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Alternative derivation of the Hu-Paz-Zhang master equation 
of quantum Brownian motion 
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Hu, Pas, and Zhang [B.L. Hu, J.P. Pas, and Y. Zhang, Phys. Rev. D 45, 2843 (1992)] have 
derived an exact master equation for quantum Brownian motion in a general environment via path 
integral techniques. Their master equation provides a very useful tool to study the decoherence of a 
quantum system due to the interaction with its environment. In this paper we give an alternative and 
elementary derivation of the Hu-Paz-Zhang master equation, which involves tracing the evolution 
equation for the Wigner function. We also discuss the master equation in some special cases. 

PACS number(s): 05.4O.+j, 03.65.Bz, 42.5O.L~ 
 

I. INTRODUCTION 

Quantum Brownian motion (QBM) models provide a 
paradigm of open quantum systems that has been very 
useful in quantum measurement theory [l], quantum op- 
tics [2], and decoherence [3-51. One of the advantages of 
the QBM models is that they are reasonably simple, yet 
sufficiently complex to manifest many important features 
of realistic physical processes. 

Central to the study of QBM is the master equation 
for the reduced density operator of the Brownian parti- 
cle, derived by tracing out the environment in the eve- 
lution equation for the combined system plus environ- 
ment. A variety of such derivation have been given [S-9]. 
The most general is that of Hu, Paz, and Zhang [lO,ll], 
who used path integral techniques and in particular, the 
Feynman-Vernon influence functional. 

The purpose of this paper is to provide an alternative 
and elementary derivation of the Hu-Paz-Zhang master 
equation for QBM, by tracing the evolution equation for 
the Wigner function of the whole system. 

II. MASTER EQUATION FOR QUANTUM 
BROWNIAN MOTION 

The system we considered is a harmonic oscillator with 
maas M and bare frequency 0, in interaction with a ther- 
mal bath consisting of a set of harmonic oscillators with 
1/96/53(4)/2012(8)/%06.00 53 
mass rn, and natural frequency un. The Hamiltonian of 
the system plus environment is given by 

+c ( Pi z;;E- + ;m,w:q: +9~cd?n,
> 

(1) 
n n n 

where q,p and qn,p, are the coordinates and momenta 
of the Brownian particle and oscillators, respectively, and 
C, are coupling constants. 

The state of the combined system (1) is most com- 
pletely described by a density matrix p(q,qi; q’,qi,t) 

where I& denotes (ql,. ,q~), and p evolves according 
to 

p = -;[H,P]. (2) 

The state of the Brownian particle is described by the 
reduced density matrix, defined by tracing over the envi- 
ronment: 

The equation of time evolution for the reduced density 
matrix is called the master equation. For a general envi- 
ronment, Hu, Paz, and Zhang [lo] derived the following 
master equation by using path integral techniques: 
I 

+ gfS2w - q’%. + g4m(t)(q2 - q’2)pr 

- iMl?(t)h(t)(q - q’)2h +. fir(t)f(t)(q _ q’) 
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The explicit form of the coefficients of the above equa- 
tion will be given later on. The coefficient HP(t) is the 
frequency shift term, the coefficient l?(t) is the “quantum 
dissipative” term, and the coefficients r(t)h(t), r(t)f(t) 
are “quantum diffusion” terms. Generally, these coeffi- 
cients are time dependent and of quite complicated be- 
havior. 

We find it convenient to use the Wigner function of the 
reduced density matrix: 

bi’(q,p,t) = & 
I 

dueiup~np, (q- ;,q+ ;,t). (5) 

Taking the Wigner transform of (4) we ,obtain’ 

g = -?&pF + M[cP + ssa”(t)]q~ 

+2&g + hMr(t)h(t)$ 

+ti&g. (6) 

The inverse transformation of (5) is given by 

Pr(9,4’, t) = 
I 

,jpe+(P-P’)/“~ (+&) (7) 

Our strategy for deriving the master equation (4) is 
to derive the Fokker-Planck type equation (6) from the 
Wigner equation for the total system. The master equa- 
tion can be obtained from the Wigner equation for the 
system by using the transformation (7). 

We shall make the following two assumptions. 
(1) The system and the environment are initially un- 

correlated; i.e., the initial Wigner function factors 

%(w;w%) = w%PMYqi,Pi), (8) 

where W; and Wt are the Wigner functions of the system 
and the bath, respectively, at t = 0. 

