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Various properties of the Mimer-Sharp spherically symmetric gravitational energy E are es- 
tablished or reviewed. In the Newtonian limit of a perfect fluid, E yields the Newtonian mass to 
leading order and the Newtonian kinetic and potential energy to the next order. For test particles, 
the corresponding Hijjidek energy is conserved and has the behavior appropriate to energy in the 
Newtonian and special-relativistic limits. In the small-sphere limit, the leading term in E is the 
product of volume and the energy density of the matter. In vacuo, E reduces to the Schwaraschild 
energy. At null and spatial infinity, E reduces to the Bondi-Sachs and Arnowitt-Deser-Misner en- 
ergies, respectively. The conserved Kodama current has charge E. A sphere is trapped if E > ir, 
marginal if E = ir, and untrapped if E < $-, where T is the area1 radius. A central singularity is 
spatial and trapped if E > 0, and temporal and untrapped if E < 0. On an untrapped sphere, E 
is nondecreasing in any outgoing spatial or null direction, assuming the dominant energy condition, 
It follows that E 2 0 on an untrapped spatial hypersurface with a regular center, and E 2 $vg on 
an untrapped spatial hypersurface bounded at the inward end by a marginal sphere of radius ~0, 
All these inequalities extend to the asymptotic energies, recovering the Bondi-Sachs energy loss and 
the positivity of the asymptotic energies, as well as proving the conjectured Penrose inequality for 
black or white holes. Implications for the cosmic censorship hypothesis and for general definitions 
of gravitational energy are discussed. 

PACS number(s): 04.70.Bw, 04.20.Dw, 04.20.Ha, 04.25.N~ 
I. INTRODUCTION 

A massive source produces a gravitational field which 
has energy. In relativity theory, the equivalence of mass 
and energy means that it is only the combined energy 
which may be measured at a distance. Moreover, the 
nonlinearity of the gravitational field means that the ma- 
terial (or passive) mass and its gravitational and kinetic 
energy combine in a nonlinear, nonlocal way to produce 
the effective (or active) energy. In spherical symmetry, 
in vacuo, this effective energy is just the Schwarzschild 
energy. In general, there is no agreed definition of this 
energy, except at infinity in an asymptotically flat space- 
time, where one has the Arowitt-Deser-Mimer (ADM) 
[l] energy EADM at spatial infinity and the Bondi-Sachs 
(BS) [2,3] energy EBS at null infinity. One would there- 
fore like a definition of energy which reduces to these 
asymptotic energies appropriately. Also, given the above 
physical motivation, one would like the energy to yield 
the Newtonian mass in the Newtonian limit, with the 
highest-order correction yielding the Newtonian energy. 
Similarly, One would like the energy to yield the correct 
energies of test particles in the Newtonian and special- 
relativistic limits. Remarkably, such an energy does exist 
in spherical symmetry: the Misner-Sharp [4] energy E. 

‘Electronic address: 
hayward~murasaki.scphys.kyoto-u.acjp 
5~2821/96/53~41/1938~121/$06.W 53 
Moreover, E is intimately related to the characteristic 
strong-field gravitational phenomena, namely black and 
white holes and singularities. 

This work lists various key properties of the energy. 
The main new results, apart from the Newtonian, test- 
particle, and special-relativistic limits, axe a monotonic- 
ity property of E which leads to a positivity property 
and a lower bound for E in terms of the area of a black 
or white hole, the so-called isoperimetric inequality [5]. 
Here, black and white holes are defined by marginal sm- 
faces of certain types, as explained later, or in [6] or 171. 
These properties of E extend to the asymptotic ener- 
gies, in particular establishing the isoperimetric inequal- 
ity for EADM, as conjectured by Penrose [5], and for Ess. 
Known results are also reviewed, partly because some are 
prerequisites for the newer results, and partly because the 
existing literature on the subject is somewhat dispersed, 
so that it is not always appreciated that E enjoys quite 
so many desirable properties. 

In Sec. II, E is defined geometrically and shown to 
have various purely geometrical properties related to 
trapped and marginal surfaces, central singularities, and 
the asymptotic energies. In Sec. III, various dynami- 
cal properties are derived assuming the dominant en- 
ergy condition, including the monotonicity, positivity, 
and area-bound properties. A discussion of implications 
for the cosmic censorship hypothesis is also given there. 
In Sec. IV, the geometry is decomposed with respect to 
spatial hypersurfaces and the behavior of E in the Newto- 
nian limit is found. In Sec. V, the energy of test particles 
as determined by E is discussed, including the Newtonian 
and special-relativistic limits. The Conclusion discusses 
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the implications for more general suggestions for gravi- 
tational energy. The Appendices concern (A) Newtonian 
theory, (B) the identity of E as a charge associated with 
a conserved current, and (C) energy momentum. 

Since the whole work is concerned with spherical sym- 
metry, this case will be assumed implicitly in the Propo- 
sitions, without repeated qualification. Similarly, all geo- 
metrical objects mentioned will be assumed to respect the 
spherical symmetry. All arguments will be local, except 
to note implications for conformal infinity, if it exists. 

II. GEOMETRICAL PROPERTIES 

The line element may be written locally in double-null 
form as 

ds= = r2dC12 - 2e-f@+dc- , (1) 

where da= refers to the unit sphere and T and f are func- 
tions of the null coordinates ([+,[-). This double-null 
form is natural in the sense that each symmetric sphere 
has two preferred normal directions, the null directions 
8/L@. One may also use one spatial and one temporal 
direction, as in Sec. IV, but there is no unique choice of 
such directions, which makes it more difficult to check 
coordinate invariance. In double-null form, the remain- 
ing coordinate &edom consists simply of the diffeomor- 
phisUlS 

5* I-+ s^*ct*, . (2) 

The geometry is given by the metric (1) mod& the null 
rescalings (2). Note that r is a geometrical invariant but 
that f is not. The area of a symmetric sphere is 4?r?, so 
that T is the area1 radius, and will simply be called the 
radius. One may take T > 0, with T = 0 being discussed 
shortly. 

The space-time will be assumed time-orientable, and 
a/&* will be assumed future-pointing. The expansions 
may be defined by 

e+ = 2r-1a+T , (3) 

where 0, denotes the coordinate derivative along t*. 
The expansions measure whether the light rays normal 
to a sphere are diverging (6’ > 0) or converging (!3 < 0), 
or equivalently, whether the area of the spheres is in- 
creasing or decreasing in the null directions. Note that 
the signs of 6’~ are geometrical invariants, but their ac- 
tual values are not. An invariant combination is efe+e-, 
or equivalently g-‘(dr, dr) = -$ef?e+e-, where g is 
the space-time metric. Indeed, the only invariants of 
the metric and its first derivatives are functions of T and 
ef0+6’-. The latter invariant has an important geomet- 
rical and physical meaning: a metric sphere is said to be 
(i) trapped if 0+B- > 0, (ii) untrapped if B+B- < 0, and 
(iii) marginal if 8+6’- = 0. [Equivalently, if g-‘(dy) is 
temporal, spatial, or null, respectively.] This terminol- 
ogy for surfaces will be extended to hypersurfaces and 
space-time regions. If ef0+0- is a function with nonvan- 
ishing derivative, the space-time is divided into trapped 
and untrapped regions, separated by marginal hypersur- 
faces. The following subdivisions may be made. 

