
PHYSICAL REVIEW D VOLUME 53, NUMBER 4 15 FBBRUARY 1996 
Phase structure of renormalizable four-fermion models in spacetimes 
of constant curvature 

E. Elizalde,1,2z* S. Leseduarte,‘,’ S.D. Odintsov,‘,t and Yu.1. Shil’no? 

1 Centre for Advanced Studies CEAB, CSIC, Cami de Santa Bbrbara, 17300 Blanes, Spain 
‘Department Estmctura i Constituents de la Mat&a and Institut de Fisica d’Altes Energieb, Faculty of Physics, University of 
Barcelona, Diagonal 647, 08028 Barcelona, Spain 

3Department of Theoretical Physics, Kharkov State University, Svobody Square 4, Kharkov 310077, Ukraine 
(Received 9 May 1995) 

A number of 2D and 3D four-fermion models which are renormalizable, in the l/N expansion, 
in a maximally symmetric constant curvature space are investigated. To this purpose, a powerful 
method for the exact study of spinor heat kernels and propagators on maximally symmetric spaces 
is reviewed. The renormalized effective potential is found for any value of the curvature and its 
asymptotic expansion is given explicitly, both for small and for strong curvature. The influence of 
gravity on the dynamical symmetry-breaking pattern of some U(2) flavorlike and discrete symmetries 
is described in detail. The phase diagram in Sz is constructed and it is shown that, for any value of 
the coupling constant, a curvature exists above which chiral symmetry is restored. For the case of 
HZ, chiral symmetry is always broken. In three dimensions, in the case of positive curvature, S’, it 
is seen that curvature can induce a second-order phase transition. For H3 the configuration given 
by the auxiliary fields equated to zero is not a soltition of the gap equation. The physical relevance 
of the results is discussed. 

PACS number(s): 04.62.+v, ll.lO.Kk, 11.15.Pg, 11.30.Q~ 
I. INTRODUCTION 

Four-fermion models [l, 21, usually considered in the 
l/N expansion, are interesting due to the fact that they 
provide an opportunity to carry out an explicit, analyti- 
cal study of composite bound states and dynamical chi- 
ral symmetry breaking. At the same time, these theories, 
and especially their renormalizable two-dimensional (ZD) 
[2] and 3D [3] variants, exhibit specific properties which 
are similar to the basic behaviors of some realistic mod- 
els of particle physics. Moreover, this class of theories 

can be used for the description of the standard model 

(SM) itself or of some particle physics phenomena in the 
SM (see 14-71). For example, the dynamical symmetry- 
breaking pattern of Nambu-Jona-Lasinio (NJL) models 
for the electroweak interaction, with the top quark as an 
order parameter, has been discussed in [4,5]. 

Having in mind the applications of four-fermion mod- 
els to the early universe and, in particular, the chiral 
symmetry phase transitions that take place under the 
action of the external gravitational field, there has been 
recently some activity in the study of .2D IS], 3D [9], 
and 4D [lo-14) four-fermion models in curved spacetime 
(for a general introduction to quantum field theory in 
a curved spacetime, see 1151). The block-spin renormal- 

*Electronic address: eli0aeta.ecm.ub.es 
‘Electronic address: lese&eta.ecm.ub.es 
‘On leave of absence from Tomsk Pedagogical In- 

stitute, 634041 Tomsk, Russia. Electronic address: 
sergei~?;eta.ecm.ub.es 
0556~2821/96/53(4)/1917(10)/$06.00 23 
ization group (RG) approach and the similarities of the 
model with the Higgs-Yukawa one have been considered 

in [13] and [14], respectively. 
The effective potential of composite fermions in curved 

spacetime has been calculated in different dimen- 
sions [8-111. Dynamical chiral symmetry-breaking 
fermionic mass generation and curvature-induced phase 
transitions have been investigated in full detail. However, 
in most of these cases only linear curvature terms of the 
effective potential have been taken into account [g-12]. 
But it turns out in practice that it is often necessary to 

consider precisely the strong curvature effects to dynam- 
ical symmetry breaking. In fact we will see that going 
beyond the linear-curvature approximation can lead to 
qualitatively different results. 

