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We investigate the ba&-reaction effect of the quantum field on the topological degrees of &e&rn 
in a (Z+l)-dimensional toroidal universe, M N Ta x R. Constructing a homogeneous model of the 
toroidal universe, we examine explicitly the back-reaction effect of the Casimir energy of a massless, 
conformally coupled scalar field, with a conformal vacuum. The~back reaction causes an instability of 
the universe: The torus becomes thinner and thinner as it evolves, while its total two-volume (area) 
becomes smaller and smaller. The back reaction caused by the Casiti energy can be compared with 
the influence of the negative cosmological constant: Both of them make the system unstable and the 
torus becomes thinner and thinner in shape. On the other hand, the Casimir energy is a complicated 
function of the Teichmiiller parameters (r’, r2) causing highly nontrivial dynamical evolutions, while 
the cosmological constant is simply a constant. Since the spatial section is a two-torus, we shall 
write down the partition function of this system, fixing the path-integral measure for gravity modes, 
with the help of the techniques developed in string theories. We show explicitly that the partition 
function expressed in terms of the canonical variables corresponding to the (redundantly large) 
original phase space is reduced to the partition function defined in terms of the physical-phase-space 
variables with a standard Liouville measure. This result is compatible with the general theory of 
the path integral for the first-class constrained systems. 

PACS number(s): 04.60.Kz, 04.20.G~ 
I. INTRODUCTION 

Topological considerations are necessary in many sit- 
uations. Since physical laws are usually expressed in 
terms of local, differential equations, their importance 
is not prominent at first sight. However, once one pro- 
ceeds to solve the equations, one has to take boundary 
conditions into account, which allow the topological in- 
formation to enter in the theory. In general relativity, 
which handles the dynamics of spacetime, the topological 
properties acquire dynamical meaning and their consid- 
eration becomes more sign&ant. The aim of this paper 
is to present an explicit, detailed investigation of the dy- 
namics of topological degrees of freedom in spacetime, in 
the context of the back-reaction problem in semiclassical 
gravity. We concentrate on the case of (2+1)-dimensional 
toroidal spacetime M N 2” x R and make use of vari- 
ous techniques developed for two- and three-dimensional 
gravity. Here we do not discuss the topology change 
11,141. The term “topological degrees of freedom” in- 
dicates those global parameters describing the global de- 
formations of the spatial hypersurface which are of topo- 
logical origin (the moduli deformations) (Sec. IIIA and 
Appendix A). 

As a first preliminary study for the full quantum grav- 
ity, it is reasonable to consider the effect of the curvature 
of a fixed background spacetime on the behavior of quan- 
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turn matter field, which is the subject of quantum field 
theory on a curved spacetime [2,3]. Then the next nat- 
ural step is the investigation of the itiuence of such a 
quantum field on classical spacetime geometry, which is 
called the back-reaction problem in semiclassical gravity. 
Usually, one tries to describe this effect by the semiclas- 
sical Einstein equation 

where (T,p) is some c number, obtained from the 
energy-momentum tensor operator and the inner prod- 
uct of some quantum states, and a is an appropriate 
gravitational constant with physical dimension [a] = 
[(length)“-‘]. (Here, n is the spacetime dimension. We 
treat h as [ri] = [l] and set c = 1 in tbis paper.) There 
are several uncertain issues and technically complicated 
points about this treatment. First, it is not clear what 
kind of quantity should be chosen for (Z’,p) (41. Here 
we regard that (‘7,~) should be some expectation value, 
rather than the quantity (outlT,plin), since the latter 
harms the reality and causal nature of Eq. (1) [5-71. 
Then, if one regards the path-integral formalism as fun- 
damental for quantum gravity, the so-called in-in formal- 
ism [8,5,6] should be of more importance than the stan- 
dard in-out formalism [7]. Second, the regularisation 
of (Tap) requires complicated, though well-established, 
techniques, which itself is one main topic of the quantum 
field theory on a curved spacetime [2,3]. Third, Eq. (1) 
in general becomes complicated, even though (Tap) has 
been successfully computed, so that it is difficult to solve 
it and study the effect of the back reaction in detail. 
Fourth, one can show that Eq. (1) can be obtained from 
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the tist variation of the phase part in the in-in path- 
integral expression [5,7], in which the matter part has 
been integrated out formally, while the gravity part is left 
unintegrated without explicit fixation of the measure. If 
one wants to go one step further, however, one should 
also take care of the effect coming from the path-integral 
measure for the gravity part. It is usually difficult since 
a reasonable, general measure has not been fixed yet. 
Fifth, to speak rigorously, Eq. (1) itself contains an in- 
consistency from the very beginning. Since gravity and 
matter couple, quantum fluctuations of matter cause car- 
responding quantum fluctuations of gravity. Thus there 
is a limitation in principle to the semiclassical treatment 
[Eq. (l)], because we try to treat gravity classically, while 
matter is treated by quantum theory [7]. Specifying the 
exact validity conditions for Eq. (1) is one of the main 
topics of semiclassical gravity [7,9,10]. 

In this paper, we consider a (2+1)-dimensional space- 
time M N C x R, with C N T2 a torus. We choose, as a 
matter field, a massless conformally coupled scalar field 
with a conformal vacuum and investigate explicitly the 
back-reaction effect resulting from the Casimir energy of 
matter on the topological degrees of freedom, i.e., the 
modular deformations of the torus. As stated above, the 
topological degrees of freedom are one of the essential 
ingredients of spacetime dynamics. However, the back 
reaction on topological modes has seldom been discussed 
so far, partially because such a finite number of degrees of 
freedom is hidden in an infinite number of gravity modes 
in four-dimensional spacetime. One advantage of the re- 
duction of the number of dimension from 4 to 3 is that 
only finite topological modes plus a spatial volume re- 
main dynamical for the case of pure gravity, due to the 
dimensionality [ll-131. One can under&arid this point as 
follows. When ‘TL = 3, the spatial metric h,b has three in- 
dependent components at each spatial point, while there 
are three constraints at each point. Thus a redundant in- 
finite number of modes is gauged away and only a finite 
number of modes remains. Here we want to investigate 
the back-reaction effect from matter onto the topological 
degrees of freedom of spacetime, which would force us to 
take the matter field into account. To preserve the above- 
mentioned nice property of the finiteness of the number 
of degrees of freedom, we choose a model in which the 
matter field is in a vacuum state on a spatially homoge- 
neous (2+1)-dimensional spacetime. Another advantage 
of the reduction of dimension in the discussion of topo- 
logical aspects comes from the fact that two-dimensional 
topology is completely classified in a simple manner so 
that it is easy to construct various topologies [14]. 

Another good point of this model is that some diffi- 
culties and complications stated above of the semiclas- 
sical Einstein equation, Eq. (l), become simplified and 
tractable to a great extent in this case. 

First, we choose a conformal vacuum IO) as a natural 
candidate for a vacuum state of matter in our case and 
use (OjZ’aplO) on the right-hand side of Eq. (1). 

Second, since the background spacetime shall be cho- 
sen as (conformally) flat and the matter field is confor- 
mally invariant, (&p(g)) can be calculated from (T+(q)) 
(q a flat metric) along with the trace anomaly 121, which 
simplifies the manipulation. Furthermore, in our case, 
the spacetime dimension is odd, n = 3, so that there is no 
trace anomaly [2]. Thus (Tap(g)) is related to (Tap(l))) 
in a simple manner. 

Third, because of the dimensionality, Eq. (1) is reduced 
to a set of six first-order ordinary differential equations 
and we can investigate the effect of the back-reaction 
explicitly. 

Fourth, we restrict the metrics to a special class, with 
the spatial part being the one for the locally flat metrics 
on a torus. Thus we can fix the path-integral measure 
by the use of the techniques developed in string theo- 
ries [15,16]. Within this model, we can discuss explicitly 
the influence of matter on the semiclassical dynamics of 
gravity. Our treatment corresponds to the minisuper- 
space approach in quantum cosmology: Putting restric- 
tions on the variables to be quantized (e.g., spatial ho- 
mogeneity), which is compatible with the classical dy- 
namics, quantum theory is to be constructed within this 
restricted subclass of variables. Though this treatment is 
self-consistent as a quantum system, one significant ques- 
tion naturally arises: To what extent does such a treat- 
ment reflect faithfully the original full quantum theory? 
From the viewpoint of the original full system, the re- 
strictions are regarded as constraints on the phase space, 
which can modify tl+ path integral measure for the re- 
duced variables (minisuperspace variables). Our model 
may be a good test candidate to investigate this point in 
detail. 