(i) A trapped sphere is future if B+ < 0 and past if 
B* > 0 [6,7]. [Equivalently, if g-‘(dy) is future-temporal 
or past-temporal, respectively.] Future and past trapped 
spheres occur in black and white holes, respectively, and 
also in cosmological models. 

(ii) On an untrapped sphere, a spatial or null normal 
vector t is outgoing if z(dr) > 0 and ingoing if z(dr) < 0. 

Equivalently, fixing the orientation locally by 0+ > 0 and 
e- < 0, z is outgoing if g(z, 8,) > 0 or g(z,&) < 0 and 
ingoing if g(z, 8,) < 0 or g(z, a-) > 0 [SI. In particular, 
8, and & are, respectively, the outgoing and ingoing 
null normal vectors. It is easily checked that the area is 
increasing in any outgoing spatial or null direction, and 
decreasing in any ingoing spatial or null direction. 

(iii) A marginal sphere with B+ = 0 is fatwe if /I- < 0, 
past if B- > 0, biykrcating if 0- = 0, outer if 8.53, < 0, 
inner if d-0+ > 0, and degenerate if a-B+ = 0 [6,7]. 
The closure of a hyperswface foliated by future or past, 
outer or inner marginal spheres is called a (nondegen- 
erate) trapping horizon [6,7]. Outer trapping horizons 
possess various easily proven properties which are often 
intuitively ascribed to black or white holes, including con- 
finement of observers and analogues of the zeroth, first, 
and second laws of thermodynamics [6-91. Inner trap- 
ping horizons include cosmological horizons as well as 
the possible inner boundaries of black and white holes. 
In this work, future (past) outer trapping horizons will 
be taken as the definition of black (white) holes. This 
enables the discussion of black holes in general space- 
times, not just those which are asymptotically flat. In 
particular, there will be no discussion of event horizons 
or apparent horizons, which are defined in asymptotically 
flat space-times only [lO,ll]. The trapping horizon is a 
more useful concept because it is sufiiciently general, is 
defined quasilocally, and has the properties mentioned 
above. 

The Misner-Sharp spherically symmetric gravitational 
energy, or simply the energy, may be defined in units 
G=lby 

E = $[l - g-‘(dy, dr)] = +T + efm9+,&, 

= ir + +f?e+e- . (4) 

The form actually given by Misner and Sharp is derived 
in Sec. IV. Note that E is an invariant. Indeed, the only 
invariants of the metric and its first derivatives are func- 
tions of T and E, as explained above. This makes r and E 
natural variables to use, as has been rediscovered many 
times by different authors. It transpires that remarkably 
many key geometrical properties of spherically symmet- 
ric space-times are controlled by T and E. 

Proposition 1. %pping. A metric sphere is trapped if 
and only if E > ,$r, marginal if and only if E = +r, and 
untrapped if and only if E < fr. 

Proof By definition. q 
This property is mathematically trivial given the defi- 

nition in the above form, but is physically important be- 
cause it shows that the ratio E/T controls the formation 
of black and white holes, and trapped spheres generally. 



1940 SEAN A. HAYWARD 22 
Note that the material (or passive) mass does not have 
this property; the sharpest relations [12] between trapped 
spheres and the material mass fall short of necessary and 
sufficient conditions. In other words, it is not the mate- 
rial mass which directly controls the formation of black 
and white holes, but the effective energy E. 

Consider the two-dimensional space-time obtained by 
taking the quotient by the spheres of symmetry. If T = 0 
coincides with a boundary of the quotient space-time, 
then it will be called a center. A central point p will 
be called regular if g-‘(dr,dr) - 1 = O(?) as p is ap- 
proached, and singular otherwise. Then E = O(?) at a 
regular center. A singular center will also be referred to 
as a centml singularity. 

A point in the center will be said to be trapped if sur- 
rounded by a neighborhood of trapped spheres, and un- 
trapped if surrounded by a neighborhood of untrapped 
spheres. A regular center is untrapped, but central sin- 
gularities may be either trapped, as in the positive-energy 
Schwareschild solution, or untrapped, as in the negative- 
energy Schwarzschild solution. Whether singularities are 
trapped or untrapped is relevant to Penrose’s cosmic cen- 
sorship hypothesis [13,14]. Indeed, one might formulate 
a local version of weak cosmic censorship [13] in terms 
of whether singularities are trapped. Directly relevant to 
strong cosmic censorship [14] is whether the singularity 
is causal or spatial, defined with respect to the quotient 
metric. It turns out that both features are controlled by 
E [15,16]. 

Proposition 2. Central singularities. For a central sin- 
gularity at p, if E 2 Eo in a neighborhood of p for some 
constant EO > 0 (E 5 Ea 5 0) then (i) p is trapped 
(respectively untrapped) and (ii) if the singularity is dif- 
ferentiable at p, then it is spatial (respectively temporal). 

Proof Consider the case E 2 Eo > 0 (the case 
E < Eo 5 0 being similar). (i) In the neighborhood, 
+f?O+8- = 2E -T > 2Eo - 1‘ > 0 for sticiently small - 
T < 2Eo. So B+B- > 0 in a neighborhood of p, i.e., this 
neighborhood consists of trapped spheres. (ii) The tan- 
gent vector t = alac to the singularity is a linear com- 
bination t = pa+ - a& of the null normals a+, so that 
0 = ar/ac = pa+r - cua-r. But a+&r = pe+e- > 0 
in the above neighborhood, so a@ > 0, which means that 
t is spatial. 0 

This reflects a physically important idea: there is a 
connection between the sign of the energy, the causal 
nature of singularities, and whether they are trapped. 
Combined with the property E 2 0, which will be de- 
rived under certain assumptions in proposition 6, this 
result supports the cosmic censorship hypothesis. It falls 
short of a proof of cosmic censorship for two reasons. 
First, it is possible to have E < 0 when the assumptions 
of proposition 6 do ndt hold, as will be discussed at the 
end of Sec. III. Second, there is the case where El, = 0, in 
which case p could be a spatial, null, or temporal singu- 
larity, or a regular center. Specifically, if 2E/rl, > 1 the 
singularity is spatial and trapped, and if 2E/rl, < 1 the 
singularity is temporal and untrapped. If 2E/rl, = 1, 
one must look at higher orders, (2E/r - 1)/r, and so on. 
Exactly which possibility occurs seems to depend on the 
matter field. According to the analysis of Christodoulou 
[17], for a massless scalar field it is possible to obtain 
causal central singularities, but such configurations are 
nongeneric with respect to initial data. Conversely, for 
pure radiation (or null dust), a sufficiently weak wave 
traveling into an initially flat space-time necessarily cre- 
ates a null singularity which is at least locally visible 
(18,191. Such visible null singularities area also possible 
for dust [ZO-221. 