In this paper we will investigate some 2D and 3D four- 

fermion models which are renormalizable, in the l/N ex- 
pansion, in a maximally symmetric constant-curvature 
space (either of positive or of negative curvature). The 
renormalized effective potential will be found for any 
value of the curvature and the possibility of dynamical 
symmetry breaking in a curved spacetime will be cwe- 
fully explored. Furthermore, the phase structure of the 
theory will be described in detail. 

The paper is organized as follows. In the next section 
we calculate the effective potential of composite fermions 
in the Gross-Neveu model, in the spaces 5” and HZ. The 
phase diagram in S2 is constructed and it is shown that 
for any value of the coupling constant there exists a cur- 
vature above which chiral symmetry is restored. For the 
case of Hz, we show that chiral symmetry is always bro- 
ken. The asymptotic expansions of the effective poten- 
tial are given explicitly, both for small and for strong 
curvature. The three-dimensional case is studied in Sec. 
III. We consider two different four-fermion models: one 
1917 @ 1996 The American Physical Society 



1918 ELIZALDE, LESEDUARTE , ODINTSOV, AND SHIL’NOV 3 
which exhibits a continuous U(2) symmetry and another 

where we concentrate on two discrete symmetries which 
happen never to be simultaneously broken (see [16]). In 
Sec. IV we study explicitly the dynamical P and 22 
symmetry-breaking pattern in H3 and S3. Finally, Sec. 
V is devoted to conclusions and some technical points of 

the procedure are summarized in two appendixes. 

II. GROSS-NEVEU MODEL IN A SPACE OF 
CONSTANT CURVATURE 

A. Case of the 2D de Sitter space S” 

In this subsection we will undertake the discussion of 
the Gross-Neveu model [2] in de Sitter space. This model, 
although rather simple in its conception, displays a quite 
rich structure, similar to that of realistic four-dimensional 
theories, as renormalizability, asymptotic freedom [2,17], 
and dynamical chiral symmetry breaking. Some discus- 
sions of chiral symmetry restoration in the Gross-Neveu 

model for different external conditions (such as an elec- 
tromagnetic field, nonzero temperature or a change of 
the fermionic number density) have appeared in the past 
[18-201 (the influence of kink-antikink configurations on 
the phase transitions is described in (21,221. 

The study of the Gross-Neveu model in an external 
gravitational field has been performed in Ref. [8] using 
the Schwinger method 123) (for other analyses of two- 
dimensional models in curved space, see [24]). Unfortu- 
nately, the generalization of the Schwinger procedure to 
curved spacetime is not &ee from ambiguities and this is 
why the result of Ref. [8] includes some mistakes. 

In the calculation of the effective potential in the 
Gross-Neveu model on de Sitter space we will use a rigor- 
ous mathematical treatment of the fermionic propagator 
in (constant ctivature) spacetime, which has been devel- 
oped in Ref. 1251. We shall start from the action 

where N is the number of fermions, X the coupling con- 
stant, r”(z) = 7%:(x), with ye the ordinary Dirac ma- 
trix in flat space, and V, is the covariant derivative. 
By introducing the auxiliary field u, it is conyenient to 
rewrite (1) as 

with g = -+&. Furthermore, in order to apply the 
results of Ref. [25], it is convenient to use Euclidean no- 

tation. Then (2) is written as 
Assuming that we work in de Sitter space and using the 

standard l/N expansion, we get the effective potential in 
terms of the c field as [8,10,11,9] 

V(u) = g + Tr 
J 

oD(z,s,s)ds, 
0 

where the propagator D is defined by 

(V + s)D(r,y,s) = -&@,Y). (5) 

The curvature of both Sd and Hd can be written in the 

form 

with k = 1 for Sd and Ic = -1 for Hd; a stands for the 
radius of the manifold. 

