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Colliding plane waves in Einstein-Maxwell-dilaton fields 
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Within the metric structure endowed with two orthogonal spacelike Killing vectors a class of 
solutions of the Einstein-Maxwell-dilaton field equations is presented. Two explicitly given sub- 
classes of solutions bear an interpretation as colliding plane waves in the low-energy limit of the 
h&erotic string theory. 
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I. INTRODUCTION 

The study of the gravitational interaction coupled to 
the Maxwell and dilaton fields has been the subject of 
recent investigations related to h&erotic string theory. 
Dilaton fields coupled to Einstein-Maxwell fields appear 
in a natural manner in the low-energy effective action in 
string theory and as a result of a dimensional reduction of 
the Kaluza-Klein Lagrangian. It has been realized that 
the low-energy effective field, which describes string the- 
ory, contains solutions endowed with qualitatively differ- 
ent features from those that appear in ordinary Einstein 
gravity [l]. 

Lately it has been found that plane wave geometries 
are exact solutions for string theory to all orders of string 
tension parameter [2]. It is therefore of interest to con- 
sider the collision of plane gravitational waves with elec- 
tromagnetic and dilaton fields. In fact, some solutions 
of tbis kind have already been presented by Giirses and 
Sermutlu [3]. 

In the context of general relativity the topic of colliding 
plane gravitational waves has been widely explored and 
colliding wave solutions with scalar fields have been found 
too. However, those scalar fields were weakly coupled to 
the electromagnetic field [4], while the most intriguing 
features of string gravity are due to the peculiar nature 
of the dilaton h&erotic coupling to vector fields. Here we 
consider the stringy gravity model including vector fields 
for colliding plane gravitational waves, i.e., the Einstein- 
Maxwell-dilaton (EMD) system with an arbitrary dilaton 
coupling constant in the framework of interacting plane 
waves. 

We consider the action [5] 

S = 
s 

d%,Kg{-R+ 2(V@)’ + .-za*Fz}, (1) 

where g = det(g,,), p,v = 0,1,2,3. R is the scalar 
curvature, F,,y is the Maxwell field, and @ is the dila- 
ton field. The constant a is a free parameter which 
governs the strength of the coupling of the dilaton to 
the Maxwell field. Special theories are contained in (1). 
For a = 6, the action (1) leads to the K&ma-Klein 
field equations obtained from the dimensional reduction 
of the five-dimensional Einstein vacuum equations. For 
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a = 1, the action (1) coincides with the low-energy limit 
of string theory with a vanishing dilaton potential [6]. Fi- 
nally, in the, extreme limit a = 0, (1) yields the Einstein- 
Maxwell theory minimally coupled to the scalar field. 

The field equations obtained from (1) are 

(e-z=*F’“);, = 0, (2) 

R,, = 2@,,@,, + 2e-Za*(F,xF,X - +gpvF,pFa’P), (4) 

where a semicolon denotes a covariant derivative with 
respect to g,,“. A few exact solutions of Eqs. (2)-(4) 
are known; they reveal many ~interesting features of the 
dilaton field (see [I] and references therein). In this paper 
we present solutions to Eqs. (2)-(4) with a colliding plane 
wave interpretation. We first present the solutions in 
the interaction region and then extend them beyond the 
null boundaries. In the next section we outline the usual 
representation of the colliding plane wave spacetime in 
general relativity and the corresponding field equations. 
In Sec. III we present the solutions explicitly and check 
that the appropriate boundary conditions for colliding 
waves are satisfied. In Sic. IV we comment on the nature 
of the singularity and finally we draw some conclusions 
in Sec. V. 

II. THE COLLIDING WAVES SPACETIME AND 
THE FIELD EQUATIONS 

A spacetime describing the collision of plane waves ad- 
mits two spacelike Killing vector fields. In this work we 
take them to be orthogonal. For such a case, we consider 
the metric gwv and the U(1) gauge potential A, as given 
by 

dsZ = 2e-“dudv + e-“(6”dy’ + e”dz=), (5) 

A, = (O,‘J,A,O), (6) 
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where M = A&w), U = U(u,21), V = V(u,v), A = 
A(~L,v), and the electromagnetic field is Fuy = A,,, - 

A,,,. 
The spacetime for the collision of plane waves is di- 

vided into four disjoint regions--region I (of interaction) 
0 5 u 5 1, 0 5 2) 5 1, region II, u < 0, 0 < 2) < 1, and 
region III, 0 < u < 1, v < O-where the incoming waves 
“live.” The boundaries between region I and regions II 
and III are u = 0 and v = 0. Finally, region IV, u < 0, 
v < 0, is considered the region which corresponds to the 
spacetime before the passing of any wave. The line el- 
ement (5) applies to the entire spacetime; however, the 
metric functions U, V and M must take different forms 
in the four regions. 