Despite such material-dependent differences, one use- 
ful fact remains: if E 1 0, a central singularity which is 
either causal or untrapped must have vanishing energy, 
El, = 0. (For instance, the analysis of Joshi and Dwivedi 
[23] concerrx+ such singularities.) This at least constrains 
counterexamples to cosmic censorship. Moreover, one 
might expect that zero-energy singularities are unstable 
or nongeneric in some sense. Similarly, it has been sug- 
gested [24] that zero-energy singularities are nongravi- 
tational and do not conflict with the spirit of the cos- 
mic censorship hypothesis. Beyond spherical symmetry, 
there is also some evidence for a weakened form of cos- 
mic censorship in which positive-energy singularities are 
censored [25]. 

Proposition 3. Asymptotics. In an asymptotically flat 
space-time, E coincides with the Bondi-Sachs (scalar) 
energy &s at null infinity, and with the Amowitt-Deser- 
Misner (scalar) energy EADM at spatial infinity. 

Proof By definition [2,3,11,X,26,27] 

ES6 = &Ill & 
SI 

& f4R+efe+e-), (5) 

where ‘R is the F&ci scalar, /I the area form, and A = 
1~ the area of a family of affinely parametrized surfaces 
lying in a null hypersurface approaching Z*;. In spherical 
symmetry, S fi = 47rr2 and R = 2/ra, so that 

Ess = lili* E (‘9 

for a null curve y approaching p E Z*. Similarly, by 
definition [1,15,28]: 

472 + efe+e- 

-4ef (g+,o-)) (7) 

for a family of surfaces parametrized by area radius T = 
m lying in a spatial hypersurface approaching i”, 
where o* are the shears corresponding to the expansions 
B*. In spherical symmetry, o+ = 0, so that 

EADM = tag E (8) 

for a spatial curve y approaching p = i”. 0 
The result shows that the asymptotic energies (in 

spherical symmetry) are just special cases of E, defined at 
infinity in an asymptotically flat space-time. It is usual to 
interpret the asymptotic energies as measuring the total 
energy (or mass, see Appendix C) of an asymptotically 
flat space-time, whereas E provides a more general def- 
inition of energy which applies locally as well as asymp- 
totically. 
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III. DYNAMICAL PROPERTIES 

Having derived various purely geometrical properties 
of E, consider now applying the Einstein equations. The 
most general form of the Einstein tensor in spherical sym- 
metry determines the most general material stress-energy 
tensor T, given by the line element 

pr’d@ + T++(@+)’ + T-w@-)’ + 2T+.&+4- (9) 

The Einstein equations are 

a+a+r+a,fa,r= -4?rr~**, (104 

Ta+a-r + a+ra-r + +-f = 4&~+- , Wb) 

Pa+a- f + 2a+?ah +,-f = 8d(~+- + e-fp) , 

PW 

recalling the units G = 1. The variation of E is deter- 
mined by these equations as 

a*E = 4xefP(T+-a*r - T**aq) 

= 2nef?J(T+-e* - T**B,) (11) 

This can also be written in a manifestly covariant form 
[29,30]. 

Proposition 4. Vacuum. In vacuo, E is constant and 
the solution is locally isometric to the Schwarzschild so- 
lution with energy E. 

Proof. In vacuo, a+E = 0, so E is constant. The 
vacuum Einstein equations are 

a+(efa*?) = 0 , 

a+aer = -xe-f,-2 , 

w4 

WbI 

a+a-f= -2xf@. (124 

If E # 0, a straightforward calculation yields a+a- (f - 
lnr - 7/2E) = 0, with general solution f = lnr + r/2E + 
f+ + f- for some functions f *([*) of integration. The 
rescaling freedom (2) corresponds to choice off l , so that 
one may fix coordinates such that 

ef = rer/=R /16E3 (13) 

Equations (12s) integrate to eta+, = $ for some func- 
tions q*([*) of integration. Differentiating using (12b), 
&,* = -1/4E, which integrates to q* = -5*/4E, iix- 
ing the zero. Thus 

F+<- = (1 - r/2E)bzE (14) 

which implicitly determines T (and hence f) its a function 
of tCEm. This is the Kruskal form of the Schwareschild 

solution with energy E, which can be put in static form 
in terms oft* = 2Eln(-.$*/SF) Similarly, if E = 0 then 
tlat space-time is recovered. 0 
Proof Fix the orientation of the untrapped sphere by 
0+ > 0 and 0- < 0. The variation formula (11) and dom- 
inant energy condition (20) yield a+E 2 0 and a-E 5 0, 
i.e., E is nondecreasing (nonincreasing) in the outgoing 
(ingoing) null direction. If z = a/a< is an outgoing spa- 
tial vector, then z = pa+ - cra- with a > 0 and p > 0, 
which yields aE/aC = pa+E - cua-E 1 0. Similarly for 

. 
an Ingoing spatial direction. U 

The proof illustrates the economy of the double-null 
approach: monotonicity in any spatial direction follows 

This is a proof of Birkhoff’s theorem: a vwuum, spher- 
ically symmetric space-time must be the Schwxzschild 
solution. The proof improves on the usual one [lo] in 
that a global coordinate chart is obtained automatically, 
so that one does not have to subsequently join the T > 2E 
and T < 2E Schwarzschild charts. 

The Schwarzschild solution provides an example of 
propositions l-3. For the case E > 0 there are trapped 
spatial singularities, while for the case E < 0 there is an 
untrapped temporal singularity. In the former case, there 
are trapped spheres in the black-hole and white-hole re- 
gions E > ;T, and the event horizons coincide with the 

trapping horizons E = ?g. 
Consider now the nonvacuum cases. In order to ob- 

tain results which are as general as possible, the type of 
matter will not be fixed but energy conditions will be 
imposed instead. Three useful energy conditions are as 
follows [lO,ll]. The null energy (or convergence) condi- 
tion (NEC) states that a “null observer” measures non- 
negative energy: 

NEC: g(u,u)=O+T(zl,u)>O. (15) 

The weak energy condition (WEC) states that a causal 
observer measures non-negative energy: 

WEC : g(u,zl) 5 0 =+. T(u,u) 2 0. (1’3) 

The dominant energy condition (DEC) states that a 
future-causal observer measures future-causal momen- 
tum: 

DEC: i&,4 5 O,g(u,v) 5 O,g(u,v) 5 0 

aT(u,w)>O. (17) 

Clearly 

DEC =$ WEC =+ NEC . (18) 

All this applies to general space-times. In the spherically 
symmetric case, 

and 

NEC+T+*;O 09) 

DEC=+T*+>O,T+-20. (20) 

Proposition 5. Monotonicity. If the dominant energy 
condition holds on an untrapped sphere, E is nondecreas- 
ing (nonincreasing) in any outgoing (ingoing) spatial or 
null direction. 
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immediately from monotonicity in the null directions. 
This monotonicity property has the physical interpreta- 
tion that the energy contained in a sphere is nondecreas- 
ing as the sphere is perturbed outwards. Note that the 
result is for untrapped spheres only, though a similar re- 
sult for marginal spheres will be given in proposition 8. 
There is no possibility of a similarly general monotonic- 
ity result for trapped spheres, since they do not have a 
locally preferred orientation. 

