contributions are identically zero, i.e., 

J 
ai = 0, (4.23) 

P 

for i = 1, 3, 4, 5, and 6. The presence of noninvariant operators for theories regularized by momentum cutoff makes it 
difficult to extend the regularization to gauge theories. One must therefore resort to other methods which contain the 
cutoff scales and yet preserve the symmetries of the original Lagrangian. A promising candidate which encompasses 
both features is the operator cutoff regularization which we next turn to. 

B. Operator cutoff regulariaation 

We now apply the alternative operator cutoff formalism to regularize the divergence found in (4.2). Following the 
methodology outlined in the previous section, the heat kernel (4.12) may modified as 

h(s;x,z) --t h(s;2,r)loc = e-(p’+Y)a ~.-“~~(,,Pi(e,,\)(l+Dzs+~sz-~~z) 

+p)( .+q 

[ 

0282 + &[D~,D,],D,] +~D,[D~,D~] +304 - [D~,Y] - [D,,Y]D,)s~ 1 
2(P”)2 

+3d(d + 2)pk 
(dv2)(~, A)[D” + (D,D,)’ + D,D2D,]s4 

I 
n 

,-v+w 

= (47rs)d/2 
p~)(s,h) + blD2 + bz(D2Y) + baD,YD, + b4YDZ + bsD4 

+bsD,D’D, + bGpvF,w + O(s’) 1, (4.24) 



(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

Notice that there exists a one-to-one correspondence between the coefficients b:s in the proper-time formulation and 
the a:s in the momentum cutoff approach. In arriving at (4.24), 

functions pp”‘)(s, A) h g 

we again have inserted the regulating smearing 

w ose eneral form has been derived in (3.16), and performed the momentum integrations using 

J PPIPW “~P,,“.e - 
P 

However, OUT aim here is not to repro-due the sharp cutoff results, but to formulate a regularization scheme which leads 
to a gauge-invariant blocked action Sk. Gauge symmetry remains unbroken only if the contributions from bi for i = 1, 

3, 4, 5, and 6 vanish. This requirement is easily attained if instead of using pbd,“‘(s, A), only pp)(s, A) = $‘(s, A) 
is utilized in the expansion of the heat kernel in (4.24). The resulting gauge-invariant “blocked” heat kernel then 
takes the form 

hk(S;z,z) = e-(rZ+y)8 (d)cs,AJ ( 
(47r)W pk (4.32) 

which, for py’(s, A) + 1, ag&s with that obtained iq [24,27]. The one-loop blocked action becomes 

#I) = _ 1 
k ss m ds 

2(4+j2 z ,, ~p~)(~,h)e-(“*+~)~ 1+ &F,,vF,, - 2(D2Y)]sz 

=--I/ 2 1 m ds&+Y)s 1 + +‘,& - .o s 2(D2Y)]s2 e--1211 (4.33) 
The RG flow equation can subsequently be obtained by 
varying (4.33) with respect to the IR scale k. 

What we have seen here is that by using just one smear- 

ing function ~f’(s, A), an effective blocked action having 
a momentum cutoff regularized scalar sector as well as 
the symmetry-preserving contributions from the gauge 
fields is obtained. The invariant prescription adopted 
here departs from the usual momentum cutoff regular- 
i&ion in the sense that the gauge-noninvariant contri- 
butions are effectively subtracted off. Any dependence 
on the UV cutoff A present in (4.33) can subsequently 
be absorbed with the usual procedure of renormalization, 
i.e., redefinition of parameters. In particular, the familiar 
lnA2 divergence coming from the F,,,F,, term for d = 4 
can be dialed away via the coupling constant renormal- 

ization. From the modification induced by pf’(s, A) on 
the,fluctuation operator 31: 
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31-+31)oc=?f 1+$ 
( > 

2 
=31+ $+-, (4.34) 

one readily notices the similarity between the effect 
brought about by the operator cutoff regulmization and 
the gauge-invariant method of higher covariant deriva- 
tives [28]. 