The field equations (2)-(4) turn out to be 

-2A,,, = (Vu - a*,&% + (Vu -a*,,)& , (7) 

UU” = u,JJ,v , (8) 

ZM,,, = - 2U,,” f UJJ,, + y”y” + 4@,,@,, , (9) 

qu” - U,,l(, - U,,V,, - 4e”+V-a*A,,,A,u = 0, (10) 

2*,wJ - ~,,a,~ - ~,,a,, + $P+v-~*~,u~p = 0, (ii) 

-2M,uU,u - XJ,,, + U,: + V$ 

+4@” + 4e”+V-e*Afu = 0, (12) 

-2M,,U,, - XJ,,, + U,; + y: 

+4@= + 4e”+“-**Afs = 0. (13) 

The dilaton field + = @(u,v). Note that Eq. (9) can 
be derived from the other equations. Equation (8) can 
be immediately integrated: 

e-” = a(u) + b(v), (14) 

with a and b being arbitrary functions of u and u, respec- 
tively. 

The corresponding components of the Weyl tensor are 
computed to be 

a: = -& - V&J,v - M,a)l, (15) 

CJ; = -;p& - yaJ,u -WA (16) 

1 
@ = p&L”, a; = a; = 0. (17) 

We shall give in the next section the solution for region I 
and then we discuss matching to the precolliding regions. 

III. THE EMD SOLUTIONS 

Although one can proceed with the above (u,v)- 
dependence formulation, it is more effective, from the 
integration point of view, to use a (p, z) dependence, i.e., 
to look for solutions for the EMD Eqs. (2)-(4) for a 
diagonal line element of the form 

ds2 = $(dp’ - dz’) + p[pf-‘dz’ + p-‘fdy’], (18) 

with 0, and 8, being the two commuting spacelike Killing 
vectors and f and k being functions of p and z only. We 
can arrive at (18) from the metric (5) by defining 

p=C? -’ = a(u) + b(v), 

z = a(u) -b(v), (19) 

and identifying 2k -$ -(M + V + U) - In [2a’(u)b’(v)] 
and f -i exp [-(V + U)], where a’(u) and b’(v) denote 
the derivatives in u and u respectively. 

The method used to determine the sought solutions is 
harmonic mapping combined with the algebra associated 
with the group SL(2,R), which reduce the integration 
of Einstein’s equations to an algebraic problem (see [7] 
and references therein). Other methods to obtain solu- 
tions have been addressed, such as the inverse scattering 
method [8], however, we believe that by means of the 
harmonic map one gets a wider class of solutions in a 
more straightforward manner. 

A class of solutions for the EMD Eqs. (2)-(4) is given 

by 

(2% 

A = A 
u 

= (asC1 + Q-m 
(6% + 6%) ’ 

(22) 

where Cl and CZ denote functions on the variable ~(p, z) 
which is determined by the harmonic map [Eq. (14) in 
Ref. [7]]; for each pair (&,C2) we have a different so- 
lution for Eqs. (20)-(22) [see Eqs. (25) and (27) below]; 
n,, n,,, fo, al, a~, as, and a4 are constants, and y and /3 
are a- dependent parameters: 

?=&+=g& (23) 

The functions X(p, z) and ~(p, 2) are each a solution of 
the equation 

4,pp + $. - +,.z = 0. (24) 

Among the above solutions (20)-(22), we distinguish two 
cases. 

Case (i): 

4a1azfo +&1+ cyZ)(a1a4 - a3a2)2 = 0, (25) 

where 91 and q2 are constants. The corresponding equa- 
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tions for k, the transversal gravitational degree of free- 
dom, are 

which are integrable once one specifies X(p, z) and ~(p, z), 
solutions of Eq. (24). 

Case (ii): 

4&o - &1+ aZ)(a1a4 - a&?)2 = 0. (27) 

The corresponding equations for k are 

kz = P&L 

k,, = $(A$ + X:,> (28) 

which, again, are integrable as soon as one specifies 
X(p,z), the solution of Eq. (24). 

The solutions of Eq. (24) are of the form 

4 = Klnp + L{A, cos[w(t + zo)]Jo(wp)} 

+L{Bu cos[+ + to)]No(wp)} 

where K is a constant, L{} stands for arbitrary linear 
combinations of the terms in curly brackets, and &(wp) 
and No(wp) are the Bessel and Neumann functions of 
zero order, respectively. 

An explicit relationship between the coordinates (p, z) 
of the metric (18) and the null coordinates (u,u) of the 
metric (5) is given when we select a(u) = $ - u” and 

b(v) = $ - v”‘; then we have 

psl-un-v”, z=lJm-un, (30) 

with rn and n being constants determined by boundary 
conditions. The null coordinates (u, u) are more suitable 
for the analysis of the matching conditions, which we 
address in the next subsection. 