Proposition SA. Asymptotic monotonicity. If the dom- 
inant energy condition holds at Z+ (Z-), then EBS is 
nonincreasing (nondecreasing) to the future. 

PrOOf By propositions 3 and 5, a-E,, = 
a-(lim,,,E) = lim,,p - C? E 5 0. Here commutativ- 
ity follows from the asymptotic expansions Ill], as in [SI. 
0 

At Z+, this is the Bondi-Sachs energy-loss property, 
which is usually interpreted as describing a loss of energy 
due to outgoing radiation. Similarly, the more general 
monotonicity property of E may be interpreted as being 
due to ingoing and outgoing radiation. 

Positivity of E is already known in some circumstances 
[30] but can be established directly and quite generally 
from the monotonicity property. Note first that E may 
be negative, as in the negative-energy Schwarzschild so- 
lution. On the other hand, proposition 1 shows that E is 
automatically positive for trapped and marginal spheres, 
so that it is only for untrapped spheres that E might be 
negative. Positivity on untrapped spheres is established 
below in two physically relevant contexts, namely where 
there is a regular center and where there is a black or 
white hole. 

Proposition 6. Positiuity. If the dominant energy con- 
dition holds on an untrapped spatial hypersurface with 
regular center, then E 2 0 on the hypersurface. 

Pmof By proposition 5, since E = 0 at a regular 
center. 0 center. 0 

Moreover, denoting the tangent vector to the hypersw- Moreover, denoting the tangent vector to the hypersw- 
face as before by a/a< = pa+ - aa-, with C = 0 being face as before by a/ac = pa+ - ola-, with c = 0 being 
the center, one can write explicitly the center, one can write explicitly 

J 
I 

E(C) = 47r ef,z{(pT+- + ax)a+T 
II 

+T+++PT++)~-TDC. C-21) 

The positivity property has the physical interpretation 
that under the stated circumstances, total energy cannot 
be negative. This is not immediately obvious even given 
an energy condition on the matter, since gravitational 
potential energy tends to be negative. The result shows 
that the total energy E, including potential energy, can- 
not be negative. 

Proposition 7. Area inequality. If the dominant en- 
ergy condition holds on an untrapped spatial hypersur- 
face bounded at the inward end by a marginal sphere of 
radius Q, then E 2, ir0 on the hypersurface. 

Proof By proposltlons 1 and 5. 0 
Since Q > 0, this is a stronger result than mere pos- 

itivity of E: there is a positive lower bound on E. The 
physical interpretation is that if there is a black or white 
hole of area 4?rr& then the energy measured outside the 
hole is at least fro. As for the positivity result, one can 
write an explicit formula 

J 
I 

E(C) = $0 + 47~ .dP{(pT+- + aT--)a+r 

-+~+++~~++)a-~)d(, (22) 

where C = co is the marginal surface. 
Proposition 6A. Asymptotic positivity. If the dominant 

energy condition holds on a spatial hypersurface which 
has a regular center and extends to Z* (i”), then Ess > 
0 (Em,, > 0) there. 

Proof. If the hypersurface is untrapped, propositions 
3 and 6 suffice. Otherwise, the hyperswface contains 
an outermost marginal sphere, so propositions 3 and 7 
suffice. 0 

This combines the famous positive-energy theorems for 
the spherically symmetric case. Note that the energy 
can be negative if the above assumptions do not hold. 
For instance, the asymptotic energies are negative for 
the negative-energy Schwarzschild solution. 

Proposition 7A. Asymptotic area inequality. If the 
dominant energy condition holds on a spatial hypersur- 
face which contains an outermost marginal sphere df ra- 
dius rg and which extends to Z* (i”), then EBS 2 fro 

(EADM 2 $0) there. 
Proof. By propositions 3 and 7. 0 
The result is the spherically symmetric case of the 

isoperimetric inequality conjectured by Penrose [5], who 
argued that it was required by the cosmic censorship hy- 
pothesis. Establishing the inequality even in spherical 
symmetry appears to be new. It was recently established 
for maximal hypersurfaces in spherical symmetry [31]. 

The properties 5A, 6A, and 7A of the asymptotic ener- 
gies are of interest in their own right. Nevertheless, they 
are just special cases of properties of E. If these proper- 
ties of the asymptotic energies are accorded their usual 
conceptual and physical importance, then the more gen- 
eral properties of E are of even greater importance. The 
idealization of asymptotic flatness is no longer necessary 
for the formulation of such ideas about energy. 

Proposition 8. Second law [6]. If the null energy con- 
dition holds on a future (past) outer trapping horizon, or 
on a past (future) inner trapping horizon, then E = ir 
is nondecreasing (nonincreasing) along the horizon. 

Proof. Denote the tangent to the horizon by a/& = 
pa+ - aa- and ti the orientations by 0+ = 0 and p > 0 
on the horizon. Then 0 = ae+jac = pa+s, - de+ 
yields 

aria< = -cua-r = -prii-a+e+/2a-o+ 

The focusing equation (lOa) and null energy condition 
(19) yield a+O+ 5 0, and the signs of 0- and a-0, are 
given by the definition of future or past, outer or inner 
trapping horizons. Thus ar/a< 2 0 for future outer or 
past inner trapping horizons, and ar/a< 5 0 for past 
outer or future inner trapping horizons. 0 

Propositions 5-8 may be loosely summarized as fol- 
lows. If the dominant energy condition holds, E is non- 
decreasing in outgoing directions, defined for untrapped 
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or marginal surfaces, including at conformal infinity if it 
exists. So in the untrapped region outside a regular cen- 
ter, E is non-negative, including at conformal infinity if 
it exists for the untrapped region. But E is also positive 
in a trapped region. Moreover, in the untrapped region 
outside a black or white hole (defined by outer marginal 
surfaces) of area 4nri, E 2 ir,,, including at conformal 
infinity if it exists for the untrapped region. 