Fifth, the (in-in) effective action for gravity, 
W[g+ : g-1, becomes relatively simple in our case, and 
this reduces to W[T:,T~, V+ : T?,T!,V-], a functional of 
six functions oft (T$,T~, V+), where V+ indicate the spa- 
tial two-volume (area) and (T&, 7;) are the Teichmiiller 
parameters describing the topological degrees of freedom 
of a torus. Although the exact calculation W has al- 
ready become difficult, we can still estimate its func- 
tional form to leading order in fi. In computing W, our 
model reveals explicitly the peculiarity of the semiclassi- 
cal gravity, compared with the standard treatment of the 
quantum dissipative system, e.g., Brownian motion [17]: 
There is no linear coupling between the subsystem (grav- 
ity) and the environment (matter field). Their coupling 
is put in the kinetic term of the matter field. This model 
might provide the simplest nontrivial example for the in- 
vestigation of the quantum dissipative system including 
gravity. 

In Sec. II, we recapitulate how to handle quantum 
fields on tonoloeicallv nontrivial snaces: Construct the 
quantum fi;ld t&ory”on M N TZ ; R and calculate the 
Casimir energy of a massless, conformally coupled scalar 
field with a conformal vacuum [2,3,19]. 

In Sec. III, we extract explicitly the topological degrees 
of freedom of a tbrus and reduce Eq. (1) to a canonical 
system with a finite number of degrees of freedom [13]. 
Then we investigate explicitly the effect of the back reac- 
tion of matter on the dynamics of the topological degrees 
of freedom. We shall see that the back reaction makes the 
system unstable and the torus becomes thinner and thin- 
ner as it evolves, while its two-volume becomes smaller 
and smaller. These behaviors are universal, that is, inde- 
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pendent of the initial conditions. The asymptotic analy- 
sis of the set of dynamical equations justifies this point. 
We shall also compare our case of the Casimir energy 
with the case of the negative cosmological constant, since 
both of them can be regarded as negative energies. Most 
significant difference is that the Casimir energy is a com- 
plicated function of the Teichmiiller parameters (TI,?), 
while the negative cosmological constant is just a con- 
stant. 

In Sec. IV, we investigate the partition function of this 
system, fixing the measure with the help of the tech- 
niques in string theories. We show explicitly that gauge 
fixing reduces the partition function formally expressed 
in terms of the canonical variables for the (redundantly 
large) original phase space, to the partition function de- 
fined in terms of the physical-phase-space variables with 
a standard Liouville measure. This result is compatible 
with the general theory of the path integral for first-class 
constrained systems. We also estimate the functional 
form of W to leading order in li. Section V is reserved 
for a discussion. 

II. QUANTUM FIELD THEORY 
ON A (2+i)-DIMENSI0NAL 

TOROIDAL SPACETIME 

This section is for defining the model to be consid- 
ered and calculating the energy-momentum tensor in our 
model as a preliminary for the next section, where the 
back-reaction effect is analyzed in detail. Calculating 
(Tap) is now a well-established topic, and we just sketch 
the essence in the context of our model for later uses. 

A. Scalar field on a torus 

We consider a (2+1)-dimensional spacetime with 
topology T2 x R. We concentrate on the case when the 
geometry of the space C N T2 is locally flat. A flat two- 
geometry is endowed on C by giving a metric” 

where 

1 
b = 72 

(2) 

and the periodicities in the coordinates [’ and t2 with 
period 1 are understood. Here* (T’,?) are the Te- 
ichmiiller parameters [15,16] independent of spatial co- 
ordinates (t1,t2) and 7 := 71 + i?, ? > 0. Note that 

fi := (de&#? = 1. 

‘For definiteness, we shall use the symbol &,b to represent 
the particular matrix given by (3), while the symbol h,s shall 
be reserved for more general context, representing a general 
spatial metric induced on a spatial surface C. 

‘Throughout this paper, 7’ always indicates the second com- 
ponent ,of (r’,?) and not the square of r. The latter never 
appears In me *armu,as. 
The Laplacian operator A := -l/JiE&(hnb&&) on 
C with the line element d12 [Eqs. (2),(3)] gives the nor- 
malized eigenfunctions 

fn,n, (6) = exP(i2?mll’) exP(i2m&) (n1,nz E Z) (4) 

and the eigenvalues 

x 4”2(lTI”7bf - 27+nz + n;, “lnl = + (5) 

Now let us consider a spacetime M N C x R, with a 
line element ds2 = -dt2 + &,r,@“@b. The fundamental 
positive frequency solutions for q u(t, E’, E2) = 0 are3 

%l(hE) = &e-WA(t) , (6) 

where A stands for nlnz and WA := Jx;;=c. 
Afterwards, we follow the standard procedure for the field 
qua&ation [2,3]. 

B. Model 

We shall investigate the back reaction of the matter 
field on the topological degrees of freedom (T’,?). The 
most ideal treatment of the back reaction described by 
Eq. (1) may be the self-consistent determination of the 
geometry gap through Eq. (1): (Top) depends on gap, 
and this gap is self-consistently determined by Eq. (1). 
However, it turns out that such a treatment becomes 
highly complicated even in our simple model. To make 
our analysis tractable, then, we treat the back reaction 
in the following sense, which is usually adopted in the 
back-reaction problems [2,3]: We prepare a background 
spacetime and calculate (T,p) on it. Then we discuss 
the modification of the background geometry due to the 
(Cp), using Eq. (1). 

Now, as a background spacetime, we choose a solu- 
tion of the vacuum Einstein equation G,p = 0. More 
specifically, we prepare a locally flat spacetime ds2 = 
-dt” + V d12 = V(-dt* + dl’), where d12 is given by Eqs. 
(2),(3) =*d V, +, and 7’ are chosen to be constant for 
the background spacetime. (Below, we occasionally treat 
this flat spacetime as conformally flat, just for mathemat- 
ical convenience.) We choose as a matter field a massless 
conformally coupled scalar field $: 

S,,, = -; 
J 

(gao&$8,$ + ~R+,@)~d% (7) 

The (improved) energy-momentum tensor operator [3] 
becomes 

‘In -connection with later applications, it is worthwhile to 
note that, even though 7 would depend on t, the form of the 
equation q $ = 0 would not change, because of the form of 
the metric, gap = (--1,/u) With *etg,o = -1. 
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cdd = pdw - p,*awap - i9aaap* 
+&ti 0 tisap + &@(&p - $,A (8) 

We choose the conformal vacuum as a vacuum state for 
{FP~V;ter field. Then (T+(g)) is simply related to 

OI as 

CC&d) = V-1’2K&)) , (9) 

when the metric g-0 and the flat metric ~~0 are related4 
as ga0 = Vqp. On flat spacetime, the field equation for 
1(, becomes 04 = 0 and Eq. (6) can be used as funda- 
mental solutions. In this manner, the time evolution of 
V causes no direct complication in the analysis. 

However, the time dependence of (T’,?) caused by 
the back reaction harms the self-consistency of the anal- 
ysis, which is inevitable if the tractability of the back- 
reaction problem, described by Eq. (l), is to be main- 
tained. When (T’,?) evolve in time, the functions in 
Eq. (6) are no longer exact solutions for Oil, = 0, because 
WA := & becomes t dependent, through the t depen- 
dence of (T’,?) [Eq. (7)]. Furthermore, the spacetime 
described by ds’ = At2 + V(t)&,&‘d.$* is no longer 
conformally flat when (T’,?) evolves, because of the t 
dependence of A,*. Thus we should look at the results of 
the analysis in an adiabatic sense, i.e., valid when terms 
including i’ and i2 are not dominant in the formulas 
prominently. Such a conflict between self-consistency and 
the tractability of the analysis always occurs in the back- 
reaction problem. In our present model, this adiabatic 
treatment provides a good approximation because i1 and 
i2, caused by the back reaction, turn out to be sufficiently 
small (see sec. III C). 

We next need Hadamard’s elementary function [2,3] 
G(‘)(z) for ds’ = -dtZ + dlz to calculate (Z’,&q))., This 
function and the related energy-momentum tensor have 
already been extensively investigated [19]. We first com- 
pute G(‘)(z), for M N R3 and afterwards take care of 
thcperiodicity in M N T2 x 7Z, adding all contributions 
from points which should be identified [16,19]. For the 
three-dimensional Minkowski space, G(‘)(z) is 

G(‘)(z) := (O]{$+),$(y)}lO) = ;(2rr)-‘l’ (c > 0) , 

00) 

where CT := $z” = ~~~px”x~, $ times a square of a world 
distance. Thus we get5 

G(‘)(z) = & 2 ’ [2~7,,~~,(2)]-~/~ , (11) 
nl,“>=-ca 

where 

2%,,“,(%) := -9 + &ce + 7Ll) + T(E2 + %)I2 

Now it is straightforward to compute (T,+(q)) explicitly6 

[qua = (-1,&r,) with (3)]. The result is 
(12’4 

(To,) = (Tar,) = 0 (a = 1,2) (1% 
4This simplification occurs because (Tap(g)) for a confor- 
mally invariant field, with the conformal ~cuum, on a con- 
formally flat spacetime is completely determined by (T,p(q)) 
and the trace anomaly (T:(g)), while the latter vanishes when 
the spacetime dimension is odd [Z]. 
‘The prime attached to the C symbol, as in Eq. (ll), indi- 
cates that the nero mode (nl = na = 0) should be excluded 
from the summation whenever it causes a divergence. 