Continuity of the metric on the null boundary 

The solutions for cases (i) and (ii) can be interpreted 
as the gravitational field in the interaction region arising 
after the collision of two gravitational plane waves only 
if certain boundary conditions on the null hypersurfaces 
u = 0 and u = 0 are satisfied [9]. With the chosen co- 
ordinate relation, Eq. (30), one has to verify only the 
continuity on 21 = 0 and u = 0 of the metric coefficient 
guv = 4rnn~~-~v~-~e~“f-~, which arises when we sub- 
stitute Eq. (30) in (18), and taking the expression for f, 
Eq. (20), one arrives at 

& = 4mnu”-‘vm-’ 2k -1 e f. {aI& +a2c,}7cA. (31) 

We shall prove separately the continuity on w = 0 and 
VJ = 0 of the above appearing factors: 

(@I + ai%)%-A, (32) 

and ~“-~P--le~~. (33) 

For the case (i), without loss of generality, we can take 
as solutions for 7 and X the functions [lo] 

z+l 
7 = dlarccosh - 1 1 P 

=dlln 
z + 1 f J(z + 1)2 - pz 

P 

1-Z 
X = dzarccosh _ [ 1 P 

1-zfd/(1-tF/f2 

P 

(34) 

where dl and dz are constants. Substituting the ex- 
pressions (34) into (32) and taking separately the limits 
u + 0 and v + 0 (noting that u = 0 corresponds to. 
p = -z + 1 while +J = 0 corresponds to p = z + l), it is 
easy to see that the factor (32) does not diverge on u = 0 
or on u = 0. Thus we are led to the factor (33), i.e., 
u”-‘vm-‘eZk. To ensure smooth matching between the 
interaction and the precollision regions, the function ezk 
must diverge as ulmn and &rn on u = 0 and u = 0, re- 
spectively. This divergence in ezk comes from the terms 
of Eqs. (34); to show that, we note from Eqs. (26) that 
one can split the function k as 

k= 
c2 + 1 
Tb - --/aqa - 8) ke - $+ (35) 

consequently, 

where kg, k,, and k. are solutions of the following set of 
equations: 

kg,. = P&& 

(37) 
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(39) 

Integrating Eqs. (39) with X and 7 given by Eqs. (34), 
it turns out that the factor @Sk* does not diverge ei- 
ther on u = 0 or on 21 = 0. Furthermore, performing 
an analogous analysis as in [lo], it can be shown that 7 
contributes to the function k,, via Eqs. (38), with the 
following term on 2) = 0: 

-id; ln[(z + 1)’ - $1 

= -id; In (v”) + bounded terms, 

which gives the desired behaviour if K,dt = 2- 2. Anal- 
ogously, X contributes to the function kg, via Eqs. (37), 
with a term on u = 0 of the form 

-;d;In[(l-z)‘-p’] 

= -id; In (u”) + bounded terms 

which behaves properly if Kzdi = 2 - i. 
We can use solutions for X and 7 such as those given 

by Eq. (29) involving more terms; however, all other 
contributions of X and 7 to the function eak are found to 
be bounded on u = 0, ?J = 0. Therefore, provided there 
exist at least two terms of the form given by Eqs. (34), 
in the case (i) verification of the boundary conditions 
relevant to the colliding wave problem is ensured if the 
constants fulfill the conditions 

Kld;=2-i, Kzd;=2-;. (40) 

For the case (ii) the previous analysis applies when one 
chooses 

z+l 
X = clarccosh ~ [ 1 + czarccosh * , 

P [ 1 P 
(41) 

and 7, for instance, can be chosen as in (34). Again, 
it can be shown that the term (32) does not diverge on 
either u = 0 or 2) = 0. In relation to the term (33), 
the constants c1 and c2 can be adjusted conveniently in 
order to achieve a smooth matching of the solution on 
u = 0 and 2) = 0. The previous analysis showed that the 
solutions given by Eqs. (25)-(26) subjected to (40) and 
(27)-(28) can be interpreted as colliding wave fields. 

Behavior of the flelds on the null boundaries 

From Eq. (22) the nonvanishing components of the 
electromagnetic field turn out to be 

=la4 - a3a2 
If we choose, for example, 7 as in Eq. (34) it is straight- 
forward to show, from Eq. (25) for cake (i) and from Eq. 
(27) for case (ii), that Fpy does not diverge on u = 0 nor 
on tl= 0. 