Propositions 1-8 alone give a quite coherent picture of 
gravitational collapse, which may be further refined using 
related results [6-91. Recall first the expected picture ac- 
cording to the cosmic censorship hypothesis [13,14]. Here 
a center which is initially regular subsequently becomes 
singular, but in such a way that the singularity is gener- 
ically spatial and trapped. That is, a future trapping 
horizon forms before the singularity. More precisely, one 
expects the trapping horizon to intersect the center, typ- 
ically at the first singular po&’ The horizon develops 
outwards with nondecreasing E = 4~. Outside the hori- 
zon is an untrapped region in which 0 5 E < $7. Inside 

the horizon is a trapped region in which E > ir, which 
is expected to extend to the center T = 0 in such a way 
that E is generically positive there. This picture has been 
confirmed for the massless scalar field by Christodoulou 

P71. 
To what extent do the above results support this pic- 

ture? First, there is the connection of proposition 2 
between the causal nature of central singularities and 
whether they are trapped. Thus two aspects of cosmic 
censorship are linked. Second, both aspects are linked to 
the sign of the energy E, again a physically important 
connection. Third, there are the positivity properties of 
E, propositions 1, 6, and 7. Consider then a space-time 
with partially regular center, and the external region X 
of points connectable to the regular part of the centwby 
a nontemporal curve (respecting the spherical symme- 
try). As long as X remains untrapped, E is positive and 

no central singularities can form. If part of X is trapped, 
i.e., a trapping horizon forms, then inside the trapped 
region any central singularity must be either spatial or 
have zero energy. One expects that zero-energy singular- 
ities are nongeneric or unstable in some sense. The only 
other way that a nonspatial central singularity can form 
in X is if a second trapping horizon forms, separating 
the trapped region from another untrapped region. That 
is, the black or white hole must have an inner boundary. 
This is also possible, as the Reissner-Nordstrijm solution 
shows, but again such horizons are thought to be un- 
stable by the energy-inflation effect [32-341: for a test 
field on such a background, the perturbation in E typ- 
ically becomes unbounded at the horizon. This leaves 

‘This does not contradict the fact that, when using a family 
of spatial hypersurfaces developing in time, trapped surfaces 
are often first detected away from the center. This just de- 
pends on the choice of hypersurfaces; if the horizon is spatial, 
one may choose a spatial hypersurface to touch it anywhere. 
There is no unique first moment of trapped surface formation, 
except ip. a limiting sense at the center. 
the only other possibility for nonspatial central singu- 
larities as being outside X. Again this is possible: the 
center may simply become singular but remain causal, 
implying that E is no longer positive. There are such 
examples [17-241, but ,it is noteworthy that they have 
zero rather than negative E. This suggests that there 
may be some mechanism forbidding such formation of 
negative-energy singularities. As to the zero-energy sin- 
gularities, one might again expect them to be unstable in 
some sense. Both possibilities indicate the need to study 
the behavior of E as the center becomes singular. Finally, 
there is the possibility of noncentral singularities, such as 
shell-crossing singularities [35,36]. However, these have 
been found only for matter fields which admit similar sin- 
gularities as test fields on tlat space-time, and therefore 
may be dismissed as pathologxal matter models. 

To conclude: to find a convincing counterexample to 
cosmic censorship, i.e., the stable formation of a causal 
singularity, one needs to study the possibility of negative- 
energy singularities, the stability of zero-energy singular- 
ities, or the stability of inner horizons. It is noteworthy 
that E plays a crucial role in each case. The importance 
of energy for cosmic censorship seems clear. 

IV. SPATIAL HYPERSURFACES AND THE 
NEWTONIAN LIMIT 

Consider any spatial hypersnrface C. Set up coordi- 
nates (7, C) such that alac is tangent to C and a/& is 
orthogonal to a/ac, with 7 being proper time: 

da/ak aiao = 0 , (33=) 

g(a/aT,a/aT) = -I Wb) 

Define a function X by 

2 = daiac, am) (24) 

For any such coordinates (T,<), the rescaling freedom (2) 
can be used to fix <* such that 

diCf&(’ = dr f e’/=dC (25) 

The line element (1) transforms to 

ds2 = rzdC12 + exdC2 - d? , (26) 

where T and X are functions of (T,(). Denote @ = a~/& 
and p’ = alp/a<. Then the definition (4) of E can be 
rewritten as 

which is the form actually given by Misner and Sharp 141, 
with different notation. 

The Einstein equations may be transformed to these 
coordinates, but for the following results it suffices to 
lind the corresponding variation formulas for E, which 
are 
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E’ = 47rr2(T0~r’ -T&) , (284 

where 

(28’4 

Ta,, = T(a/ar, a/ar) , (294 

Pb) 

TII = W/X,a/W . PW 

Proposition 9. Small spheres. Near a regular center 
with tangent a/&, if To0 = O(1) and T,, = O(1) then 

E = $rr~~oo~~~o + O(T”) . (30) 

Proof Near a regular center 1‘ = 0, T’ = O(1). If 
a/& is tangent to the center, then 1: = O(T). Thus 
E’ = 4?r&‘& + O(?), which integrates along the hy- 
persurface C to the above result. 0 

In other words, the leading term in E is the product 
of volume $1rr3 and density Too, as would be expected 
physically. 

Misner and Sharp [4] derived a useful formula for E 
which will be derived below and used to find the Newto- 
nian limit. Mimer and Sharp considered a perfect fluid 
with energy density p, pressure p, and velocity a/a?: 

T= (p+p)d+@d?+pg, (3W 

g(a/at,a/ai) = -I Pb) 

Adapt the (7, C) coordinates to the fluid by taking 7 = +. 
Then the variation formulas (28) for E reduce to 

E’ = 4dpr’ , (32a) 

I3 = -4?rr2p? . PbI 

The second equation (32b) expresses the rate ti of work 
done by the force 47rr’p due to the pressure. In the ab- 
sence of pressure, E is conserved, E = 0. The tist equa- 
tion (32a) allows E to be expressed as an integral of p 
over C. Specifically, if C has a regular center C = 0, (32a) 
integrates to 

(33) 

Since the volume form *I of C is given by (26) as 

4?rw+g (34) 

this may be rewritten as 

E= J *pc-q.’ = 
x J ( c 

*p l+i2-T 2E u2 , (35) 
> 
where the second expression follows from (27). Compar- 
ing with the material (or passive) mass 

M=k*Too=kv (36) 

it can be .seen that the integrand for E differs from that 
of M by a factor which Misner and Sharp interpreted 
as being due to kinetic and potential energy. This can 
be made precise in the Newtonian limit in terms of the 
kinetic energy K and gravitational potential energy V, 
defined as explained in Appendix A by 

K= J y2, (3% 

vs- ,Mp. J x T 
F&tom of the speed of light c may be introduced on 
dimensional grounds by the formal replacements 7 H 

m> (r,*l) * (~>*l), (P>W * c-~(P>W, (P>KV,E) ++ 
&(p, K, V, JZ), assumed in the remainder of this section. 
These factors are determined simply by the desired inter- 
pretation of the various quantities as time, length, mass, 
etc. 