We consider tist k = 1. Following [25] we begin the 
calculatioti by obtaining the “squareing” Green’s func- 
tion 

(9” - s”) G(z,y) = -6,(z,y). (7) 

Then D = 
( > 

? - s G(z, y). We resort to the ansatz [25] 

GbY) =+,Y)9(P)> (8) 

where u(z, y) yields a unit matrix in spinor indices when 

y + 2, and p is the distance between CC and y along the 
geodesic that goes through these two points. Introducing 
the notation 

s=P_ a’ s(O) = cos ; h(e), z = co2 ; 

leads to the following equation for h: 

(9) 

Z(l-Z)&+(2-32)$-1-s%’ h(Z)=O. 1 
(10) 

One can show [25] that the solution of (7) is given by a 
linear combination of the hypergeometric functions [26]. 
As boundary conditions for (7) it is convenient to choose 
the following. First, one selects the only singularity that 
appears for f3 --t 0. Second, one demands (251 that the 
singular part of this limit have the same form as in flat 
SpEiCe, 

g(e) N -& 1ne, 89 + 0. (11) 

Using properties of the hypergeometric functions and the 
boundary conditions (ll), the function D for coinciding 
arguments is found to be 
1 , (12) 
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where (11) has been used explicitly. Here 7 is the Euler constant, + the digamma function, and the two arguments of 
D are supposed to be separated by a small geodesic distance p = Ba. Differentiating (4) with respect to o and using 
(12), one gets 

V’(c~)=f+Tr D(s,r,o)=; 1+x 2-/+11, 1+‘1 1 2 ++ l-‘1 1 z +1 ‘2 
( 2~[ ( ‘&) ( zu&) * 81)’ (13) 

where R is the curvature. 
As a renormalization condition we choose [8] 

By selecting counterterms of the form 

1 2 pp e-f+1 
6v’--z;;o I*- 

2 ’ 

adding them to (13), and using the asymptotics of ?jl(z), we find the following value for the derivative of the renor- 
malized effective potential: 

V’(o)=:{l+& b(l+ilu/&) ++(l-ilujG) -2-h%]) *. (16) 

As we can see, setting aside the different notation employed for q, the terms involving 4(z) differ from the corre- 
sponding terms reported in [8]. 

Starting now tiom expression (16), different physical questions can be studied. In particular, the possibility to 
construct a corresponding phase diagram ap+ars. To this end, let us calculate the second derivative 

vqo)=l+L qj I+‘1 , z ++ l-‘I I 2 -2-l @ 
x 2J ( 4) ( 4) * R] 

+~~[,(2,1+ilol~)-((2,1-~,ol~)]. (17) 
We can now study the behavior of the renormalized V 
near o = 0. We have always 

V’(0) = 0, V”(0) = i 1- & 
[ ( 

27 + 2+lng >I 
With the notation 

(18) 

R. = ‘@e2(7+1) x0 = 2x, (19) 

we obtain that the point g = 0 is a minimum for R > 
Roexp(-X0/X) and a maximum for R < Ro exp(-X0/X). 
That is, for any value of X, there exists a value of the 
curvature above which chiral symmetry is restored. The 
connection of the critical curvature with the coupling 
constant is 

R er = Roe-AdX. (20) 

A different expression for R,, will be given below, in 

which the independence of R,, &am the renormalization 
scale p is made apparent. For R < R,, the chiral symme- 
try is broken and a dynamical fermion mass is generated. 