‘For computation it is helpful to note that (Tea(q)) = 
~&&G”), where&&G(‘) := a,..a,,,G(‘)(~-I’),.,,. and 
CE‘- := (t,(‘,p). 
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For, a metric gap = V(-1, &,), (Tap(g)) can be obtained 
by Eq. (9). Since the Planck scale is the only scale which 
comes into our model, we understand that a suitable 
power of (Y := lmanck is multiplied to quantities like those 
in Eqs. (12a)-(12e), if necessary, in order to adjust their 
physical dimensions. These contributions of order ti to 
(T,p) in Eqs. (12a)-(12e) originate from a nontrivial spa- 
tial topology C N T2 and are well known as the Casimir 
effect [2,3]. 

III. BACK REACTION OF THE CASIMIR 
EFFECT ON THE TOPOLOGICAL DEGREES 

OF FREEDOM 

A. Extraction of dynamics 
of the modular deformations 

Having computed (T+(g)) in the previous section, we 
shall now investigate the back reaction of (T,p(g)) on 
the evolution of the spacetime. We consider the Ein- 
stein gravity on M N T2 x R and a massless conformally 
coupled scalar field on it, S = i J RJ=Tj + Sm, where 
a := lpl,,,,ck and S, is given by Eq. (7). The canon- 
ical formulation is suitable to investigate the temporal 
evolution of the spacetime. We thus perform a (2+1) 
decomposition, but care should be taken because of the 
presence of the conformally coupled field. In the back- 
reaction problem, we regard that @(z) is replace$ by 
a vacuum expectation value (@(z)), which is indepen- 
dent of spatial coordinates. Furthermore, we shall finally 
choose the spatial coordinates such that Na = 0 so that 
na = (-l/N, 8). These facts simplify the prockdure of 
(2+1) decomposition. 

Following the standard manipulation [20], we finally 
get the total action in canonical form 

S = 
J 

(d=‘iL,-,NFl - NY&.) , (13.9 

where the Hamiltonian constraint and the momentum 
constraint become, respectively, 

31 = {(K&K”6 - K2 -(‘) R)/a + (T&nanp}JiE , 

Wb) 

Tl&h = -2Db(K,* - S,“K)/a - (T&z0 . (13~) 

Here N and N, are the lapse and the shift functions, 
na = (-l/N,N’/N) is the n0rma1 unit vector of the 
spatial surface, and @)R stands for the scalar cowa- 
ture for the spatial surface C. The operator D, is 
the covariant derivative with respect to has and @ := 
(Kob - Kh”*)JiE/a; KGa is the extrinsic curvature of a 
spatial surface.’ 

‘Throughout this paper, we use a spatial metric hab, an 
induced metric on a spatial surface C, to raise and lower the 
spatial indices a, b, c, and to define the spatial covariant 
derivative Da. In particular, the geometry of our concern is 
given by the line element ds’ = -dt’ + V dla, with (2). Thus 
the spatial metric in OUT model is h,b = V&b, with (3). 
We choose a coordinate system such that N” = 0 so 
that na = (-l/N,O). Thus (T&np = -l/N. (T-o) = 0 
+I,a=bt~~ Ek&I2~. In our case, thus, the momen- 

X,/th = -2Ds(K,” - &*K)/a = 0 (13c’) 

Then we can extract the moduli degrees of freedom (cor- 
responding to the global deformations of a torus) by solv- 
ing Eq. (13~‘) explicitly [13]. 

The system of coordinates in our model [ds2 = -dt2 + 
VdP with (2), (3)] corresponds to York’s time slicing 
[21], i.e., the time slicing by the spatial surfaces on which 

o := -K/a = con&. (14) 

Thus Eq. (13~‘) is equivalent to 

a?l,lJiE = -2D& = 0 , (13c”) 

where l?: := K,* - &“K, the traceless part of K,“. It 

means that* @ E KerP,t, {‘Z’Aab}a=l,2: 

In OUT case, C N T2, we can choose the lapse function N 
as N = N(t) without any contradiction with the York’s 
slices. This is shown almost in the same manner as for the 
case of pure (2+1) gravity [12,13]. Now, using some basic 
facts on the moduli space Mg=* (see Appendix A), it is 
straightforward [13] to show that our system is reduced 
to 

GABpaps - $x2uZV + a(T,p)n=nPV 

(16) 

Note that the contribution fiom the spatial diffeomor- 
phism has been eliminated from dynamics by solving 
the momentum constraint (13~‘) explicitly. Only the 
Weyl deformations and the modular deformations have 
remained. 

B. Evolution of the Teichmiiller parameters caused 
by the back reaction 

In ow model, ds2 = V(-dt’2+iz~&o~b). Thus, from 
Eq. (9) and n” = (-l/fl,O), we get (T&n”& = 

‘See Appendix A for the terminology and notations related 
to the moduli space. 
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V-3/2(Z’oo), where (2’00) is given by Eq. (12a). (Note 
that tbis combination is coordinate independent.) 

By setting N(t) = 1, we get the canonical equations of 
motion described by the constraint function 

aH = 2 BABpap~ - $&2V - lia(~~)~‘~f(~)V-“~ 

A,B=l 

0, (17) 

where 

Clearly, j(-T1,72) = f(Tl,?), f(IJ+n,?) = f(71,?), 
f(n + a,?) = f(n - a,?) (n an integer, a real) and 
f(~l,?) is singular at (T’,T”) = (n,O). Furthermore, 
the combination 2n(~~)~/‘f(~~, 7”) appearing in (17) 
is equivalent to the nonholomorpbic Eisenstein series 
G(~,3/2), whose modular invariance as well as other 
properties are well known [22]. The first term in Eq. (17) 
is also modular invariant, since it behaves as a scalar field 
on the moduli space.’ Thus the Hamiltonian constraint, 
Eq. (17), is modular invariant as it should be. Figures 
l(a), l(b) show the behavior of the function ~(T’,T’). 

For the explicit investigation of the dynamics, let us 
first calculate GAB according to Eqs. (A5) and (A2c) with 

V 
hd = ,+yz 

1 71 

-( > 7’ 1712 

(Note that ds’ = -dt’ + V d1’.) Then we get 

V 
-iLa = s 

0 1 

( ) 1271 ’ 

Note that {7&s}az1,2 are symmetric, traceless two- 
tensors satisfying -2DaTaab = -~u!&‘T&~ = 0. Thus 
{7a.s}a=1,2 can also be utilized to form a basis for 
KerPj, {‘IXAab}a=l,z. By normalizing them to satisfy 
(eA,7~) = JAM, we obtain 

‘Another convenient way for discussing the invariance is to 
perform the Legendre transformation of the action in concern 
and to look at the action in terms of the configuration vai- 
ables. In this case, the kinetic term for (T’, 7”) becomes pro- 
portional to CPa&AiB, which is clearly modular invariant. 
For the discussion in the context of the path integral, includ- 
ing the discussion on the path-integral measure, see Sec. IV A. 
Thus the W&l-Peterson metric reduces to the one which 
is conformally equivalent to the Poincark metric: 

Hence the geometry conformal to the Poinca& geometry 

Cb) 

FIG. 1. Plot of the function f(r’,?) for the range r’:O-1 
and ?:0.5-0.8. The infinite summation has been truncated 
at -200 and 200. (b) Contour plot of f(T’,?), with the same 
range and the truncation points as in (a). The lines indicate 
the values (from bottom to top) 30, 28, 26, 24, 22, 20, 15, and 
5. 
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1231 (negative constant curvature geometry) is endowed 
on the Teichmiiller space, which is equivalent to the up- 
per half-plane H+ ((T’,?) E R x R,). Then the sys- 
tem has been finally reduced to the constrained system 
((K4, (71,~~), (T’,PZ);H = 0) with 

&y = ~2(~2)2 2 
-&PI + p;, - pb2v 

-&(72yf(T)V-‘/2 

=o. 

The equation of motion for (V, u) are 

(21) 

v=-aov, (224 

a 2 4~“)2 2 6 = Ti7 + F(p, +p$ - ;(+‘“f(+-“l’ . 