Proposition 10. Newtonian limit. For a perfect fluid 
on a spatial hypersurface C with regular center: if 

u’d 7 I * T i P) = o(i) as c + oo, then (M,K,v) = O(I) 

E=Mc~+K+V+O(C-~). ,(33) 

Additionally, if p = O(1) then Newtonian conservation 
of mass is recovered: 

A2 = o(c-“) (3% 

Pmof. Inserting the factors of c, (36) and (37) take the 
same form, so that (M, K,V) = O(l), while (35) takes 
the form 

E = cz J ( 3 2E I’= 
*p 1+--- 

x c2 c% > 
. (40) 

Thus E = c2 J, *p+O(l) = Mc’+O(l) to leading order. 
Expanding the square root, 

E=Mc’+ J I: *p(+i’ -E/TC’) + O(c-‘) 

=Mc’+K+V+O(c-‘). 

Similarly, (32b) expands to -4nr’pi = tic2 + O(1). 0 
In words, E yields the Newtonian mass M to leading 

order and the Newtonian kinetic energy K and gravita- 
tional potential energy V to next highest order. This 
illustrates how E measures the combined energy includ- 
ing contributions from mass, kinetic energy, and potential 
energy. Note also that the quantities M, K, and V are 
all defined in the full theory rather than just the Newto- 
nian limit. Of these, M may always be interpreted as the 
material (or passive) mass, whereas the interpretation of 
K and V as kinetic and potential energy is reliable in the 
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Newtonian limit only. In general, E cannot be expressed 
as a sum of individually meaningful energies, as the form 
(35) indicates. It is only the combined energy E which 
is physically meaningful in general. 

Incidentally, the above considerations provide one rea- 
son for referring to E as an energy rather than a mass, 
though the latter is more common. Although mass and 
energy are formally equivalent in relativity, the two words 
carry connotations inherited from their status as distinct 
concepts in Newtonian theory. Specifically, mass is a 
measure of matter whereas energy exists in many differ- 
ent forms. So it is reasonable to describe M as mass, since 
it is simply the integral (36) of the material density, and 
to describe E as energy, since it contains contributions 
from kinetic and potential energy. 

Under the assumptions of proposition 10, the inverse 
metric is Euclidean to leading order, g-’ = 6-‘+O(c?), 
where the flat metric 6 is given by r2df12 + dr’, so that 
T is a standard radial coordinate. Thus the 5at space of 
Newtonian theory is recovered. 

Note that it has not been necessary to introduce the 
usual coordinate conditions 1371 required to obtain an in- 
ertial frame in which Newton’s laws hold, or to obtain 
Newtonian solutions from solutions to the Einstein equa- 
tions [38]. In contrast, the Newtonian behavior of E may 
be obtained simply by expanding a formula for E in pow- 
ers of c. In this sense, the recovery of Newtonian mass 
and energy from E is more robust than the complete re- 
covery of Newton’s gravitational theory from Einstein’s 
theory. This could be interpreted as meaning that energy 
is a fundamental concept which connects Newtonian the- 
ory with relativity. Certainly this is consistent with the 
key role that the equivalence of mass and energy played 
in the historical development of relativity. 

V. TEST PARTICLES AND THE 
SPECIAL-RELATIVISTIC LIMIT 

The energy of a spherical shell of test particles may be 
defined as the variation in E induced by the perturbation 
of test particles, as suggested by Hiji&zk [39]. Denote the 
perturbations of (T, E, M) by (7, E, M). In terms of the 
constant rest mass rn and velocity a/a+ of the shell, the 
stress-energy tensor is given analogously to (31) by 

T=mbdF@di, (41) 

where S is the Dirac distribution with support at the 
intersection 5’ of the shell with a spatial hypersurface C: 

Evaluation on S is clear in context and will be omitted 
henceforth. Take C to be orthogonal to the shell and 
adopt the notation of Sec. IV for spatial hypersurfaces, 
identifying 7 = +. Then the H&j&k energy E is defined 
by the perturbation of (11) or (28): 

E’ = 4?rr~(7&r’ - T&i) , (43a) 
i = 47r?-%~(%lT’ - 7ili) , 

and M by (36), 

(43b) 

M= J *Too x 
Proposition 11. Test particles. For a spherical shell 

of test particles, (i) the perturbations in M and E are, 
respectively, 

M=m, (45a) 

E=hll l+fZ-F 
( > 

l/2 
( (4W 

where the sign is that of T’. Both are conserved: 

if=0 (46a) 

i=o. (46b) 

(ii) In the Newtonian limit, with assumptions as for 
proposition 10, 

f& = rn2 + fmP - y + o(c-2) (47) 

Proof. (i) Since 700 = rn6 and 701 7 711 = 0, (44) 
reads M = Jxw& = rn, (43b) reads E = 0, and (43a) 

reads E’ = 4nr%‘mb, which integrates using (27) and 
(34) to 

E = f J w&(1 + i2 - 2E/r)‘/’ 

= *rn;, + i= - 2E/r)‘f= 

(ii) Inserting the factors of c, 

*& = rn2 
( 

+2 2E u= 
1+2-x > (43) 

which expands as above. 0 
In words: the perturbation in M is just the rest mass 

rn, while the perturbation in E contains contributions 
&rn energy, in particular the correct Newtonian expres- 
sions for kinetic energy $& and gravitational poten- 
tial energy -mM/r. Combined with the fact that & is 
conserved as the shell evolves, this co&ms the physical 
interpretation of & as the active energy of the shell of test 
particles. 

Conservation (46b) of E, written explicitly using (45b), 
is equivalent to the equation of motion of the test parti- 
cles: 

7lLE 
rni:=--. 

T2 

This has the same form as the Newtonian equation of 
motion of test particles in a central gravitational field, 
with E playing the role of the active gravitational energy 
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of the source. Again this confirms the physical interpre- 
tation of E as the active gravitational energy. 

Proposition 12. Special-relativistic limit. In flat space- 
time, the perturbation in E for a spherical shell of test 
particles is 

.q&O = fm(1 f i2)“2 (50) 

Proof By proposition 11. 0 
This has been dignified as a separate proposition be- 

cause it is important that E yields the correct result in 
the special-relativistic limit, namely that E reduces to 
the standard expression (50) for the energy of test parti- 
cles in special relativity. In particular, & is not just the 
rest mass. This is noteworthy since the opposite is some- 
times claimed, namely that E corresponds to the rest 
mass rather than energy of a test particle in flat space- 
time. This misunderstanding seems to be the reason, 
other than apathy, that E is usually described as mass 
rather than energy. On the contrary, using the terminol- 
ogy standard in both special relativity and Newtonian 
theory, E and E are energies and rn and M masses. In 
the same sense, the following are all energies rather than 
masses: quasilocal energies which agree with E in spher- 
ical symmetry, such as those of Penrose and Hawking 
[15,40-461; the asymptotic (scalar) energies EADM and 
EBS; the Schwarzschild energy. 