As a next step one can investigate different limits of 
the expression (16) for the renormalized potential. For 
R + 0, one obtains, from (16), 

Notice that in (22) the constant of integration has been 
chosen having in mind the finiteness of V as R + 0 [SI. 
At the same time, at R + 03 one gets 

-2y-2+4<(3)+~ , 

(23) 

(24) 

The last expressions show the behavior of the effective 
potential at strong curvature. Analyzing (21)-(24) one 
can see that for small R chiral symmetry is broken, as 
happens in flat spacetime. However, in the limit of strong 
curvature chiral symmetry is restored. Thus, the study of 
the asymptotics is a further check of our general analysis 
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FIG. 1. In this figure, 21 = Va’, s E na, and T = 3. 

One sees that for 7 > rc E $6 the symmetry is restored in 
sg. 

(phase diagrams). 

If one defines M by 

V”(U) IRd, o=M = 0, 

then one can express the derivative of the effective po- 
tential in terms of tbis parameter as 

We may now rephrase the criterion of symmetry restora- 
tion in terms of M by saying that the symmetry is re- 
stored when R > R,, = 2MZ exp (27). The shape of the 
effective potential for different values of the quotient & 
is shown in Fig. 1. The character of the transition is 
continuous, as illustrated by Fig. 2. 

B. Case of the hyperbolic space Ha 

In the hyperbolic space H2 (negative curvature) the 
analysis can be carried out in a very similar way. After 
o 1 2 3 I 5 ;\ I= 

FIG. 2. In this figure, T = & and min = a~~;“, where 
cmmin is the value of n at which V attains its minimum. The 
continuous character of the transition which takes place in Sz 
is clearly exhibited. 

introducing the notation 

s,22 a, g(G) = cash; h(B), Z = cash’ ;, (25) 

Eq. (7) acquires the form [25] 

[ 
Z(1-Z)~+(2-3Z)~-l+sZaZ h(Z)=O. 1 

(2’2 

In Hz we need to use other boundary conditions: the 
most rapid decrease withp going to infinity, and the same 
as in 5’ with p going to 0; as a result, using a similar 
procedure as in Sec. IIA, we get 

r+,z,s)=~ 27+$(l+sa)+$(sa)+ln; . 
[ 1 

(27) 

The nonrenormalized expression for V’(o) is 
Making the same renormalization as in Sec. IIA, we obtain the renormalized effective potential 

(28) 

(29) 

(30) 
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A careful study of V’(0) shows that due to the presence 
of the last term in (29), c = 0 is never stationary for any 
value of X and finite R. Owing to the fact that V’(0) < 0, 
chiral symmetry is always broken in H2. 

In the small curvature limit (IRI --t 0), 

(31) 

which coincides with (ZZ), taking into account the change 
of sign for the curvature. In the strong curvature limit 

(IRI --f ~1, 

)I . 

(32) 

The analysis of Eqs. (31) and (32) shows that the general 

conclusion about the chiral symmetry breaking at any 
finite R in HZ is correct. In a similar way one can study 
the influence of curvature in the massive Gross-Neveu 
model (for a recent discussion of such model at nonzero 
temperature, see [26]). 

It is interesting to note that in [29] it has been sug- 
gested to use a constant negative curvature space as a 
convenient infrared regulator in quantum field theory. 
The authors of [29] have argued that in a space of nega- 

tive curvature the metric properties are effectively infinite 
dimensional, which gives the possibility to distinguish be- 
tween different types of transitions. The two-dimensional 
XY model is disordered at any finite temperature due to 
vortice effects [29]. In our present work we use a slightly 
different representation of the propagators, taken from 
[25], and we do not study the questions addressed in [29]. 
However, our result that chiral symmetry is always bro- 
ken in 3c2 can be seen, in some sense, to yield support to 
the findings of Callan and Wilczek on the role of a nega- 

tive curvature space as an infrared regulator. It would be 
of some interest to try to translate the results on chiral 
symmetry breaking in the Gross-Neveu model on ?t2 to 
the language of 1291 in more detail. 

III. DYNAMICAL U(2) FLAVOR SYMMETRY 
BREAKING IN HS AND Ss 

This section is devoted to the description of a tbree- 

dimensional four-fermion model which has a continuous 
flavorlike symmetry and how its breaking is affected by 
a gravitational background. 