(2) The heat bath is initially in a thermal equilibrium 
state at temperature T = (~BP)-~. This means that the 
initial Wigner function of bath is of Gaussian form 

w;=flw;o 
n 

= nlv,exp -&,tanh(+&3)& 
” ( 

, (9) 
” > 

where H,, is the Hamiltonian of the nth oscillator in the 
bath: 

H,, = I2 z;;E- + &&J:q:. (10) 
n 

In addition, one can easily see that the initial moments 

‘We believe that Eq. (2.48) in Ref. [lo] contains some incor- 
rect numerical factors. 
of the bath are 

and 

MO)) = @n(O)) = 0, 

(qn(0)qm(O)) = 0 (if m # 4, 

(P,(O)P,(O)) = 0 (if m # n), 

(qn(0)p,(O) +p,(0)qn(O)) = 0, 

(11) 

(12) 

(13) 

(14) 

(p;(O)) = ;fLm,w,coth($u,fl). 

For the QBM problem derived by (1) and (2), the 
Wigner function of the combined system plus environ- 
ment satisfies 

(16) 

By integrating over the bath variables on the both sides 
of the above equation one obtains 

where t@(q,p) is the reduced Wigner function: 

[This definition is equivalent to Eqs. (3) and (5).] The 
first two terms on the right-hand side of Eq. (17) give 
rise to the standard evolution equation of the system. 
The last term contains all the information about the be- 
havior of the system in the presence of interaction with 
environment. 

In what follows we shall demonstrate that the quantity 

appearing (differentiated with respect to p) in (17) can 
be expressed in terms of ti and its derivatives. To this 
end we first perform Fourier transform of G(q,p): 
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G(k,k’) = /&dpe”kq+in’PG(q,p) = cC,z / dqdp~dqidpiq,e”“~+“k’PW(q,p; qi,pi) 
R % 

It is well known that q(t),p(t) and qn(t),p,(t) are related to the classical evolution of their initial values q(O),p(O) 
and q”(O),p,(O) through a canonical transformation: 

z(t) = I> (21) 

where 

z(t) = (q(t),41(t),...,qN(t);P(t),Pl(t),...,P~l(t)). 

Since the Hamiltonian (1) is quadratic, Eq. (16) has the same form as the classical Liouville equation, so the solution 
of Eq. (16) is of the form 

W,(z) = W&T’(t)z). (22) 

Changing the integration variables into their initial values by this canonical transformation, we obtain 

G(k k’) = 
I 

dq(O)&@) n &i(O)dpi(O) 
i 

x fq(0) + L?P(O) + c &Pn(O) + SnPd)) 1 [( exp ik (aq(0) +&(O)) + c (anqn(0) + b&(O)) 
R n 

X=--P &‘M 
[ ( 

N(O) +~P(O) + c (&q,(O) +&P,(O)) 
” )I w~(q(O),p(O))W,b(qi(O)rpi(O)). (23) 

Here the coefficients f,g, j,,,g,,, a,& an, b, are time dependent. Their explicit values are not required. Similarly, the 
Fourier transform of the reduced Wigner function is 

Iqk, k’) = 
J 

dqdpe”“~+“E’%‘(q,p) 

= 
J 

&(O)dp(O) ~dqi(‘Wp~(O)exp ik (w(O) +PP(@) + c (ansn + b,p,(O)) 
[( n )I 

N(O) + HP + c (Qva(O) +&p,(O)) )I W~(q(O),p(O))W~(q~(6),pi(O)). (24) 
Now compare G(k, k’) and fi(k, k’). They differ by the 
terms linear in q(0),p(O),qm(O),p,(O) in the preexponen- 
tial factor in G(lc, rC’). Consider the factors fnqn(0) and 
gnpn(0) in G(k, k’). Since they multiply W$(qi(0),pi(O)), 
andsince W,6(q;(O),ps(O)) is Gaussianinq,(O),p,,(O), the 
terms f,q,(O)W,b and g,p,(O)W,b may be replaced by 
terms of the form aWo6/aqn(0),dWgb/ap,(O) up to time- 
dependent factors. An integration by parts then may be 
performed, and these factors are then effectively replaced 
by multiplicative factors of k, k’. 

