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The Misner initial value solution for two momentarily stationary black holes has been the focus of 
much numerical study. We report here analytic results for an astrophysically similar initial solution, 
that of Brill and Lindquist (BL). Results are given from perturbation theory for initially close holes 
and are compared with available numerical results. A comparison is made of the radiation generated 
from the BL and the Mimer initial values, and the physical meaning is discussed. 
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I. INTRODUCTION 

Black-hole collisions are presently of great interest as 
one of the lLgrand challenges” in high performance com- 
puting [I]. The results of those studies, in turn, can be 
important to the understanding of detectable sources of 
gravitational waves [Z]. 

To the present date, the only case that has been ex- 
tensively studied is the head-on collision, from rest, of 
two holes starting with the initial value solution given by 
Misner [3]. The spacetime growing out of those initial 
data has been computed by the techniques of numerical 
relativity (41, and has been studied by analytic means 
[5-71. 

The initial value solution of Brill and Lindquist [S] 
(BL), like the Misner solution, represents two initially 
stationary nonspinning holes. Neither solution contains 
any initial radiation of short wavelength compared to the 
characteristic size of the throats. Outside the horizon, 
the two initial value solutions can be thought of as dif- 
fering in the initial distortion of each throat caused by 
the presence of the other throat. There is, in fact, no so- 
lution of the initial value equations of general relativity 
that is uniquely singled out as representing two initially 
stationary holes. ThexMisner solution and BL solution 
are special only in their mathematical convenience, and 
in the topological properties of the geometry of the initial 
surface extended inside the throats. Specifically, the Mis- 
ner solution may be thought of as having a two-sheeted 
topology. The two throats, representing the two black 
holes, connect an upper “physical” sheet to a single lower 
sheet, isometric to the upper one. In contrast, in the 
three-sheeted BL solution, each of the throats connects 
from the upper sheet to a separate lower sheet. The isom- 
etry between the two sheets in the Mimer solution results 
from an infinite series of image terms in the solution to 
the Hamiltonian constraint. It is reasonable to expect 
that these terms might lead to additional gravitational 
radiation, not present in the BL solution. Other physi- 
cal consequences of the image terms have been studied 
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in Ref. [9]. 
Here, we extend the analytic study of collisions of holes 

to the case of BL initial data. There are two main jus- 
tifications for doing this. The first is that analytic an- 
swers are a useful aid to development of the codes used 
in numerical relativity. The values reported here for ra- 
diated energy can be tested against numerical codes for 
evolution of axisymmetric initial data. For initially close 
black holes, it will be interesting to see whether those 
codes agree with the analytic answers its well as they do 
in the case of Mimer initial data. 

The second reason for some interest in the evolution 
of BL data is the general question of the relationship of 
initial data to the generation of gravitational radiation. 
In astrophysically realistic problems, the initial data will 
necessarily come from some approximation scheme, such 
as post-Newtonian solutions. Such an approach is jus- 
tified if the gravitational wave signal generated depends 
only on certain general features of the initial data and 
is insensitive to many details (e.g., topology). The com- 
parison of the evolution of the BL and the Mimer data 
gives us a simple model for studying this question, and 
an interestingly simple (though limited) answer. 

In the next section, we describe the application of 
close-limit perturbation theory to the evolution of the 
BL initial data. In Sec. III results are given for the ra- 
diation predicted by perturbation theory. These results 
are compared with available fully numerical results for 
the BL case, and are compared with analogous results 
previously reported for collisions from the Misner initial 
data. We summarize our results in Sec. IV. 

II. CLOSE-LIMIT PERTURBATION THEORY 
FOR THE BL INITIAL DATA 

Like the Misner solution, the BL geometry is confor- 
mally flat and takes the form ds2 = Gp4 ds;,, where ds;, 
is the line element for flat three-dimensional space, and 
where @ satisfies the Laplace equation in the flat space. 
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In terms of spherical coordinates R,L?,b, for d&, the 
Mimer or BL metrics can be written 

ds2 = Q4(R,6’;p0) (dR2 + R2 [d@ +sin2Sd&]) (1) 

For the BL geometry, the form of a, aside from a factor 
of 2, corresponds to the potential of Newtonian theory, 
with points of mass rn at positions z = ft0 on the z axis: 

1 
oBL=l+~ 

(4 

rn 

R2sin2B+(Rcos6’-z0)2 

rn 
+ 

R2sin2e+(R~osB+~,,)z ). 
(2) 

For R > a,, the square roots can be expanded in a power 
series in zo/R and the BL three-geometry written as 

r 74 

as;, = 1+x 
2R 

i (dRz + Ra [de2 + sin20d#])-, (3) 

where the Pt are the Legendre polynomials, and where 
Mz22m. 