We consider the following model on a Riemannian 
manifold: 

with 
(34) 

and so we take a reducible, four-dimensional Dirac algebra. 
The transformation of the bilinear terms &, @rfti, and I&&/ under 

c&b= -iT,P& 64 = i&3T,y36’“, 

with To = 1, Tl = Ta, Tz = TI, and T3 = i&y5, is given by 

(a&) =2(;L&i9 ($~a-$),. 

(35) 

(36) 

It is convenient to express this theory in terms of auxiliary fields: namely, 

LE = II; (!I + a + iT1P + i??r) ti+ &(2 + p2 + Try, 

which yields 

I’~+m[o, P, ~1 = 
J 

dx &? & (0” + p2 + r”) - Nlndet (@ + c + i~lp + iy%) 

(37) 

(38) 
We consider the constant configurations of o, p, ?r. The 

rotational symmetries impose that the effective potential 
only depends on oz + p2 + 1r2, which allows us to set 
p = ?r = 0. The regularized expression of the effective 
potential turns out to be 
I 
dz ,&V(c] = 

N 

I 
dx & 2xBuz 

J 

- & e--to~ey% 
(3% 

1/a= t 
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The reader may verify that the use of point-splitting reg- 
ularization leads to the same results that we get below 
by regulating the lower limit in the proper time integral. 
On the right hand side we observe the appearance of the 

coincidence limit of the heat kernel. Resorting to the 
results of Appendix B, the outcome is (for H3) 

The dependence on the radius of the manifold is not 
shown, but it can very easily be recovered from dimen- 

sional analysis. We obtain 

(41) 

Imposing the renormalization condition 

$&[o=O,R= -6/a'=O]= ;, (42) 

one gets 
(43) 

and, in the limit A + co, 

(44) 

From this one can easily see that the symmetry is always 
broken in H3. In fact we can also notice the curious fea- 
ture that the origin is not a solution of the gap equation. 
This appears to liken the situation of four-fermion mod- 
els in three dimensions under the influence of zi magnetic 

field (see [27]). 
As for S3, we have (see Appendix B) 

v(~,=&-‘~/u2ds$+. 
2Vol 0 

(45) 

From this formula one derives the regularized effective 
potential using the result from [24] that on SN the solu- 
tion of 

(7’ -KG = -44~) 

is given by G(y) = U(y)gN(u), where U(y) is a parallel 
transport matrix that is the identity at the coincidence 
limit, and 
gN(e)=I1($+im)r(+m) N N N 

(47r)‘w(~ +1) 
2 +wn, T--zm, T +I, co? 
where 8 = z (p is the geodesic distance, and a is the 
radius of the manifold). With this in mind and using 
the known properties of the hypergeometric functions one 
may arrive at the expression (in which we only keep terms 
divergent in p and terms independent from it) 

+v (&+o’)tanh(wa) (46) 

Using the renormalization given by 

V’(rr)=;+;(&+o’)tanh(noa). (47) 

Tbis appears to be in agreement with the correspon- 
dent effective potential in the Gross-Neveu model [in 
the simplest version without continuous U(2) symme- 
try and discrete symmetries] on de Sitter space using, 
different from our approach, dimensional regularization 
(see [19]). We can now compare this result with the one 
that was found in Ref. [9], which was a study of three- 
dimensional theories in the small curvature limit. One 
can easily check that expression (46) is indeed compati- 
ble with those in [9]. What is most surprising in the weak 
curvature limit is that, in view of the results, one might 

be tempted to conclude that the origin is not a solution 
to the gap equation (as happens in iP) and, furthermore, 
that there may be no solution at all. However, looking 
at the exact result (46) or (47), this is seen to be an arti- 
fact of the approximation. The effective potential given 
in expression (47) may give rise to a second-order phase 

transition, as we illustrate in Fig. 3. 