Similarly, the factors fq(O),gp(O) in the prefactor in 
G(k,k’) may be replaced by 8/ak,a/ak’ (plus some 
more factors of k and k’). Hence, it is readily seen 
that G(k,k’) is a linear combination of terms of the 

form k, Ic’, 8/dk,df8k’ operating on T%‘(k, k’), with time- 
dependent coefficients. 

Inverting the Fourier transform, it follows that 

G = A(+# + B(t)pi@ + C(t)g + D(t)%, (25) 
for some coefficients A(t),B(t),C(t),D(t) to be deter- 
mined. This result immediately leads to the general form 
Wigner equation 

aLv 
- = -$z + A&q$f + A(t)qg 
at 

WPW 
+B(t) ~ ap + w g +D(t)$&, (26) 

III. DETERMINATION OF THE COEFFICIENTS 
(GENERAL CASE) 

Having found the functional form of the Wigner equa- 
tion (26) of the Brownian particle, the next step is to 
determine the coefficients in the equation. Undoubtedly, 
there is more than one way to do this. Here we shall 
choose a way which is both mathematically simple and 
physically heuristic. Toward this direction let us consider 
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the time evolution of the expectation values of the system 
variables: q,p,q’,p’, and $(pq + qp). 

By using Eq. (16) we have 

$9) = j&P)> (27) 

Z(P) = -MWq) - ~CdPn), 
n 

(28) 

$$8) = $PQ+QP)> (29) 

$P”) = -MQ2h + QP) - 2~Cn(PGd, (30) 
n 

&q + PP) = $P’) - 2~Q2(q2) - 2 ~G&(mJ. (31) 
n 

Similarly, using Eq. (26) yields 

g(P) = &P,> (32) 

$d=--(M~Z+4WBlp), (33) 

$?2) = $Pq + 4P)> (34) 

;(p?) = -(MO’ + A)(pq + qp) - 2B(p2) + 20, (35) 

&w + w) = $P’, - V’@ + AN?) 

-Bhw + 4 + 2~3. (36) 

Since the evolution equations of the expectation values 
are confined to the system variables, the above two sets 
of equations must be identical. 

Now by comparing (28) with (33) we see that 

c GM = A(q) + B(P). (37) 
n 

Similarly, by comparing (31) with (36), (30) with (35); 
respectively, we get 

c G&4 = A(?) + ;b + pd - C, (38) 
n 

c G(m) = ;(PP + wj + B(P’) - D. (39) 
n 

The co&cients A,B,C,D may now be determined 
from (37)-(39) by regarding the expectation values (q), 
(q,,q), etc., as expectation values of Heisenberg picture 
operators, and by solving the operator equation of mo- 
tion. For simplicity we still use ordinary notation to rep- 
resent an operator without adding a hat on it. 

The solution to the equation of motion may be written 

h(t) = w?(t) +&p(t) + c (%w&n(O) + &nPnI(w, 

(40) 

q(t) = 40) +PP(o) + c (%?n(O) + LPm), (41) 
n 

F p a Some time-dependent coefficients 

na na nm,bm, a,P,a,,b,. Note that q&) has been 
expressed in terms of the final, not initial values of q,p. 
By substituting Eq. (40) into (37), keeping (11) in mind, 
and comparing the two sides of the resulting equation, 
we have 

A = c Cnn,, B = c CL,&. (42) 
R n 

Similarly, substituting (40) and (41) into (38) and (39), 
respectively, we get 

C = -~C,(a,,a,(q;(O)) + bnmbm(p;(O))), (43) 
rn* 

Here we have made use of p = Mg. The coefficients 
A, B, C, D are therefore completely determined by solv- 
ing the equation of motion. We now do this explicitly. 

We have 

h’(t) + @q(t) = -& ~Cnqn(t), (45) 
n 

qq + w;lqn(t) = -$n(t). (46) 

The solution to Eq. (46) is 

q”(t) = qn(0)cos(w,t) + p* y 

-G 
J 

t dssi+& - s)l q(s) -. 
0 %I mn 

(47) 

Combining (45) and (47) gives 

i(t) + CA?(t) + ; 
s 

t 
d7q(t - s)q(s) = f(t) 

0 
M > (48) 

where 

j(t) = -cc& (q”(0)cas(w,l) + PS?). (49) 
n 
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The kernel v(s) is defined as 

(50) 

where 

r(s) = 
J 

+mdww 
-cos(ws). 