We conclude this section with the remark that the task 
of preserving gauge symmetry for any given regulariza- 
tion often amounts to finding a proper way of transfer- 
ring the singularity accompanied in the trace operation to 
some parameters which are independent of gauge trans- 
formation. For example, the spirit of dimensional reg- 
ularization is to displace d, the space dimension&y in 
which the system is defined, by a small positive quantity 
E. .Since gauge symmetry is not’ influenced by the value 
of d, gauge invariance is readily fulfilled by transforming 
the divergent structures of the theory into a pole term 
- e-l. In a similar fashion, the operator cutoff approach 
transfers the divergences to the proper-time parameter s. 
Embedding the cutoff scales tactically in the regulating 

smearing function pf’(s, A) leads to an effective blocked 
action which is manifestly gauge invariant. That the mo- 
mentum cutoff regularization fails to be an invariant pre- 
scription is seen here from its requirement of having to 
employ more than one smearing function when expressed 
in the proper-time representation, and hence it does not 
fall into the generalized class of invariant proper-time 
regularization. 

V. SUMMARY AND DISCUSSIONS 

In this paper we have followed the formalism developed 
in 1121 and illustrated how a theory regularized with mo- 
mentum cutoff can be represented by the proper-time 
parametrization using a set of regulating smearing func- 

tions ppm’(s,A). Th ese smearing functions incorporate 
cutoff scales and reproduce the essential features of block- 
ing transformation, albeit in the less obvious proper-time 

coordinate. The modifications induced by prl(s, A) in 
OUT operator cutoff regularization are seen to be remi- 
niscent to that of the Pauli-Villars, or the generalized 
method of higher (covariant) derivatives. 

Equivalence between the two regulators was demon- 
strated for the one-loop effective blocked action expanded 
in a number of (covariant) derivatives. We also com- 
puted the one-loop corrections to the two- and four-point 
functions for the X@ theory and showed that the cutoff 
expressions can indeed be reproduced order by order in 
terms of coupling constant X using the operator cutoff 
formalism. 

The most important feature of the operator cutoff 
regularization is that it is a gauge-invariant prescrip- 
tion even when momentum cutoff scales are present. 
The symmetry-preserving nature of the formalism is at- 
tributed to its capacity of transferring the singularity 
that arises from taking the spacetime trace to the proper- 
time variable s which is independent of gauge transfor- 
mation. Gauge invariance is ensured by retaining the s 
integration to be performed last. 

Instead oft employing the entire set of smearing func- 

tions pF”“(s, A), th e invariant prescription we pro- 

posed here is to utilize only pf)(s, A) = pp)(s,A). 
While the momentum cutoff structure for the lead- 
ing order blocked potential is automatically reproduced 

with pyl(s, A) alone, discrepancies between the two for- 
malisms inevitably arise in the high-order (covariant) 
derivative terms. The differences, as noted in Sec. IV, 
are precisely the gauge-noninvariant contributions that 
are generated in the momentum cutoff prescription. The 

virtue of pf’(s, A) is that it is chosen in a such a way 
that the gauge-noninvariant sector in the effective theory 
is completely relegated. Therefore, our invariant regu- 
larization resembles a sharp cutoff for the blocked po- 
tential and a smooth regulator for the derivative terms. 

The requirement of using the complete set of pp”‘)(s, A) 
in order to reproduce the cutoff results term by term 
in the derivative expansion provides another indication 
that momentum cutoff does not belong to the generalized 
class of proper-time regularization and hence cannot be 
a gauge-invariant prescription. 

With momentum scales implemented in a symmetry- 
preserving manner, operator cutoff regularisation offers 
a promising method for exploring the RG flow of gauge 
theories in the spirit of Wilson-Kadanoff blocking trans- 
formation. The evolution of the theory will now be char- 
acterized by the variation of the blocked action in re- 
sponse to the change in the proper-time smearing func- 

tion #(s, A). For example, the full nonlinear RG flow 
equation for the scalar theory explored in Sec. II can be 
written as 
The precaution to be taken when employing operator 
cutoff regularization for Yang-Mills theory is that Becchi- 
Rout+-Stora (BRS) symmetry is generally violated unless 
a covariant background field gauge is chosen 1291. The 
general fammvork of the covariant technique for com- 
puting the one-loop effective action can be found in [30]. 
In a preliminary work PI], we adopted the spirit of op 
erator cutoff outlined above and demonstrated how the 
expected 0 function and the corresponding RG flow of 
the Yang-Mills theories can be obtained with the W&m- 
Kadanoff blocking approach. A more thorough study for 
the non-Abelian theories is under way. 
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