Pb) 

The equations of motion for (~l,pl) and (?,pz) are 

i’ = ;(72)2p1 , (23a) 

p1 = h(,yz?gv-1/2 ) PbI 

P = $(T2)2p2 ) (24a) 

$2 = -$2(pf +pi) + ~(T”)‘l’f(+-‘l” 

+Ii(72)3/2?&&1/2 
072 Wb) 

First, we should note that the time evolution becomes 
trivial when there is no matter field, f(7) = 0, in the 
following sense: In this case, Eqs. (22a),(22b) allow a 
solution, n = 0, V = coast, pl = pz q 0. It is clear 
that, from Eqs. (21), (23a), (23b), (24a), and (24b), 
equations of motion do not allow any solution, compat- 
ible with o = 0, V = con&, other than TI = con.&, 
7’ = const. This corresponds to the three-dimensional 
Minkowski space in the standard coordinates (T, X’, X2) 
with suitable identifications in spatial section (X1,X*) 
described by (T’,?). The unique solution above shows 
that there is no time evolution with respect to the stan- 
dard time slice, T = const (u = 0). Tbis configuration is 
what we have chosen as a background spacetime. [How- 
ever, there are different solutions characterized by the 
initial condition o # 0. In these cases, (TI,?) evolve in 
time.] 

The back reaction of the quantum field cawes a non- 
trivial evolution of (TI,?), i.e., global deformations of a 
torus. It is clear from Eq. (21) that even when o w 0 
so that the term -$Y~&’ in Eq. (21) can be tieglected, 
a nontrivial evolution of (T’,? occurs because of the 
negativity of the term -ticu(~‘)~ ) ‘f(~)1/‘-‘/’ in Eq. (21). 
The choice of the solution c E 0, V E const is not allowed 
any more, as is .seen from Eqs. (22a), (22b). 

Figures 2(a), 2(b), and 2(c) show a typical example 
of the evolution of (TI,?), (pl,pz), and (V,a), respec- 
tively. Units such that ti = 1 and a = 1 have been 
chosen. We have set the initial conditions for (T’,T”), 
pl, n, and V. The initial condition for pz has been de- 
cided using the constraint equation (21). We can ob- 
serve the universal asymptotic behavior of the system, 
which arises irrespective of the initial conditions, due to 
the back reaction: The back reaction drives the system 
into the direction corresponding to a thinner torus, i.e., 
7’ --t 0, while TI + finite. At the same time, the two- 
volume V asymptotically approaches zero. We find out 
that this behavior is universal by setting various generic 
initial conditions. Tbis universal behavior can also be 
understood by investigating the qualitative characteris- 
tics of Eqs. (21)-(24), which shall be done in the next 
subsection. 

We should also note a special class of trajectories char- 
acterized by the initial condition” TI = n/2 (n an inte- 
ger), p1 = 0. The (T’,?) trajectory becomes parallel 
to the ? axis and (pI,pz) trajectory is on the pz axis. 
Depending on whether pz > 0 or pz > 0, ? tends to rn 
or 0, respectively. In any case, the shape of the torus 
becomes thinner and thinner as it evolves. (Note the 
modular invariance of the system.) 

C. Asymptotic behavior of the system 

We can understand the universal behavior of the sys- 
tem by looking at Eqs. (21)-(24) and investigating the 
asymptotic behavior of the system as t + rn. Some key 
types of behavior are (i) V + 0, CT + ca, UP + cu (n = 
1,2,3,. .), (ii) (?)‘(pt + pz) .increases, at least as fast 
& uzV2; (iii) ? J. 0 or ? + co, and (iv) pli’+p$’ in- 
creases at least as &‘, and &[(i’)’ + (i”)“] increases 

at least as 02. 
Now let us derive the above results. First of all, 

Eq. (22b) can be written with the help of Eq. (21) as 

b = a2 + ~(72)3/2f(T)v-“12 . (22b’) 

Thus 6 > 0, so that 0 always increases and becomes 
positive at some stage. Then V decreases because 
of Eq. (22a). Furthermore, it is easily shown that 

‘OBecause of the modular invariance of the system, the cases 
of r’ = integer are equivalent to the case of 7’ = 0 and 
those of 7’ = half integer are equivalent to the case of r1 = 
l/2. The trajectories of the former cases are stable against 
perturbations, while the trajectories of the latter cases are 
unstable. This can be seen from Figs. l(a), l(b) along with 
Eq. (17). 

“Here “y(t) increases at least as fast as CC(~)” or “y(t) in- 
creases at least as z(t)” means that, Ir(t)/y(t)l --f c, 0 5 c < 
co when t + ca. In other words, l/y(t) = 0(1/z(t)) when 
t-km. 
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(a) 

FIG. 2. (a) ‘l+ajectory of (TI,?) determined by Eqs. (21)-(24). The infinite summation in the definition off(~) has been 
truncated at -200 and 200. h and o( have been set to unity. The initial conditions are 7’ = 0.500, 7’ = 0.500, px = 1.000, 
pz = 2.175, V = 1.000, and o = 0.000. Points A-E and 2 indicate typical points on,the trajectory. A, the initial point; B-B, 
the points for which t is near half integer; Z, the end point of the calculation. C is a1so.a point near the turning point (pz = 0); 
A, (0.500,0.500) at t = 0.000; B, (0.695,0.791) at t = 0.454; C, (1.510,1.145) at t = 1.116; D, (2.170,0.970) at t = 1.480; E, 
(2.681,0.260) at t = 1.995; and Z, (2.723,2.574 x lOes) at t = 2.223. (b) Trajectory of (pl,pz) determined by Eqs. (21)-(24). 
The initial conditions are the same as in (a). A, (1.000,2.175) at t = 0.000; B, (1.037,1.101) at t = 0.454; C, (1.047,2.873) x lo-’ 
at t = 1.116; D, (1.047,-0.648) at t = 1.480; E, (1.271, -4.527) at t = 1.995; and Z, (0.374, -4.641 x 10’) at t = 2.223. (c) 
lkajectory of (V,u) determined by Eqs. (21)-(24). Th e initial conditions are the same as in (a). A, (l.OOO,O.OOO) at t = 0.000; 

B, (0.963,0.170) at t = 0.454; C, (0.773,0.539) at t = 1.116; D, (0.593,0.969) at t = 1.480; E, (0.228,3.817) at t = 1.995; and 
z, (3.711 x10-3,3.129 x 102) at t = 2.223. 
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(u2V2)’ = li(~~)~/~f(~)uV”~ > 0, so that the combi- 
nation &‘2 always increases in time. (Therefore, 02V 
increases more strongly.) Afterwards, it is easy to get 
(i) by induction. Next, from Eq. (21), (T~)~(J+ + pz) in- 
creases, at least in the same manner as 02Vz. Thus we 
get (ii). Now, from Eqs. (24b) and (21), 

+q72)3/2afv.-1/2 
ar= 7 

(24b’) 

so that $2 < 0 [note that w < 01. Furthermore, 

IPzl > $:a’V, so that $2 decreases faster than -9. 
(Note that, if? + finite, this implies a strong decelera- 
tion of pz.) This fact excludes the behavior ? + finite, 

for; if so, pz c( Vs [Eq. (24a)] should tend to zero, 
which contradicts with the deceleration of pz, There- 
fore ? always behaves as ? .J 0 or + co. Thus we get 

(iii). Next, we see that p1i’ + p27 ‘2 [= dp@f +p;)] 

[Eqs. (23a),(24a)] increases at least as ozV, with the help 
of Eq. (21). Finally, &[(i’)” + (i”)2](a pIi’ + pzi”) 

increases at least as u2V, so that &[(i’)2 + (i”)“] in- 

creamer at least as c?. Thus we get (iv). 
The generic trajectories xe the ones for which 71 + 

finite and 7’ + 0, like Fig. 2. We can understand this 
behavior as follows: Suppose that li’1 is at most compa- 
rable with li21. Then, from (iv), we can make an estima- 
tion as $ - -Q, so that 7’ rapidly approaches 0 [faster 
than exp(-ut) since o is incfeasing]. Noting that V-l 
increases much slower than 0 [(i)], the combinations of 
the form (?)“V-” in (23a), (23b) become strong sup 
pression factors. This is compatible with the assumption 
that li’1 is not so large compared with lizI. Therefore, in 
(24b), only the term proportional top; on the right-hand 
side dominates and determines the gross properties of the 
equation, which gives rise to the universal behavior. 