The mistaken claim that E corresponds to rn rather 
than E is sometimes ascribed to the fact that, in flat 
space-time, E depends on the choice of frame (or ob- 
server) whereas rn is frame independent, like E. But 
except in flat space-time, E is also frame independent: 
the velocity 1: is relative to the preferred frame deter- 
mined by T, not the frame of some observer. Only in Aat 
space-time is T not unique, due to the Lorentz symme- 
try. It is this degeneracy of 5at space-time that renders E 
frame dependent in that special case. Frame dependence 
is not a general feature of energy, as discussed further in 
Appendix C. For instance, Newtonian gravitational po- 
tential energy is &me independent. 

VI. REMARKS: GRAVITATIONAL ENERGY IN 
GENERAL 

The Misner-Sharp energy E has an impressi-az vari- 
ety of useful properties, ranging from the asymptotically 
flat, vacuum, small-sphere, Newtonian, test-particle, and 
special-relativistic limits to the black holes and singular- 
ities characteristic of strong gravitational fields. These 
properties have an exact geometrical character and are 
simultaneously of direct physical relevance. In particular, 
E has quite general monotonicity and positivity proper- 
ties, determines the causal nature of central singularities, 
and determines when trapping occurs. This makes E use- 
ful in many different applications, particularly regarding 
black holes and singularities. Indeed, E has been redis- 
covered by many authors and is often crucial to their 
analyses [16-22,24,29,30,32-34,36,39]. In particular, E 
arises as the charge associated with a conserved current, 
as explained in Appendix B, and can be derived from 
the “2+2” Hamiltonian [15]. One might also speculate 
that the radius T and energy E are relevant in quantum 
theory [47]. Certainly E plays a key role in the vacuum 
case, according to the analysis of Kuchai: [48]. 

The conceptual and physical importance of E in spher- 
ical symmetry encourages the search for a more general 
definition of gravitational energy. It is widely accepted 
that such a general definition should reduce to E in spher- 
ical symmetry, as occurs for definitions in the style of 
Penrose 140-441 or Hawking [15,45,46]. Exceptions in- 
clude the Brown-York energy [49], which gives a value 
different from E for the Schwarzschild solution, and the 
Bartnik energy 1501, which is undefined for trapped sur- 
faces. Whether such definitions have some other physical 
meaning is unclear, but they do not represent gravita- 
tional energy in the sense of propositions 1-12. 

Familiarity with the spherically symmetric case also 
yields other guidelines to more general definitions. First, 
it is noteworthy that E is defined on spheres rather than 
hypersurfaces. One can write an implicit expression for 
E involving an integral (35) over a hypersurface with reg- 
ular center, if such a hypersurface exists, but the general 
definition (4) or (27) is a function of spheres only. This 
is quite different from the definition of mass M as an in- 
tegral (36) over a hypersurface. So rather than looking 
for a definition of gravitational energy as a hypersurface 
integral, as would be natural in Newtonian theory, one 
should look for a surface integral. Specifically, one wants 
an invariant of the intrinsic and extrinsic curvature of an 
embedded surface, which following Penrose [40] may be 
called quasilocal energy. 

Another guideline to more general definitions is that 
one would like analogous positivity and monotonicity 
properties, and analogous relations to black holes and 
possibly to singularities which are central in Some sense. 
The Hawking energy [45] takes the value m on a 
spherical marginal surface of area A, and so automat- 
ically generalizes propositions 1 and 8. The Hawking 
energy also has the same small-sphere behavior as in 
proposition 9 1511. Generalizations of the positivity and 
monotonicity propositions 5-7 for the Hawking energy 
have also been found 181. A warning should be sounded 
that such positivity and monotonicity theorems involve 
certain assumptions without which the conclusions are 
invalid. Even the Schwarzschild energy may be negative. 
Thus there is little point in searching for a definition of 
gravitational energy which is always non-negative by def- 
inition, as is sometimes suggested [50]. 

The final lesson of the spherically symmetric case is 
that a general definition of gravitational energy should 
give the correct results in various limits: the asymp- 
totically flat, vacuum, small-sphere, Newtonian, test- 
particle, and special-relativistic limits. In particular, one 
weld like to obtain the Newtonian mass to tist order 
in c, with corrections interpretable as Newtonian ener- 
gies. This is possible for the Penrose energy in certain 
cases [52]. This brings the discussion back to the physical 
meaning of gravitational energy as expressed in the In- 
troduction: an effective energy which is measurable on a 
surface and which is produced by the nonlocal, nonlinear 
interaction of the mass of sources with the energy of the 
consequent gravitational field. 
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APPENDIX A: NEWTONIAN GRAVITATIONAL 
ENERGY 

Recall the dynamical role of the kinetic energy K and 
potential energy V (37) in Newtonian gravity, taking the 
case of dust, p = 0. The Lagrangian L = K - V deter- 
mines the Euler-Lagrange equation 

o=$($-g=J,.p(i+$) (Al) 

regarding M (or equivalently *p) as an independent vari- 
able which is conserved, ti = 0. This yields Newton’s 
inverse-square law of gravitatiox2 

The Hamiltonian H = K + V is therefore conserved: 

&Jr./$+$) =o. (A3) 

It is remarkable that both conserved quantities with a 
clear physical meaning in Newtonian gravity, namely the 
mass M and the Hamiltonian energy H, are encoded in E 
via the expansion E = MC’ + H + O(c-“) of proposition 
10. 

There are two other expressions which are sometimes 
suggested as the potential energy of the Newtonian grav- 
itational field: namely, 

F=--& 
J 

*IVW 1 
I: 

(A4a) 

J WC+ *a/J, Wb) 
x 

where @ is the Newtonian potential. However, neither 
F nor W coincide with the potential energy V except at 
infinity, as follows. Integrating V by parts yields 

If=-$ -1 
I J 8Z 8?r z 

*!E. (A5) 

Similarly, rewriting W using the Poisson equation 

*An inverse-square law also exists in the Einstein theory for 
dust, with M replaced by E in (AZ). This reinforces the 
interpretation of E as an active energy. In this case, &l = 
fi = 0, so that Lagrangian and Hamiltonian formulations are 
possible with M replaced by E in the definition of V. 
VQ = 47rp C-46) 

and integrating by parts yields 

w = psv,qaz - .& s *IVW , (A7) 
x 

where n is the outgoing unit vector. The Poisson equa- 
tion integrates to VQ! = TIM/P, so that 

So V, F, and W all differ by boundary terms. In partic- 
ular, at finite radius, V and F differ unless M vanishes, 

while V and W differ unless M is constant. However, 
if the total mass lirn,,, M is finite and the arbitrary 
constant in CJ is fixed as usual by lirn,,, + = 0, then all 
three quantities coincide at infinity: 

W’) 

Thus all three expressions give the correct asymptotic 
energy. Nevertheless, at a finite radius, only V gives the 
correct potential energy in the Lagrangian or Hamilto- 
nian sense. Thus it is V rather than F or W that should 
occur in the Newtonian limit of a quasilocal energy, even 
though each would suffice for the asymptotic energy. 