0 w 
(51) 

Here I(w) is any spectral density of the environment: 

In order to get expressions (40) and (41) we solve Eq. 
(48) with the following two different initial conditions: 

q(s = 0) = q(O), cj(s = 0) = *Eg, (53) 

q(s = t) = q(i), lj(s = t) = *$), (54) 

where t is any given time point. In doing so we consider 
the elementary functions tii (i = 1,2) introduced by 
Hu, Paz, and Zhang [lo] which satisfy the homogeneous 
integro-differential equation 

g(s) + Q%(s) + ; 
s 

3 
dXrj(s - X)X(A) = 0 (55) 

0 

with the boundary conditions 

Ul(S = 0) = 1, Ul(S = t) = 0, (56) 
and 

212(s = 0) = 0, uz(s = t) = 1. (57) 

The solution to Eq. (55) with the initial condition (53) 
is obtained as the linear combination of U~,UZ: 

w(s) = q(s) - 9 
49 

l&(s) q(0) + y+) *(O) --. (58) 
~(0) M 

The solution to Eq. (48) with the homogeneous initial 
conditions can be formally written as 

where Green function G1(s,7) satisfies 

with 

= qs - T) (6’4 

c&(.3 = 0,-r) = 0, $Gl(s = 0,~) = 0. (‘51) 

Then the solution to Eq. (48) with initial conditions (53) 
reads 

explicitly, 

4(s) = 4s) + +4S)> (62) 
I 

q(s) = tLI - 41(O) 212o2(s) 
> 

P(O) + ?$$g - ~TGI(s,~)~OS(W,~)~,(O) 

It can be shown that the solution to the homogeneous equation (55) with the initial conditions (54) is 

u(s) = 

( 
u (8) - 42@) B all 

> 
q(t) + $g*$ 

and 

(63) 

(64) 

is the solution to the inhomogeneous equation (48) with the homogeneous initial conditions 

ci(t) = 0, ii(t) = 0. (66) 

The equation for Green function Gz(s, T) is analogous. Hence, we get the solution to Eq. (48) with the initial conditions 
(54): 
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q(s) = u(s) + C(s) 

Substituting (67) into (47) one obtains 

By using (42) we immediately arrive at 

A(t) = -c -% /*dssin[w,,(t -s)] (,,(,) - I!!?&(s)) , 
” mn% 0 

B(t) = -& c & lf dssin[w,(t - s)]#. 
n 

Furthermore, A,B can be written as 

(67) 

(69) 

(70) 

s t A(t) = 2 dsv(t - s)u2(a) - - sb(s), 
0 

(71) 

(72) dsrj(t - s)ul(s). 

From (63), the momentum of the Brownian particle is then 

p(t) = Mat) 

= drG:(t,7)cOS(W,7)qn(O) 

(73) 

Here “prime” stands for derivative with respect to the first variable of G~(s,T). With these results [see Eqs. (43) and 
(44)], it can be easily shown that 

s 

+CC 
II(t) = ti dXq(t - s)G;(t,X)G,(s,+(T - X), (75) 

0 
dXG;(t,h)v(t-X)+$JlufdsJIJtdTi+DO 

where u(s) is defined as 

J 

+C=3 
v(s) = dwI(w)coth(;Twfl)cos(ws). (76) 

0 
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It is .seen that the coefficients A(t), B(t), C(t), D(t) are dependent only on the kernels q(s) and v(s) and the initial 
state of the bath, not dependent on the initial state of the system. Once the spectral density of the environment 
is given, in principle, the elementary functions ui (i = 1,2) and Green functions Gi (i = 1,2) can be solved from 
Eqs. (55), (60), etc. Then the coefficients of master equation can be determined. 

IV. PARTICULAR CASES 

In this section we will consider some special cases. Let us at first treat a special case in which we assume that the 
interaction between the system and environment is weak, so the C, are small. In this case, the coefficients are of 
simple forms, and the determination of these coefficients is very simple and straightforward. We shall work out these 
coefficients directly using the method in the last section, rather than the general formulas. 