There is a special class of trajectories determined by 
the initial condition 71 = 0 [or, in general, TI = n/2 (in- 
teger)] and” pl = 0. Because of the property of f(~‘, ?) 
[Eq. (18)] with Eqs. (23a), (23b), this implies that 71 = 0 
(or = n/2), p1 q 0; i.e., the trajectories of (T’,?) and 
(pl,pz) form a line segment on (or parallel to) the ? axis 
and pz axis, respectively. Combining (iv) with pl = 0, 
we see that p.# always increases. It means that any 
(TI,?) trajectory which is parallel to the ? axis has no 
turning point and that 7’ tends to 0 or cu, depending on 
the initial condition. Furthermore, combining again (iv) 
with p, = 0 and TI = const, we see that $ N fr, so 
that 7’ approaches rapidly co or 0 [faster than exp(iot) 
since 0 is increasing]. 

As is noted previously, our treatment is based on the 

=The remarks for the last paragraph of Sec. III B apply here, 
too. See the footnote there. 
adiabatic approximation. Thus the results should always 
be taken with a caveat. In general, when instability is 
observed in the adiabatic treatment, it implies the un- 
stable tendency of the system and it suggests the ne- 
cessity of a further investigation beyond the adiabatic 
approximation, rather than just neglecting the resultant 
instability. Furthermore, in the present case, there are 
good reasoll~ to regard the unstable behavior as a real 
one. First, as investigated above,. the universal asymp- 
totic behavior of the &en&c trajectories implies that 
i’ + 0, i2 + 0 [and V - o(u)], although pz + --rn. 

This is because i’ o( q, i2 m q, and ? be- 
comes a strong suppression [stronger than exp(ut)], while 
1/V is at most - c. Thus the adiabatic treatment 
for TI and 72 becomes better and better as ? + 0: 
iJja/w; - is/x”,/” N (7y2& = (7y/2 ($) + 0 

[see Eq. (5)]. Furthermore, v does not harm the adi- 
abatic treatment because of the conformal invariance of 
the matter field, as has already been discussed previously 
[Sec. IIB, after Eq. (9)]. See Fig. 3. [On the other hand, 
we should also note that the special class of trajectories 
characterized by 71 = n/2 (n an integer), ? + co, is 
not appropriate for the adiabat.ic treatment: By (iv), ? 
tends to infinity even stronger than exp(ut). However, 
because of the modular invari&ce, the trajectories for 
which TI = const and 7’ J. 0 give the good information 
of the class of these trajectories.] 

Another support for the present result comes from the 
consideration of the case of the negative cosmological 
constant without matter field. It is straightforward to 
introduce the A term [24] [see Eq. (16)]: 

aH = v (pt + p;) - +r2V - ahV = 0 , (2111) 

v=-cd, (2211.4 

b=+?+$$&p:+p;)+A, (22Ab) 

i’ = +y2p1 , (23Aa) 

P1=0, (23Ab) 

P = ;(2yp2 , (24Aa) 

pz = -$yp; + p;, (24A.b) 

Here, -A corresponds to the cosmological constant (A > 
0). Because of the negativity of the last term in 
Eq. (21A), the same kind of evolution for (T’,T’) as in 
the case of the matter field is observed. [It is also no- 
table that (21A)-(24A.b) can be solved analytically [24].] 
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It strongly suggests that the instability is independent of 
the adiabatic treatment. At the same time, we should 
note the essential difference between our case and the 
case of the negative cosmological constant. Especially, 
the difference between (23b) and (23Ab) is prominent. 
Furthermore, fi(~~)~/~f(~)V-~/' [which corresponds to 
A comparing (21) with (21A)] depends on (T’,?) and 
V, which causes a highly nontrivial evolution. 
1.5 
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0.5 
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FIG. 3. (a) Value of i’ during the evolution shown in Figs. Z(a)-Z(c). A, 0.250 at t = 0.000; B, 0.674 at '2' = 0.454; C, 
1.776 at T = 1.116; D, 1.662 at t = 1.480; E, 0.378 at t = 1.995; and 2, 6.683 x lOrn4 at t = 2.223. (b) Value of i2 during the 
evolution shown in Figs. 2(a)-Z(c). A, 0.545 at t = 0.000; B, 0.716 at t 7 0.454; C, 4.871 x lOrn2 at t = 1.116; D, -1.029 at 
t = 1.480; E, -1.347 at t = 1.995; Z, -0.828 at t = 2.223. (c) V 1 a ue of V during the evolution shown in Figs. 2(a)-Z(c). A, 

0.000 at t = 0.000; B, -0.164 at t = 0.454; C, -0.417 at t = 1.116; D, -0.574 at t = 1.480; E, -0.870 at t = 1.995; 2, -1.161 
at t = 2.223. 
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IV. EFFECTIVE ACTION FOR THE MODULAR 
DEGREES OF FREEDOM 

A. Partition function 

We have treated so far the back reaction of the quan- 
turn field on the modular degrees of freedom, in the sense 
that the semiclassical Einstein equation (1) has been 
solved, with (T-p) on the right-hand side being calcu- 
lated in the background spacetime. We can handle the 
same problem in a more systematic manner by the path- 
integral approach. The significance of this investigation 
is as follows. 

First, we know that we can derive Eq. (1) formally by 
taking the first variation of the phase with respect to 
g-0 in the in-in path-integral expression for ga0 and + 
[5-71. However, when we discuss the semiclassical grav- 
ity in more detail, it is preferable to take into account 
the effects coming from the path-integral measure of g-0. 
Since we cannot fix the measure in a reasonable manner, 
we usually do not discuss much this effect. Fortunately, 
our model is simple enough to investigate the measure to 
a great extent, by making use of the techniques developed 
in string theories [15,16]. 

Second, regarding this problem, we expect that the 
measure in the original phase space, &h,bd?rabdN dNa], 
should reduce to the standard canonical measure 
in terms of the reduced phase space variables, 
J’[dTAdpa][dV du][dN], after gauge fixing, according to 
the general theory of the path integral for the first-class 
constrained systems [25]. Analyzing this reduction pro- 
cess in detail for the case of our model is highly nontrivial 
and helpful for deeper understanding of the path-integral 
approach to quantum gravity [26]. 

Third, furthermore, our model also becomes a test can- 
didate for another fundamental problem: the validity of 
the minisuperspace approach in quantum cosmology. It 
is essential in our reduction procedure that the condition 
of N = const on C is compatible with the equations of 
motion (Sec. III A). In the context of quantum cosmology, 
it can correspond to the minisuperspace approach: We 
often impose the special. form on metrics, which is com- 
patible with the equations of motion, and quantize them 
within this subclass of metrics, for tractability. Then a 
fundamental question arises as to whether this approxi- 
mate treatment reflects faithfully the main features of the 
full-quantized system. The results may depend on which 
space is chosen as the starting whole phase space, viz., 
whether we start from the full phase space (full quanti- 
zation) or from its subspace (minisuperspace quantiza- 
tion). In the former case, it is expected that some extra 
factor emerges in the measure, since in this case the con- 
dition N = const on C should be treated as an extra 
constraint, rather than just an Ansatz. If so, this ex- 
tra factor can have some influence on the semiclassical 
evolution of the system. A similar effect can arise from 
our assumption of the spatial homogeneity of our torus 
model (Sec. IIA). Our model is suitable for the detailed 
analysis of this fundamental problem. In the present pa- 
per, however, we restrict ourselves to the treatment in 
the manner of minisuperspace models, which itself is one 
consistent treatment. 

Fourth, when we need to investigate validity conditions 
of the semiclassical treatment described by Eq. (l), then 
we have to study the second variation of the effective 
action W[V+,~+;V-,T-] [7]. Thus we need to estimate 
W[V+,7+; V-,T-] using the in-in path-integral formal- 
ism. 

We first discuss within the framework of the standard 
in-out path-integral formalism [s] and later generalize it 
to the in-in formalism. In this subsection, we shall de- 
rive the expression for the partition function Z in terms 
of the reduced phase space variables. In the next sub- 
section, we shall estimate the effective action for matter, 
W[V+,7+;V-,7-l. 

The partition function in our case is given by 
I 

Z = N/[dh,bdr”bdN dN,][d+] exp (i /(rob&b f p& - N31 - NJY)) 

= N/[dh,sd&dN dNJ exp (i/(&h,,, - N’?l - N,JY)) , (25) 

I 
where, in the last line, we understand that the matter 
degrees $ have been integrated out and suitable vacuum 
expectation values have appeared in X and 31” (e.g., 
Tap%@ + (Tap)+@). (See the next subsection for 
a more explicit discussion.) 