FIG. 3. Here, 7) E Va3, s E ~a, and g z $. It is clearly 
seen that there may be a second-order phase transition in S3 
and that it takes place when g = 4. 



zr! PHASE STRUCTURE OF RENORMALIZABLE FOUR-FERMION 1923 
IV. DYNAMICAL P AND 2. SYMMETRY 
BREAKING IN Hs AND S8 

In this section we analyze a model which displays two 

discrete symmetries. First of all, we present the model 
and later we describe its symmetries in .some detail. To 
finish, we will describe the in!luence of gravity on the 
breaking of the symmetries. Using the representation for 
the ^IP (which has no -& 

it is also possible in this case to define a parity operation 
which admits the presence of a mass term: i.e., 

LE = 4 fY* + mwA (4% 

with 

P[4(~l,~z,~s)l= -4(%-~2,4Y1~11. 
However, @$ transforms as a pseudoscalar. There is an- 

other discrete symmetry of the kinetic term, given by 

&[+I = &lb Z&J] = $7’. (51) 

Under this operation, the roles of the ma8~ terms are 

reversed, e.g., 

Z&j%+] = +%j, z&w = 46 (52) 

With tbis in mind, it is immediate that 

LE = 4 iw - &(W” - ~wv (53) 

is invariant under both P and Z,. But, as $?$ is not 
invariant under Z,, it can be taken as an order parameter 
for the 2, symmetry breaking. Likewise, (@) is an order 

parameter for the P symmetry breaking. 
In terms of auxiliary fields, 

LE=$(D)+~+x~3)1/,+~~a+~XZ. (54) 

Proceeding along the same lines as before, we will impose 
equivalent renormalization conditions 

(55) 

In the case of hyperbolic space H3 we get that the effec- 
tive potential in the 1x-ge-A limit is given by 

with o+ 3 4 + x. We obtain the two case8 
FIG. 4. This figure is a plot of Va3 in If3 in terms of 
s s +a and t E ~a. We have taken f = 1 and f = 0.25, and 
so E - k > 0 and 22 is broken. 

;-;>o 5+=-x, ($=o,n#o), 
for the Z, symmetry breaking, and 

(57) 

;-;<(I 8+=X, ($#O,~=O), (53) 

for the P symmetry breaking, respectively. This is illus- 
trated in Figs. 4 and 5, where we only consider positive 
values of 4, as the symmetry of the model allows us to 
reproduce the result for the region of negative 4 imme- 
diately. It is also worth noting that either P or Zz is 
broken, but that it is impossible to have both symmetries 
broken. Figure 4 exemplifies the first situation: One sees 
that the minimum lies at 4 = 0, x # 0, and 2~ is broken. 
In Fig. 5 we are in the second situation: The minimum 
lies at 4 # 0, x = 0, and P is broken. 

FIG. 5. This is also a plot of Vu’ in H3, with s and t 
defined as in Fig, 4. Here we have $ - k < 0 and P is 

broken. 
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As for the S3 case, the reader may verify, along the 
same lines as above, that one encounters again two dif- 
ferent situations: Either both P and 2, are unbroken or 
just one of them is broken. This is obtained without dif- 
ficulty by repeating the same analysis, and we feel that 
further details are not necessary. 

V. CONCLUSIONS 

In this paper we have reviewed a powerful method for 
the exact study of spinor heat kernels and propagators 
on maximally symmetric spaces. We have used it with 

success in a number of different four-fermion models. The 
renormalized effective potential has been found, in each 
case, for any value of the curvature, and its asymptotic 
expansion has been given explicitly, both for small and 
for strong curvature. 

We have described in great detail the influence of grav- 
ity on the dynamical symmetry-breaking pattern of some 
U(2) flavorlike and discrete symmetries. In particular, we 
have seen explicitly that the effect of a negative curvature 
is similar to that of the presence of a magnetic field. 