We next make a transformation of the radial coordi- 
nate R to a new coordinate +, as if we were transforming, 
in the Schwarzscbild spacetime, from isotropic coordi- 
nates to Schwarzschild coordinates: 

R= (ti+-)‘/4. (4) 

It is convenient now to rewrite the line element for the 
three-geometry as 
‘Sk = 

M/W 

’ + 1+ M/W 
(5) 

where the meaning of R is given by (4). 
The geometry in (5) reduces to the Schwarzschild geometry if the summation in the leading factor on the right- 

hand side is ignored. That summation, then, contains the information about the deviations from sphericity and is 
the starting point for close-limit nonspherical perturbation calculations [lo]. In particular, the parameter e s to/M 
can be considered an expansion parameter for perturbation theory. If, for each multipole index e, we keep only the 
leading order in e, the approximation to the BL initial geometry takes the form 
In principle, for each multipole index e, one can read off 
the metric perturbations (which are purely even parity) 
fiom (6), can construct Moncrief’s [ll] gauge-invariant 
perturbation wave function l()pelt, and can evolve that 
wave function with the Zerilli equation [12]. In prac- 
tice, this need not be explicitly carried out. There is 
a striking similarity between the expressions in (3)-(6) 
and the equivalent expressi& for the Mimer geometry 
[5,6]. The single difference is the coefficients in the series 
appearing in (3)-(6). For the Mimer initial geometry, 
the coefficients are nl(po). The dimensionless quantity 
po parametrizes the initial separation of the throats, and 
the n’s are functions given in Ref. [6]. The single change 

(dWf + 4&o) (7) 

converts (3)-(6) to their equivalent form for the Mimer 
case. This means, for a given e, that $+.rt for the BL 
case has precisely the same form as for the Mimer case; 
the outgoing gravitational waves, according to perturba- 
tion theory, are identical in shape. They differ only in 
a multiplicative factor. Sum power carried by outgoing 
waves is proportional to the square of ?Ipert, the results 
for BL infall, for each e, can be found by multiplying the 
Mimer results by [(zoj’M)‘/4t~(po)]~. We note in pass- 
ing that the “forced linearization” procedure discussed in 
Ref. [IO] is, of course, also applicable to the BL data. 

This Mimer-BL equivalence applies for any separation 
of the holes. For large separations of the throats, it is not 
surprising that the gravitational waves generated by BL 
and by Mimer initial data should be similar. For small 
initial separations, however, there is a significant differ- 
ence between the three-geometries of Mimer and BL, and 
it does seem strange that the gravitational wave forms 
should be identical. Furthermore, it is for close initial 
separation that perturbation theory is most applicable, 
so the prediction of identical linearized wave forms is also 
a prediction about the actual wave forms. How can such 
different initial conditions give rise to identical outgoing 
wave forms? 

It is important to realize that the linearized outgoing 
waves are identical in form for each e, but the ratio of 
multipole contributions dims for BL and Mimer. In 
Fig. 1, this difference in multipoles is shown quantita- 
tively. For a given value of ~0 in the Mimer geometry, an 
equivalent configuration for the BL geometry is defined 
by setting the quadrupole amplitudes of gpert equal, i.e., 

by setting (zo/M) = 2m. The ratios of the BL 
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amplitude to the Mimer amplitude are then computed 
for e = 4 and e = 6. [These amplitude ratios are in 

f=ct siwly 4dd2/dd =*d 16~~&1)~/~&d.l At 
large separation, the amplitude ratios approach unity; 
this shows that in the limit of large separation, the exter- 
nal fields become identical in the two initial geometries. 
For small separations, however, the BL solution has a rel- 
atively smaller contribution because of higher multipole 
moments; its geometry is more quadrupole dominated. 
Though this is a relatively important difference in the 
initial geometry near the throats, it is of little impor- 
tance for the gravitational radiation. Even for the Mis- 
ner initial conditions, the radiation is heavily quadrupole 
dominated. It is possible that the lesson of this example 
has a broader generality: the outgoing radiation can be 
insensitive to many details of the initial data and even 
for strong field sowces, a knowledge of the quadrupole 
moment may be all that is needed. 