APPENDIX B: CONSERVED CURRENTS AND 
CHARGES 

Kodama [53] showed that spherically symmetric space- 
times have a conserved current and defined an energy as 
the associated charge. Tbis energy is the Mimer-Sharp 
energy, as follows. Kodama introduced vectors k and j 
which may be defined, up to orientation, by 

and 

k = curlr (‘31) 

g(j) = -T(k) > !W 

where the curl refers to the two-dimensional auotient 
space-time. It follows that 

g(k,k)+l (B3) 

so that k reduces in vacuo (Schwarzschild) to the sta- 
tionary Killing vector. One may interpret k as giving a 
preferred time for the preferred class of constant-radius 
observers, and j as the corresponding energy-momentum 
density. Note that k is spatial in trapped regions and 
causal otherwise. If the dominant energy condition holds, 
j is also causal (or zero) in untrapped regions. Fixing 
the orientation so that k and j are future-causal for rn- 
trapped spheres, whose orientation is chosen as in the 
main text, one finds explicitly that 
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) 
k = ef@+r& - a-?++) 

4(d&i$) , (B4a) 

Thus k is tangent to the constant-r hypersurfaces and j 
is tangent to the constant-E hypersurfaces: 

k(r) = 0 , 035.9 

j(E) = 0 CBsb) 

One also has 

4&j = curlE W) 

Since div curl = 0 and the four-dimensional divergence 
is given by Divu = r-‘div(r’u), it follows from (Bl) and 
(B6) that both k and j are covariantly conserved: 

Divk = 0 , PW 

Divj = 0 

By Gauss’ law, any such conserved current u has a charge 
Q,, = - JLL *g(u, u) which is independent of C (with fixed 
boundaries). Here the notation is that of Sec. IV, with 
unit normal vector 2) = a/ar. Using (34) and (B4), the 
charges associated with k and j are the area1 volume and 
energy, respectively: 

Qk = -J, *g(k,v) = ~‘4rr%‘d[ = $2 , (~3a) 

Qj = -k*g(it~) = l*W,u) 

J 
C = E’dl = E Pb) 

0 

The charge Qj is the definition of energy of Kodama [53]. 
Regarding k as generating preferred diffeomorphisms, 
one may interpret j as the corresponding Noether cur- 
rent and E as the Noether charge [54]. 

APPENDIX c: ENERGY MOMENTUM 

In an asymptotically fiat space-time, there are def- 
initions. not just of total energy, but of total energy- 
momentum [1,11,26,27], a vector (or covector) at infinity. 
Problems with this interpretation as energy momentum 
are described below. Since this interpretation is often 
explained by analogy with special relativity, that case is 
described lirst. 
In special relativity, a test particle with mass rn and 
unit velocity vector a has energy-momentum p = mu. In 
the frame of an observer with unit velocity 21, the energy 
is -g(p, v) and the momentum is p + g(p, v)v. Similarly, 
a test field with density p and velocity u has energy- 
momentum density j = pu) which to an observer has en- 
ergy density -g(j,v) and momentum density j +g(j,v)v. 
On a flat spatial hypersurface C with unit normal 21, the 
total energy E, momentum II, and energy-momentum J 
are 

E=- J ~ *dj, u) I (Cl=
II= J ~ *[j + dj, UbJl , Pb) 

J= J ej=Ev+n, WC) 
x 

and the total mass is d-j. 
In general relativity, vectors are not integrable, so Il 

and J are ill defined. In contrast, E is well defined for 
given j, but generally depends on the hyperswface X. 
However, it will be independent of C (with fixed bound- 
aries) if j is covariantly conserved, by Gauss’ law. As 
explained in Appendix B, spherical symmetry admits 
such an energy-momentum density: the Kodama current 
j, a preferred contraction (BZ) of the stress-energy ten- 
sor. The corresponding energy E agrees (B8b) with the 
Misner-Sharp energy. Again, this identifies E as energy 
rather than mass. The total momentum Il and energy- 
momentum J remain ill defined. (One could make sense 
of them by taking the unit spatial vector outside the in- 
tegral, but the result would depend on C.) So proceeding 
by analogy with special relativity yields, independent of 
hypersurface, a total energy but not total momentum, 
energy momentum, or mass. 

Another useful asymptotic quantity is 

K=;;mimk, w 

where k is the Kodama vector (BI). By (B3), K is a unit 
vector, so it may be interpreted as the preferred asymp 
totic velocity, or the total velocity of the source. This 
provides a preferred frame at infinity, the asymptotically 
stationary frame. 

Now suppose that one believed that E was mass rather 
than energy. Then by analogy with test particles in spe- 
cial relativity, one might define 

P = lim Ek 
r+cc (C3) 

and call it asymptotic energy-momentum. This applies to 
both null and spatial infinity, agreeing with the Bondi- 
Sachs [11,26,27] and Arnowitt-Deser-Mimer [l] energy- 
momentum, respectively: P = EssK and P = EADMK, 
respectively, by proposition 3. Pursuing this idea, one 
might refer to -g(P, v) and P + g(P,v)u as energy and 
momentum, respectively, and to Ess or EAD~ as mass. 
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This terminology will be avoided here because E is en- 
ergy rather than mass, according to the Newtonian, test- 
particle, and special-relativistic limits of Secs. IV and V, 
as well as the above analogy with test fields in special 
relativity. (If necessary for clarity, Ess or EADM may be 
referred to as the scalar asymptotic energy.) By the same 
reasoning, P is the product of velocity and energy rather 
than velocity and mass, so is not energy-momentum. 

To measure the gravitational field experimentally, one 

may observe the motion of test particles. The equation of 
motion (49) shows that the measurable energy is just E, 
not something that agrees asymptotically with -g(P,v).’ 

If P did measure asymptotic energy-momentum, one 
might expect it to be the limit of a quasilocal energy- 
momentum, as for the energy E itself. But Ek is not 
recognizable as an energy-momentum at finite radius. In- 
dependently, the energy E and current k are both useful 
quantities with simple physical interpretations, but their 
product has no obvious physical meaning. Asymptoti- 
tally one has the limits lim,,, E and lim,,, k, but 
their product P also has no obvious physical meaning. 
So it seems that there is no asymptotic (or quasilocal) 

energy-momentum. Instead one has the radius T, the 
current k, the local energy-momentum density j, and the 
quasilocal energy E. 
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