The solution to Eq. (46) may be written as 

q,,(t) = q,(O)cos(w,t) + *e++$ - 2 Jd’ dt’sin’w’$- t’)‘cos[S2(t’ - t)]q(t) 

GI t --J dt,sin[wn(t - t’)] sin[fl(t’ - t)] p(t) 

ml 0 %z fl 
z + O(C$ 

Using Eq. (37) and ignoring terms with higher than the second order of C, we get 

-&C,,(q,,(t)) = (c -2 Jd’ dt’sin’w=(- %os[fi(t’ - t)]) (q(t)) 

sin[w(t - t’)] sin[fi(t’ - t)] 
j&=-$Jd’dt’ w, ~ 

(p(t)) 

n 

(77) 

(78) 

Then we immediately get 

A(t) = 2 otds~(~)~~s(~~), 
J 

(79) 

B(t) = -& 
s 

t 
ds~(s)sin(%). (8”) 

0 

We next evaluate C,C,(q(t)q,(t)) and C,C,(p(t)qn(t)). After a few manipulations we arrive at the expressions 

C(t) = -c G 
n ( 

Mt)q*(O))cos(w”t) + (q(t)p,(0))~) 
” n 

D(t) = - CG (@(+?n(O))cos(w.t) + Mt)P~(o))~) 
” 

(82) 

To calculate C(t) and D(t) we need to expand q(t) up to the second order of C,: 

q(t) = q(o)cos(nt) + *msin(S2t) - - F $ Jdtdssinr’E - %os(wns)qn(0) 

(83) 
The expansion of p(t) is easily obtained from that of q(t): 

p(t) = MW. (84) 

With these results it is easy to compute C(t) and D(t): 

C(t) = & l’ds v(s)sin(%), (85) 
s 

t 
D(t) = ti ds V(S)COS(~S). (86) 

0 

This simple example exhibits the time dependency of the 
coefficients of the master equation in a general environ- 
ment. Equations (79), (80), (85), and (86) are in agree- 
ment with,Hu, Paz, and Zhang [IO]. 

As another example, we briefly discuss the purely 
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Ohmic case in the Fokker-Planck limit (a particular form 
of high temperature limit), which has been extensively 
discussed in the literature [6,10]. In this case one has 

TJ(s - s’) = My#(s - s’), (87) 

v(s - s’) = 2M;kBT6(s - 5’). 

Then Eq. (55) reduces to 

ii(s) + n:&(s) + ytqs) = -2yS(s)u(O), (89) 

where a;&, = o2 - 2$(O). After solving this equation a 
few calculations give 

A(t) = -2Myb(O), 

B(t) = 27, 

c(t) = 0, 

D(t) = 2MykBT. 

Then the Wigner equation reads 

(90) 

(91) 

(92) 

(93) 

aw p alv _I___ 
at M % 

+M&qE + 27% + 2MykBT 
aP a* 

g. (94) 

In this regime the coefficients of this Wigner equation are 
constants. 
V. DISCUSSION 

We have shown how to derive the Hu-Paz-Zhang mas- 
ter equation by tracing the evolution equation for the 
Wigner function of the whole system. Although actually 
quite lengthy we referred to it earlier as “elementary” 
because it is conceptually so. The length comes largely 
from the simple but tedious job of solving the classical 
equation of motion for prescribed boundary conditions, 
Eqs. (45)~(76). 

Our evolution equation, Eq. (26), is in general non- 
Markovian, because the time-dependent coefficients de- 
pend on a fiducial moment of time, namely, the initial 
time at which the Wigner function is assumed to factor. 
Generally, one would expect a non-Markovian evolution 
equation at a particular moment of time t to involve the 
integral of the Wigner function over times to the past 
of t. The possibility that this non-Markovian equation 
can be written in the simpler, superficially “memoryless” 
form (26) was first emphasized by Shibata et al. [12-141. 

After completion of this work we become aware of a 
paper by Anglin and Habib [15], who also consider the 
derivation of the Wigner equation Eq. (6) by tracing the 
Wigner equation for the whole system. Their approach is 
very similar to our derivation of Eq. (26) in Sec. II. They 
also emphasized that, at least as far as solving equations 
goes, the derivation is an essentially classical calculation. 
They do not, however, give explicitly the detailed deriva- 
tion of the coefficients, as we do in Sec. III. 
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