For the two-dimensional Gross-Neveu model on S’, 
where the chiral symmetry is a discrete one, we show the 
possibility of chiral symmetry breaking and of fermion 

mass generation. Note that the curvature of a two- 
dimensional de Sitter space acts here as some external 
parameter (such as temperature) which induces the chi- 
ral symmetry phase transition. In this sense and owing 
to the fact that we treat curved spacetime exactly, the de 
Sitter space cannot be considered to be some fluctuation 

over flat spacetime. 
In the case of positive curvature S3, we have checked 

that the scenario given in the framework of the small 
curvature expansion (e.g., fluctuations over flat space) 
changes dramatically when gravity is treated exactly. In 
particular we have found that the character of the phase 
transitions induced by gravity is continuous and that the 
origin is always a solution of the gap equation. A point 
to be duly remarked on is the fact that the techniques 
applied here to two- and three-dimensional models work 

equally well in four- and higher-dimensional ones. Of 

course, these models are not renormalizable in the stan- 
dard way (see, however, Ref. [30] where mean-field renor- 
malization of four-fermion models has been discussed), 
but one can still apply the above method in order to ob- 
tain the cutoff-dependent effective potential, which could 
certainly be useful for cosmological applications. 

We shall now argue on the relevance of our results. 
We have investigated the phase structure of four-fermion 
models in 2D and 3D constant curvature space. We have 
used the mean-field approximation (actually, the lead- 
ing approximation in the & expansion), by taking into 
account only constant field configurations. In this ap- 
proach, we have showed that the models can be treated 
analytically, and we have encountered the possibility of 
curvature-induced phase transitions (this fact was inde- 
pendently shown in a recent report [19]. A sensible ques- 
tion now is, what is the physical relevance of our results? 

It is well known that spontaneous symmetry break- 

ing in finite volume spaces is strictly speaking impos- 
sible. The fact that we have found, the possibility of 
curvature-induced phase transitions between broken and 
unbroken phases of the theory (or symmetry breaking at 
some curvatures) indicates that the mean-i?& approx- 
imation is not good any longer to describe the physics 
near the critical curvature and above. The situation is 
analogous to that occurring in the Gross-Neveu model 
at nonzero temperature, where taking into account non- 

static (space-dependent) configurations u(z), called kink- 
antikink pairs, changes qualitatively the results on phase 
transitions at nonzero temperature [18, 311. In this ref- 
erence it is shown that at nonzero temperature there is 
a kink-antikink gas whose density is exponentially sup- 

pressed for large N; thus, the system appears divided 
into domains where the value of the order parameter is 
that given by mean-field theory. Analogously, one can 
expect that inclusion of space-dependent configurations 
in the models under consideration here may qualitatively 
change the results, and may always present the theory in 
the unbroken phase at any curvature for spaces of finite 
volume. Unfortunately, it is not clear to us at present 
how to perform this calculation technically, due to the 

fact that the theory is formul+ted in curved spacetime 
and thus the corresponding perturbation theory is con- 
siderably more difficult than in the case of flat space 
[18,31], where such space-dependent configurations could 
certainly be taken into account. Hence, this topic must 
be left for further research. 

Moreover, we would like to stress that a mean-field the- 
ory approach is still meaningful. First, the results of our 
study are in fact physically relevant for those curvatures 

where there is no symmetry breaking. Second, in all cases 
we discuss the small curvature case [Eqs. (22) and (31)] 
or the large curvature case [Eqs. (24) and (32)]. These 
cases correspond to large classes of spacetimes, not neces- 
sarily of finite volume. In this sense, the results obtained 
in such situation are of physical relevance and correctly 
describe the corresponding phase structure. Third, by 
analogy with the arguments in Ref. [31] we expect that 
space-dependent configurations do not show up in finite 

orders of the & expansion. In other words, the results 

on the symmetry-breaking pattern (or phase transitions) 
in a finite segment of the whole system are physically 
relevant because the probability to find space-depend&t 
configurations here is extremely small. 