Integrating over the multiplier Na is equivalent to in- 
serting 6(X”) and setting N, to be an arbitrary value if 
needed.13 Let us set N, = 0: 

IsThis situation is parallel to the case of QED. In the latter 
case, Aodivg appears in the action. One can set Ao = 0 if 
needed, provided that G(div#) is inserted in the integrand. 
Z = N [dh,~d&‘dN]c5(W’) exp i (+‘%~a - N31) . 
I (I > 

(26) 

The action is invariant under the time reparametrization 
and Diff(C) (the diffeomorphism on the spatial surface 
C). Now gauge fixing is needed to make this expres- 
sion meaningful. The gauge-fixing condition for Diff (C), 
which is directly connected to OUT classical treatment in 
Sec. III, is 

h,b - Vh,s = 0 , 

where i,b is given by (3). 

(27) 
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At this stage, we need to fxx OUT general attitude for the 
treatment of our model. Any two-dimensional metric h,b 
is conformally flat [15,16], and the conformal factor V is a 
function of spatial coordinates (as well as a time parame- 
ter t) in general, V = V(t, E’, c’). Here, furthermore, we 
set a further restriction to construct a tractable model, 
which we have investigated in the previous sections: We 
restrict the class of spatial metrics h,a to the one in which 
V becomes spatially constant, V = V(t). At the same 
time, the lapse function N is restricted to N = N(t). 
Both of these Am&e are compatible with the classical 
equations of motion. Such restrictions on the class of the 
path-integral variables correspond to the minisuperspace 
models in quantum cosmology. (See Sec. V for more dis- 
cussions on this point.) 

The treatment for the time-reparametrization invxi- 
ance is well investigated [27]. The final result is neat: 
Introducing the physical time T = St dt N(t), one com- 
putes a transition amplitude from time 0 to time T. Then 
integrate over the result with respect to T [27]. Here we 
shall not do it explicitly, since we are mainly interested in 
the semiclassical evolution of the system. We understand 
that we follow the above procedure whenever needed. 

Then 
Z = N 
J 

[dV dv’ad27][dh,bdnnbdN]d(h.6 - ViL,a)A&((P,tn)a) exp(iS) 

= N J [dV dv’“d2~][d?‘bdo]J[dN]A FP,h.a&.~wPlw) exP(~~,h..=“l;,~) 1 

where S = J?T”~&~ - N31. Note that h,b = V(t)&, corresponds to choosing the York’s time slicing K = n”,/V = 

const with respect to the spatial coordinates [21] ( see Sec. IIIA). Thus only the traceless part of @, ira* = w’* - 
inho* = l?‘V, has remained in the argument of the 6 function in the last line above. Accordingly, the change of 
the integral variables ra* + (iyab, u) has been performed and J is the Jacobian factor associated with this change. 
Employing the method in Appendix B, J can be determined as follows: A natural diffeo-invariant inner productI 
for &ra” is (&r,&r) = Jd2~JiEh,,h&f‘*G?rcd. Substituting nab = ir”* - ;h’*uV, wee get (&r,&r) = (Sir,S+i) + 
iV2(6u, Jo), where (6u, 6~) = s d2t&(6u)‘. Thus 1 = J S dir”‘da exp[-(bn, &x)1, so that J = V up to an ‘unimpor- 
tant numerical factor. 

The Faddeev-Popov determinant App in 0~1‘ case is equivalent to the Jacobian associated with the change of the 
integral variables from h,b to (V,vfy, (T’, T”)), where Y’~ @ KerPl. Thus we can employ the method in Appendix B 
again to determine AFT: From Eq. (Al), 

ll~hcd = IlWhab + (PI&~. + L&II2 
= 4(@,6@) + (u’, PfPw’) + (72, 78)6T%7B 

Then (note that d+ = dV/V) 

1 = AFP 
s 

dVdv’d% exp(+hl12) = A~p(det’P~P&1’2det-1’2(7~,7~)V-1 

AFP = (det’P,tP~)‘/2det’/2(7a, TB)V 

Thus 

Z = V&i~,N /[dV d%][d?‘“do][dN] ($2;)) 1’2det1/2(L, %)V%( (Pfir)“) exp(itilhabzviras) , (28) 

where {x~},=~,~ is the basis for KerP1, a space of conformal Killing vectors.15 

14An appropriate power of a := lpi anek should be multiplied to the formulas in order to adjust physical dimensions like 
Eq. (A3). It is easy and not significant for the present discussions, and so we omit the factor. 

“Any element in Diffo (diffeomorphism on C homotopic to 1) is associated with a vector II’, which can be decomposed 
as v” = do + X,x”, where v”’ $Z KerPx. Noting the argument in Appendix A, S[dv’] = S[dv’a]dZXdet”2(XY,XP), which 
means VOIDiRO = (~[dV’“])VOl&,P, ‘Thus, by factorizing (J’[du’“]) = Vol~i~~/Vol~~~~~ from the path-integral, the factor 
det-“*(Xa,xP) appears. Here the factor (1 daX)- ’ is absorbed into the normalization N. 
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Let us investigate the factor G((P2ir)a). A 
and {@A}a=1,2 are the zero modes for P,t], 

ccording to Eq. (Cl) in Appendix C [A = Pt, 5 = ir’*, f(Z) = exp(iS), 

Here, in the last line, the nonzero-mode components of irob have been set to be zero according to the formula (Cl). 
This is equivalent to substituting ir”” = kabV = Ca pa!T! “aV into the action. Therefore this is the path-integral 
version of the procedure of solving the momentum constraint in Sec. IIIA. 

Thus 

z = N s [d~~dp&Wdo][dN] 
det”‘2PfP~ det”‘(7a, 7~) 

det”“PlP: det”‘(X”,xP) 
det”2(‘@A, ‘@)V2 exp dt(p/ + rnti - iVN) 

> 
. 

(30) 
Here det’P! = (det’PlPf)1/2 has been used.lB 
Now we choose {rA}A=l,Z and 

{‘X+}a=1,2 as (Ta,@?) = S,B (see Sec. IIIB), so that 
det1’z(7a,7B)det*‘2(~A,~B) = 1. For our case of a lo- 
cally flat torus, {~-}a+ can be chosen as xln = (1,0) 
and x2a = (0, l), without inducing any critical point as 
vector fields. Then det-+(X”,x@) V2 = 1. 

Finally, det’@P:PI and det”“PIP: should be esti- 
mated. The map PI is a map from a space of two- 
vector fields to a space of second rank, symmetric and 
traceless tensor fields, and the map P: is a map from 
the latter space to the former space. Note that each of 
the spaces can be represented as a two-component vector 
fields. Now it is convenient to use the complex coordi- 
nates (z,z), with respect to which both Pl and Pt be- 
come diagonal [15]. Let e = z + iy, z = I - iy. Then the 
line element becomes (eb := V), ds’ = e”f~,&~@’ = 

e+(dz’ + dy2) = e+dz dr, so that 

[The s&ix (z, Z) is for the explicit indication of the coor- 
dinates employed.“] The following arguments are valid 

“This equality can be shown by estimating an integral 
I = j”dw”” exp[-(Pi&, P:w’)] in two different manners 
(here w ‘O* is symmetric, traceless and @ KerP:): One way 
is I = Sdu’exp[-(w’,P~P:w’)] = (det’PxP:)-I”, and the 
&her way is I = Jd(Pfw’)(det’P:)-’ exp[-(P:w’,Pjw’)] = 

(det’P!)-‘. This change of the integral variables in the lat- 
ter estimation is valid since the space of the original variables 
(XI’“*) is isomorphic as a vector space to the space of the new 
variables [(P~w’)~] by the map P:. See below, in the text. 

l7We shall use the following facts: 0 := 0, = $(a. - i&) 
and 6 := 8, = $(Sa +ia,); a= (IJ~,“~)(.~) = (w’ +iv’,v’ - 
iv’)(,,. i.e., vz = v1 + isa, vf = d - i> = P(v’,v2 E R). 
Let T” 1’ be symmetric and traceless and let its components 
in(r, y) coordinates, T”, etc., are real, then (Tab)(,,ij = 
diag(2(T” +iT”), 2(T” -iTLa)), i.e., T”” = 2(T” +iT”), 
TeE = 2(T”-iT’Z) = T-, and the other components van’sh; 
the Christoffel symbols become I’:, = 84, I’& = 84 = I% 
and the others vanish. 
for a general spatial metric h,b on a torus, so that we shall 
discuss in general terms. Only at the final stage [Eq. (34) 
below], we set the condition that 4 = In V = spatially 
constant. 