It is worth asking whether there is any deep physical 
meaning in the fact that the only difference between the 
BL and Mimer linear perturbations is the ratio of the 
multipole amplitudes. This follows from the fact that 
for a conformally flat three-metric, with the form (I), 
the factor @ satisfies the flat space Laplacian. If the so- 
lution is axisymmetric and asymptotically flat, it must 
be of the form C(ar/R’+‘)P~(cos6’); solutions can differ 
only in the values of the constants at. So the striking 
similarity of the BL and the Misner perturbations is a 
direct result of the choice of the conformally flat form 
(1). This choice is dictated by convenience, and need not 
be made in principle. For more general momentarily sta- 
tionary initial geometries, the linearized wave forms for 
each multipole will have different appearance. For exam- 
ple, one could generate valid initial data representing a 
Schwarzschild spacetime with a nonconformally flat per- 
turbation by choosing an arbitrary (small) metric pertur- 
bation and solving the linearized Hamiltonian constraint 
for the conformally flat part of the perturbation. The 
gauge-invariant function would then be computed from 
the full perturbation. 

FIG. 1. Ratio of amplitudes of &..t for BL and Mimer 
geometries. For equal amplitudes of e = 2, amplitude ratios 
are shown for e = 4 and e = 6. 
III. RADIATION ENERGY: BL VS MISNER 

The first, and most difficult, step in comparing radia- 
tion from the two initial value sets is to decide on the ba- 
sis for comparison: How does one compare a EL problem 
with a particular value of q/M with a Mimer problem 
of a particular po? At large separations, it is not diffi- 
cult; one can compare BL and Misner configurations in 
which the masses and separation of the holes are iden- 
tical. For small separations, however, the separation of 
the holes is somewhat ambiguous. To deal with small, as 
well as large, separations we choose a reasonably natu- 
ral and convenient specific measure of the separation L: 
the proper distance along the symmetry axis, between 
the outermost disjoint marginally outer-trapped surfaces 
around each throat. (For Q/M less than about 0.4, a 
single apparent horizon encompasses both holes.) The 
locations of the marginally outer-trapped surfaces was 
found, using a standard shooting technique applicable to 
axisymmetric spatial slices [13]. We characterize both 
BL and Misner confi&xations with L/M, where M is 
the mass of the spacetime. It is, of course, interesting not 
only to compare the linearized predictions for BL against 
those for Misner, but also to compare both against the 
results of numerical solutions of the fully nonlinear field 
equations. For the Misner initial geometry, the numerical 
results are known from the work reported in Ref. [4]. For 
BL initial conditions, two data points are available: cases 
c2 and c4 from Ref. [14]. These numerically generated 
spacetimes have Euclidean spatial topology, with initial 
data consisting of spherical (in the conformal space) col- 
lisionless matter configurations. When the initial con- 
figurations are sufficiently compact, the matter is all in- 
side disjoint apparent horizons and the external three- 
geometry is identical to the BL data. 

For clarity, the results are presented in three separate 
figures. Figure 2 shows the comparison of perturbation 
results and numerical results for the Mimer case. The 
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FIG. 2. Gravitational radiation energy emitted during the 
head-on collision of two black holes starting from the Mimer 
initial conditions. Results are shown for close-limit pertur- 
bation theory (continuous curve) and for numerical relativity 
(isolated points). 
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perturbation energies [E/M e 0.0251n:(~o)] are those 
of Ref. 151, except that energy has been plotted as a 
function of L/M, rather than of ~0. The numerical 
data are those of Refs. [4,6]. Figure 3 shows the anal- 
ogous results for the BL case, for which the energy is 
E/M a 0.0251[(~~/M)~/4]~. The two “numerical” data 
points here are those of Ref. [14]. 

Figure 2 shows that for the Mimer case, linearized pre- 
dictions begin to diverge from the fully numerical results 
at around L/M = 4. It is fortunate that the numerical 
results available for the BL case are for L/M in the range 
3-4. From Fig. 3 we can infer that for L/M less than 
around 3, the agreement between linearized and numer- 
ical results is very good for BL collisions, and for L/M 
above 4 there is significant disagreement. In this tense 
there is little difference between Misner and BL cases. 
Figure 4 shows the perturbation theory comparison of 
Misner and BL cases. This figure shows that there is lit- 
tle difference between the predicted radiation when L/M 
is greater than around 2. It is, therefore, not surprising 
that the agreement between numerical and perturbation 
results, which breaks down well above L/M = 2, does 
not distinguish between BL and Misner collisions. It is 
also not surprising that in BL collisions, as in Misner col- 
lisions [S], the radiation is always quadrupole dominated. 
(The large values of hexdecapole energy in Fig. 3 occur 
only at separations large enough that linearized theory 
wildly overestimates radiation.) 