For the dilaton field @, in the case (i), substituting 
Eqs. (25) and (34) in Eq. (21) and taking separately the 
limitsu+O(p+l--E)andv+O(p+l+z)itcanbe 
shown that ICY = e- ‘-* does not diverge on u = 0 nor on 
u = 0 and this behavior is independent of the constants 
T,,, dl, dz, q1, qz, a. The analogous result occurs for 
case (ii) substituting in (21) Eqs. (27) and (34). For the 
precolliding region IV (u 5 0, ZI < 0), for the case (i), 
the dilaton field becomes a constant, n2 = K:, while for 
the case (ii) the value of n vanishes. 

IV. SINGULARITIES AND DISCONTINUITIES 
OF THE CURVATURE ALONG THE NULL 

BOUNDARIES 

We now discuss briefly the behavior of the fields on the 
null boundaries u = 0 and 21 = 0 in the context of the 
field equations. In order to do this we pass from regions 
I to region II and III using Penrose’s procedure [11]: the 
continuations of the fields from region I to the remaining 
regions II and III, and further to IV, can be achieved by 
replacing the coordinates u and 21 in accordance with 

u -+ uiqu), tl + dqv). (44) 

As a consequence of this procedure, singularities or dis- 
continuities (or both) of the Riemann tensor can arise on 
the null hypersurfaces. To determine their behavior we 
follow the analysis accomplished by Chandrasekhar and 
Xanthopoulos [12]. In their paper they showed that the 
quantities involving first derivatives of the metric func- 
tions can at most suffer a O-function discontinuity, while 
those quantities with second derivatives in the coordi- 
nates u or 21 can involve &function singularities. With 
this criterion, we can characterize the behavior of the 
fields, Einstein tensor components, and curvature on the 
null boundaries. 

From the field Eqs. (7)-(13) we can see that they in- 
volve first derivatives and terms of the form of mixed 
derivatives @/a,&,, but mixed derivatives do not lead 
to &futiction distributions; thus the fields are consis- 
tent on the null boundaries, provided we select U,,, and 
U,,, such that this second derivative does not lead to 6- 
function behavior. The curvature components (15)-(17) 
behave as they should on null boundaries; for a detailed 
general analysis in this respect see [13]. 

Singularities on the focusing hypersurface 

Colliding plane wave solutions exhibit singularities at 
the SO called focusing surface. The origin of this singular- 
ity has been discussed in [14]. From the metric (18), we 
realize that singularities can arise when f = 0 or if ezk di- 
verges. Both behaviors can occur when p = 1 -urn -2i” = 
0. For the case (i), we balance each term separately by 
arranging the constants properly. For f we have (writing 
only the terms which depend on p) 
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Expanding the term in parentheses, we take the highest 
power in p, p(-+‘ldl+qldl)T. This term must balance the 
term outside the parentheses. If the constants can be 
adjusted in such a manner that dz - qld1.y + y(-qzdl + 
qldl) > 0, or dz > qzdl7, then this term does not di- 
verge at p = 0. Examining now the factsr eZk, from the 
integration of Eqs. (37)-(39) the terms which diverge at 
p=Oare 

p N - pK2d:+K1d:+2Ksdzdl x (bounded terms). 

Therefore the singularity will be avoided if we impose one 
more condition: 

Consequently, imposing on the constants the conditions 
determined above, the singularity can be avoided for the 
case (i). 

For the case (ii) the term corresponding to eZk can 
always be arranged to be not divergent, however, for f 
we have 

e-‘(al~ + a.$ N bounded terms + ()pc’+c2(lnp)a1d1~. 

The last term cannot be balanced with another term; 
thus in this case the singularity cannot be avoided. 

V. FINAL REMARKS 

In this paper we considered the problem of the field 
arising as a result of collision of plane gravitational waves 
in Einstein-Maxwell-dilaton fields. Two solutions of the 
Einstein-Maxwell-dilaton equations interpretable as col- 
liding gravitational plane waves are explicitly given. The 
metric is diagonal; this means that the two commuting 
Killing vectors are orthogonal. Verification of the bound- 
ary conditions relevant to the colliding wave problem is 
determined essentially by the physical structure of the 
incoming plane waves, whose “amplitude” must be ad- 
justed [Eqs. (40)] depending on the values of the coupling 
constant a, the constant of the dilaton field Ta, and the 
constants ql, q2 of the metric functions. For the bound- 
ary conditions the waves act separately on each boundary 
u = 0 and 1) = 0. The behavior of the fields on the null 
boundaries, is discussed briefly. In relation to the singu- 
larity developed after the waves collide, it occurs that to 
avoid the singularity, for our first case, conditions must 
be imposed which involve both amplitudes and also the 
coupling constant (Y. In contrast, for the case (ii), the sin- 
gularity cannot be avoided by tuning the free parameters 
properly. It remains as an open question if the solutions 
presented here can be extended to all orders in the string 
tension parameter. 
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