Now both PI and P,t can be regarded as a map Corn 
a two-component field to another two-component field: 

PI : ‘(?J’,tT) H “((Pl?J)““, (Pl?J)‘i) , 

PT : ‘(w”” ,df) H ‘((P,tw)~, (P,tw)“) , 

where wab is a symmetric, traceless tensor field and “(., .) 
indicates the transposition. In this sense, Pl and Pt are 
represented as 

pb = 

( 

4e-“8 0 
0 ae-48 ’ > 

(31) 

P,’ = 
-2e-w,3e2+ 

(, 

0 
0 -2e-w&%+ 

> 

Thus P;P, : ‘(v”,v”) H “((PjPlv)“, (PtP$) is repre- 
sented as 

PiPI = 
-ae-=+ae”B 0 

0 -ae-=+wa > 

2A +@I R 0 zz 
0 2A +c2) R > ’ (32) 

where A = -D,Do and (‘)I2 are the Laplacian and the 
scalar curvature, respectively, defined by the covariant 
derivative (Da) with respect to em&b. Similarly, PIP!: 

“(W”“, wii) H “((PIP~w)““, (P,P~w)“) is represented 
as 

PIPi = 
-&-d&-2’#a 0 

0 --8e-ba,-WS 
> 

0 
2A-2c2)R ’ > 

(33) 

Therefore 
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det”“P,tP, = det’(2A + (@)R) , 

det’*“PlP,t = det’(2A - 2@)R) . 

In our model of locally flat tori (4 = lnV=spatially con- 
stant), thus, 

d&“PfPl = det”“PIPf = det’(2A) . 

Finally, we obtain 

z = N J [d&pa] [dv rh] [cm] 

xexp i (paiA+aV -Ml) . 
(J > 

(34) 

The integral region for Ta,? should be understood as 
on the moduli space, Mg=,: As is indicated in Eq. (28), 
Diffo(C) (the diffeomorphism group on C homotopic to 
1) has been factorized from the path integral. What is re- 
ally needed to be factorized is the whole diffeomorphism 
group on C, Diff(C). Note that [15,16] 

M, N Riem(C)/Gw,l x Diff(C) 

N [Riem(W&,,l x Difh@)l/Gm 
N H+/PSL(2,2) N D(H+)/ .-+ 

Here GM~ := Diff(C)/Diff@) is the mapping-class 
group for C and GMC N PSL(2,Z) for C N T2 (i.e., a 
group of 2 x 2 unimodular matrices with integer elements, 
module sign). D(H+) is the fundamental region in H+ 
(upper half-plane) with respect to the action of PSL(2, Z) 
(e.g., the Dirichlet region D = {z E H+I [Rezl < i, 
Itl 2 1)) and / N indicates the identification (T’,T’) - 
-(T”,?) on the boundary of D [15,16]. Thus the inte- 
gral region for (TI,?) in Eq. (34) should be understood 
as over Mg=, rather than over H+, considering that we 
have factorized the volume of the mapping-class group 
GM~ N PSL(2,Z) as well Diffo(C) from the path inte- 
gral. 

If we integrate out the momenta pa and CT in Eq. (34), 
we get 
I 

z=Nj[&] [~][dN]exp(i~dtN(t){~~[(i’)a+(i1)a]-~~2+fi(~2)3/2f(~~-1~2}) . 

(35) 

I 
Note that the kinetic term for (T’,?) in the action is 
proportional to Ba&?+B and the last term in the action 
is proportional to the nonholomorphic Eisenstein series 
G(T, $) [see below Eq. (18)]. Thus 2 is modular invariant 

since both the measure & and the action are modular 
invariant. 

B. Estimation of the functional determinant 
for the matter 

Now we estimate the path integral for the matter ?/, in 
Eq. (25). Our aim is to obtain the effective action of the 
form W[V,T~(.),T’(.)] by integrating out quantum fluc- 
tuations of the matter. Generalizing the framework to 
the in-in formalism and getting W[V+,7+; VT,7-l, one 
can discuss the validity conditions for the semiclassical 
treatment [7], Eq. (1). At this stage, the peculiarity of the 
system including gravity is prominent. In the standard 
treatment of a dissipative system, like a quantum Brow- 
nian motion [17], the interaction between the subsystem 
and the environment is described by a weak, linear cou- 
pling. In our case, however, there is no such interaction 
term between gravity (analogous to the subsystem) and 
matter (analogous to the environrn&). Rather, the in- 
teraction is bilinear in ti and nonlinear in (T’, ?) and 
V , as is seen from Eq. (7). Thus it requires a new treat- 
ment for a deeper analysis. Here we should be content 
with only a rough estimation of the effect of the nonlin- 
ear coupling. We want to estimate the partition function 
for the matter: 

= exp (-$iqT(.)]) 

Here ” : ” denotes the Riemannian signature quantity. 
We calculate using the metric gap = (l,I&,) with 
Eq. (3). It is difficult to estimate the above functional 
determinant exactly for a general function (+(.),T”(.)) 
and V(.). From the viewpoint of the quantum dissipa- 
tive system, this difficulty comes from the peculiarity of 
the interaction between gravity and matter. As discussed 
in the beginning of Sec. IIB, we treat the back-reaction 
problem in the sense that we investigate the modification 
of the background geometry due to matter, i.e., due to 
(Z’,p) calculated on the background spacetime. We have 
chosen as a background a flat spacetime. Thus, for the 
lowest order approximation, ye treat TI, ?, and V as 
constants, so that we can set R = 0. This treatment car- 
responds to the lowest order estimation of the functional 
form of the effective potential in standard quantum field 
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theory [28]. 
Thus we need to estimate the determinant of the op 

erator 

&z?y=- g(a; + v-Wa,a*) , 

where li and a2 have been inserted for the convenience 
of recovering a formula for pseudo-Riemannian signature. 
Now we need to solve the heat equation [28] 
&=+, 

limp(z y s) = 6@)(z - y) 
*ul ’ ’ 

Here I := (z” = t, t’, .$. Taking care of the periodicity 
in space, the solution is given by 
where 0 = Jd3rfi and a transformation of variable 
s [CT := $$(n,n)s-‘1 has been done to get the for- 
mula in the last line from the middle line. Noting that 

~~$~eC;~) = ‘$ C-’ for VC when C is inde- 

fkao = a &&p/2 *z; h v2 

Thus we get 
I I 

we replace h + iti, a + ia (no change in we replace h + iti, a + ia (no change in 
Ci, dZ”dr’dx2dx3 cf dx0dr’dxZdx3). This replace- Ci. dZ”dr’dx2dx3 cf dz0dr’dxZdx31. This redace- 
ment comes from the comparison between W = 

and fi = $lnDet [&(-@)I: 

Since we have used the expectation value of the energy- 
momentum tensor for the matter, (T,p), to couple with 
gravity [Eq. (13b) or (IS)], we need to use the in-in 
path-integral formalism, rather than the standard in- 
out formalism [5-71. Then the matter part of the ac- 
tion (pseudo-Riemannian) [see Eq. (7)] should be rein- 
terpreted as 
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where c stands for the closed-time contour and + and - stand for, respectively, the + branch and the - branch of 
the time contour. Then 
Since + and - components are separated completely, it 
is enough to look at only the + sector (or - sector). 

Now let us investigate the effective ac- 
tion S[G,?,V;N] = S,[T~,P,V;N] + W[T~,?,V;N], 
where S,[T~,V;N] is the reduced action for gravity in 
terms of the configuration variables and W[T*, P, V; N] 
is given by Eq. (37b). The effective action S[T*, ?, V; N] 
is what has appeared in the exponent in Eq. (35). It 
should be noted that the first variations of S[&T~,T”] 
with respect to N, V, and (T’,?) reproduce exactly 
Eqs. (21)-(24). This result shows the following two 
points. 

First, our approximation for the estimation of 

Det-“2[~(-82+~@],treating71,?,andVasifthey 

were constants so that fi = 0, corresponds to the approx- 
imation used to solve the semiclassical Einstein equation 
(1). Namely, (T,p), calculated on a flat background, is 
used in Eq. (1) to estim%te the deviation from the original 
background geometry. As is discussed at the beginning of 
Sec. IIB~, the latter approximation has been implemented 
for the tractability of the problem, at the expense of the 
self-consistency of Eq. (1). Such an approximation is 
what is usually meant by the term “back reaction,” and 
this may be the best we can do in practice. 

Second, regarding the path-integral expressions in the 
Lagrangian formalism, like Eq. (35): We can repro- 
duce Eq. (1) [or, equivalently, Eqs. (22)-(24)] from the 
phase part S, + W in the partition function Z with the 
matter part integrated and without taking care of the 
contributions from the measure for V and (TI,?) [see 
Eq. (35)]. However, we now know explicitly the nontriv- 
ial path-integral measure for V and (T’, 7”) as is shown in 
Eq. (35). There should be an O(C) correction to Eq. (1) 
coming from the path-integral measure for gap, and this 
correction will cause a nontrivial correction to the dy- 
namics of ga@. We shall come back to this point in the 
next section. 