The results in Fig. 4 would seem to suggest that, for 
black holes initially close, BL initial conditions lead to 
less radiation than that with Misner black holes as ex- 
petted by the presence of image terms in the Misner so- 
lution. An alternative interpretation is that for equal 
radiation, the initial separation of the apparent horizons 
is greater in the BL case than that in the Misner case. 

. T 
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FIG. 3. Gravitational radiation emitted during the head-on 
collision of two black holes starting from BL initial condi- 
tions. Results are shown for close-limit perturbation theory 
(continuous cuve), and two values are shown from numerical 
relativity. 
8.8 0 

FIG. 4. Comparison of perturbation theory predictions for 
radiated energy from Misner and from BL initial conditions. 
Results we given for both ! = 2 and 4 multipoles. 

Since equal radiation implies equal quadrupole moments, 
tbis means that the different multipole structure of the 
BL and Misner geometries makes the proper distance 
between apparent horizons larger in the BL case when 
quadrupole moments are equal. In this sense then, Fig. 4 
is more of a depiction of proper distances than of radia- 
tion. 

This motivates asking whether there is a way of com- 
paring BL and Misner scenarios that is better, or at 
least different, from that using L/M. Another physically 
meaningful measure of how close the initial throats are is 
the gravitational binding energy. The gravitational bind- 
ing energy is the differ&x between the Arowitt-Deser- 
Misner (ADM) energy of an initial data set representing 
two black holes at finite separation and the energy of an 
initial data set with the holes infinitely separated (the 
sum of the bare masses of the holes). For BL data this 
is given by [S] 

EB M 

-=-G’ M o 

For Misner data one has [15] 

Radiated energy is plotted against binding energy in 
Fig. 5, but the results give a picture very much like that of 
Fig. 4. In particular, for small initial separations (tightly 
bound initial configurations), there is less energy radiated 
from a BL collision than that from a Misner collision. 
For large initial separations (small binding energies), the 
difference in radiated energy is small for configurations 
with the .same binding energy. The BL and Misner cases 
become significantly different (say by a factor of 2) for 
binding energy (binding energy/M z -1.5) that corre- 
sponds roughly to the point (L/M % 1.3) at which the 
BL and Misner energies separate in Fig. 4. 
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FIG. 5. Gravitational radiations emitted from Mimer and 
BL initial conditions are plotted as a function of the binding 
energy of the initial cotiguration divided by the mass of the 
spacetime. 

IV. SUMMARY 

The result of applying close-limit methods to BL initial 
data shows that the single difference between radiation 
from Misner and BL data lies in the relative strengths of 
multipoles. In view of the very different nature of the BL 
and Misner spacetimes close to the holes, this discovery is 
at first surprising. It turns out, however, not to be of any 
deep physical significance, but rather an artifact of the 
use, in both cases, of conformally flat initial data. There 
may be some interest, therefore, in investigating initial 
black hole solutions which are not conforma.lly flat, to 
see whether there is any significant new feature of the 
emerging radiation. 

There are two aspects of the present results for BL 
which are potentially interesting. First, these results af- 
ford an opportunity to make relatively simple checks of 
numerical relativity codes. It should be possible to evolve 
BL data with the codes that have been used to evolve 
Misner data, particularly if causal (“apparent horizon”) 
boundary conditions are used. In addition to tests for 
the wave form shape, radiation intensity, etc., a test of 
particular interest would be the ratio of e = 4, to e = 2 
radiation. The results of numerical relativity for e = 4 
radiation from Misner data have large uncertainty when 
the holes are initially close’[6]. It would, therefore, be 
comforting to see that the codes can find that the ratio 
of e = 4 to e = 2 radiation, is smaller for BL data than 
that for Misner data. 

Aside from their value in connection with code checks, 
the results are primarily of interest for the way in which 
they show the care that must be used in making a phys- 
ical comparison of two different sets of initial data rep- 
resenting holes which are initially close. When we try to 
use both BL and Misner data to describe two black holes 
at a certain separation, how do we give specific meaning 
to the idea of “two black holes at a certain separation”? 
The result of the comparison may depend more on our 
choice of meaning for “separation” than on something 
more physically meaningful. We have used two measures 
of separation: (i) the distance between apparent hori- 
zons, and (ii) the binding energy of the system. For ei- 
ther criteria, we find that at very small initial separation, 
BL initial data generates less radiation than that by Mis- 
ner initial data for the “same” configuration. This would 
seem to suggest that the details of the BL data make 
it, in some sense, really less efficient in generating radia- 
tion. An alternate viewpoint is that there is less spurious 
radiation present in the initial data. 
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