Finally, let us note that an interesting topic is also to 
study a formulation overlapping technique between the 
Schwinger-Dyson equations in a constant-curvature space 
and the effective potential approach. We expect to be 
able to address somo of these questions in the near future. 
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APPENDIX A: GENERALITIES ABOUT 
SPINORS IN THREE DIMENSIONS 

Some general facts about spinors in three dimensions 

that may be interesting to recall for the benefit of the 
reader are the following. The Dirac algebra {7#, 7”} = 
2g,, has two irreducible representations: namely, (1) 
-y” = 03, “1’ = id, y ’ = ir?, and (2) 7; = -rp. On 

the other hand, there is no “75” matrix of order 2 which 
anticommutes with all of the 7”s. A mass term of the 
form m&6 in the Lagrangian explicitly violates parity, 
defined by 

P : ?,6(z0,r’,rZ) t u’?/@, -&,+2). (Al) 

However, if one uses a reducible representation of the 
Dirac matrices, such as 
then the mass term rn& does preserve parity, as defined by 

P : 11(cl?, Z’,Z”) + T1711/+o, -d, z”), 643) 

being 

The kinetic term is invariant under the U(2) t 

T3 = i~l7~, where 
ransformations with generators 2’0 = Ild, T1 = 75, TZ = TI, and 

75 =.1707172 = i 
( ) 
-; 2 “0 

The mass term breaks this symmetry down to U(1) x U(1) with the generators To, T3. 

APPENDIX B: SPINOR HEAT KERNEL IN MAXIMALLY SYMMETRIC SPACES 
(THE INTERTWINING METHOD) 

In this appendix we review a powerful method to derive closed expressions for the spinor heat-kernel and propagators 
in maximally symmetric spaces (for more details see [24]). 

The spinor heat kernel satisfies (-$+ Jo2) K(y,yo; t) = 0 and the initial condition limt+, K(y, yo; t) = 1 b.~~(y, y,,). 

Substituting the ansatz K(y, t) = U(y)f(o, t) in the heat-kernel equation, one gets 

4% + UV”V,f + 2nyv.ug + (V”V,U)f - ZUf = 0, 631) 

where na = V,o. Here the term linear in 8f /a o and VJJ cancels out, provided that U satisfies the parallel transport 

equation 

n”V,U = 0, U(YO) = 1. W) 

The Laplacian acting on f can be replaced by its radial part given by 

V�V,f = q ,f = (82 + (N - l)S&)f, 

and the Laplacian acting on U is 

(B3) 

634) 

The equation for the scalar f becomes 

(-8, + h)f = 0, L+DN-&;(N-I)A? 635) 

The idea is now to relate the solutions of this equation for different N’s, To this end one looks for an operator D such 
that LND = DLN-2. A simple ansatz leads to 
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D= 

I-. 

&c..s&yo (ms;)-‘, tl = %, SN, 

+ cash ; & (cash ;) 
-1 

,z = iE,HN. 
P-5) 

The odd-dimensional case is elementary, taking into account that L.vD (N-1)/2 = D(N-l)IZL1 and the known solution 

of (-8, + L1)K1 = 0. This yields 

K~(y,t)=U(y)cosh; -1 
( 

211 B(co~hs))(R-1)‘2 (cash ;)-I e-z, HN, 

rn 

KN(Y>t) = U(Y) c (-l)nfdp(@ + 2mt), 
“=-cc 

f&B + 2nn, t) = cash - ; (&(co;he))(N-l)‘Z (cosh;)-le-z, SN. 

In the particular case N = 3 these expressions read, in the coincidence limit, 

G37) 

lim K(y, t) = lid 
z!+!Jo &p 1-$2+c(-l) 

[ 

,, -exP(-+g) (2-t-42n$)], 53, 

where d is the dimension of the Dirac algebra, in our case d = 4. 
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