V. DISCUSSION 

In this paper, we have investigated the semiclassical 
dynamics of the topological degrees of freedom, (T’,?), 
which has been seldom discussed so far. By reducing the 
spacetime dimension to 3, we could concentrate on the 
study of a finite number of topological modes and we 
could describe the back-reaction effect from matter to 
topological modes, explicitly. We observed a nontrivial 
dynamics caused by the back reaction. The back reaction 
makes the toroidal universe unstable: The shape of the 
torus becomes thinner and thinner, while its total two- 
volume becomes smaller and smaller. These are universal 
behaviors of the system independent of the initial condi- 
tions, which is justified by the asymptotic analysis of the 
set of dynamical equations. This observation implies the 
importance of the investigation of topological aspects for 
a deeper understanding of quantum gravity. Moreover, 
we could fix the path-integral measure for (T’,?) and 
V and observe that the partition function is expressed 
in terms of the canonical variables for the reduced phase 
space with the standard Liouville measure. 

Let us note a few points regarding the path-integral 
measure. 

We obtained the path-integral expression on the re- 
duced phase space with the Liouville measure [Eq. (34)], 
while the path integral on the configuration space re- 
quires a nontrivial measure [Eq. (35)]. Indeed, the com- 
bination $$ is essential to make the partition func- 
tion modular invariant. In our model, the semiclassi- 
cal Einstein equation (1) corresponds to Eqs. (21)-(24) 
and they are derived &om the variation of the expo- 
nent in Eqs. (34) or (35). It means that, from the 
viewpoint of the Lagrangian formalism, the semiclassi- 
cal Einstein equation is derived from the variation of 
the phase part in the partition function, with the mea- 
sure factor untouched. Thus the measure factor gives 
the O(h) correction to Eq. (1). In our model, the term 
J”dtN(t)fi(21116 + 4 1nV) can be added to the action 
as a correction. [Note the time reparametrization invari- 
ance implied in Eq. (34).] Then it is a nontrivial question 
worthwhile to investigate which is better as the semiclas- 
sical description, the semiclassical Einstein equation in 
terms of the canonical variables [Eqs. (21)-(24) in our 
case], or the same in terms of the configuration variables 
with suitable corrections originating from the measure. If 
we perform the path integral exactly, both the canonical 
and Lagrangian formalisms will give equivalent results, 
but they will not be equivalent within the accuracy of 
the semiclassical approximation. 

Another important problem is linked with the validity 
of the minisuperspace treatment. We have investigated 
the homogeneous model, which is equivalent to assuming 
N = N(t), V = V(t) [see the discussion in Sec. IVA, 
below Eq. (2771. We can set this Ansatz since it is com- 
patible with the dynamics. This treatment corresponds 
to the minisuperspace approach in quantum cosmology. 
Though such a treatment is completely self-consistent, 
it is important to question to what extent such a treat- 
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ment reflects the original full quantum theory faithfully. 
From the viewpoint of the original full system, the re- 
strictions are regarded as extra constraints on the phase 
space. These constraints can modify the path integral 
measure for the reduced variables (minisuperspace vari- 
ables). Since this problem is a fundamental one, it should 
be investigated separately. Our model may be a good test 
candidate to investigate this point in detail. 
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APPENDIX A: BRIEF SUMMARY 
ON THE MODULI SPACE 

We give here a concise summary on the moduli space 
just for fixing the terminology and notations used in 
Secs. III and IV. See, e.g., 115,161 for more detailed in- 
formation. 

Let C be a two-dimensional, compact, closed, ori- 
entable manifold with genus g. The moduli space M, of 
C is defined as M, N Riem(C)/G~,,~ x Diff(C), where 
Riem(C) is a space of all Riemannian metrics on C, Gw+ 
is for the Weyl group, and Diff (C) is for the diffeomor- 
phism group on C. The universal covering space of M, 
is called the Teichmiiller space. Now the tangent space 
of M,, T(M,), can be investigated as follows: Any vari- 
ation of the spatial metric 6h,b E T(Riem(C)) can be 
decomposed into the trace part and the traceless part; 
the latter is furthermore decomposed into the diffeomor- 
phism 6Dhob and the moduli deformation 6Mhnb: 

6h,b = b&a + 6Dhob -t 6Mhab 

= Gwh,a + (P~u),a + L.a6rA , (Al) 

where 

(A24 

(fiv)ab = Dc,% + Dav, - D,uChas for 3,a , Pb) 

Here {T~}A=~,...,~~~~M, are the Teichmiiller parameters 
specifying a point in M,. A natural inner product on 
T(FLiem(C)) is introduced as 
(A,B) := ; J, d=zJiEhaChbdA,aB,.j 

for VAA,a,V&, E T(Ftiem(C)) , (A3) 

where a is the Planck length, inserted to adjust the phys- 
ical dimension. Then the tangent space of the moduli 
space, T(M,), can be characterized by the set of all 
symmetric, traceless (covariant) tensors which are per- 
pendicular to T(Diff(C)) with respect to the inner prod- 
uct (A3), the latter condition being equivalent to the 
condition 

(P,tu$’ = -2D&” = 0 (A41 

for w E T*(M,). Thus dimRM, = dimRT*(M,) = 
dimRKerP!, which is known as =O, =2, and = 6g - 6 for 
g = 0, g = 1, and g 2 2, respectively. It is also known 

that dimBKerP1 - dimRKerPf = 6 - 6g (Riemann- 
Roth theorem). For the case of a torus (g = I), then, 
dimRM = 2 and dimRKerP1 = 2. Thus two Teichmiiller 
parameters (T’,T”) are needed to describe the modular 
deformations GMh,a E T(M,=l) and two independent 
vectors {x~}~=~,~ are needed as the basis of KerPl. 

Let {7a,a)a=l,z,...,dim,M, be the basis of T(M,) and 
{~Anb}~=1,2,...,di~=~~ be the basis of T*(M,). They 
can be chosen to satisfy (qA,fi) = JAM. Then they 
define a metric on Mg=* (the W&Peterson metric), in- 
duced from the inner product, Eq. (A3), on T(Riem(C)): 

GAB = (%, fi) I 

(A51 
GAB = (@, qB) = inverse matrix of PPB 

APPENDIX B: THE JACOBIAN ASSOCIATED 
WITH A CHANGE OF INTEGRAL VARIABLE 

Let us note a convenient method’to specify the Jaco- 
bian associated with a change of integral variables. (See, 
e.g., 1151.1 

If a line element ds is given on a space of integral vari- 
ables (xA, A = 1,2,. ,n) as ds2 = GasdXAdXB =: 

(dX, dX), then d”Xm is a natural integral measure, 
where &%? takes care of the Jacobian factor. Sup- 
pose we change the variables from X” to X*‘; then, 
dRX’- is the corresponding integral measure for 
the new variables. Now a convenient way to find out 
the expression for m is (1) express 6XA in terms 

of 6XA’, aXA = $6X”‘, (2) then express (6X,6X) 

in terms of 6X’, (&X,6X) = izi, i:i, (6XA’,6XB’) 

(this should be equivalent to GA~~,GX~‘~X~‘), and 
(3) then determine the Jacobian J by setting 1 = 
J S d”bX’ exp[- (8X, 6X)], since this should be equiva- 
lent to 1 = J(detG’/n)-‘1’. (The factor ?r is usually 
unimportant and omitted.) 



MASAFUMI SBRIU 53 
APPENDIX C: A FORMULA 
FOR THE 6 FUNCTION 

Let us derive a formula which modifies an integral in- 
eluding 6(A(Z)) into a more practical form. Here A is a 
linear operator possibly with zero modes. 

Let us consider an integral, I = SdZa(AZ)f(Z). Let 
{eA} (A = 1,2,. , rn = dimKerA) be the zero modes 
for A. Then any ele_ment I of a vector spa+ce V can be 
decomposed as CS = X + Ca pa+, where X E VfKerA. 
Now we change the integral variables from 5 to (z,pa). 
Then (5,s) = (*,Iz?) + (GA,@)p~p~, where (.,.) is 
a suitable inner product, which is assumed to be given. 
Thus according to Appendix B, the associated Jacobian 
J becomes .7 = det “‘(‘I+, ‘PB). Thus 
= 
I 

d~det”2(~A,~B)(det’A)-1f(~ = 8,p3 , 

where an equality 6(A@ = (d&/A)-l&(2) when d E 
V/KerA has been used in the last line. (This equality 
can be shown easily by the variable change from 2 to _ 
Y = Ay.) Therefore we have obtained a formula 

J 
dZG(AZ))f(Z) 

= 
s 

dp’det”2(@A, ‘%?,B)(det’A)-‘f(T = 8,p3 
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