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Schwarzschild black hole immersed in a homogeneous electromagnetic field 
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An exact and simple enough solution of the Einstein-Maxwell field equations is presented. This 
electrovacuum static axisymmetric solution possesses a clear physical interpretation: it is an external 
field of nonrotating uncharged mass immersed in homogeneous external electromagnetic and gravita- 
tional fields-the Bert&ti-Robinson universe. Unlike the well known Ernst solution for a black hale 
in the Melvin universe, in our solution the black hole is immersed in a space-time with a completely 
spatially homogeneous magnetic (or electric) field and with a different (R’ x S’) topology. The 
intluence of this specific background space-time topology, the structure of curvature singularities, 
the relation between the laws of motion, and the condition of the absence of any unphysical non- 
curvature singularities as well as some other questions are considered. A brief sketch of the solution 
construction method used here and of its various applications, a comparison with other methods, 
as well as a general discussion concerning the construction of solutions for interacting fields are 
presented in the Appendix. 

PACS number(s): 04.40.Nr, 04.20.Jb, 04.70.B~ 
I. INTRODUCTION 

The development in the previous two decades of a num- 
ber of powerful solution-generating techniques and some 
direct methods for the construction of stationary axisym- 
metric solutions of the vacuum Einstein equations as well 
as of the electrovacuum Einstein-Maxwell field equations 
provided the derivation in a more or less explicit form of 
wide families of solutions with an arbitrary large num- 
ber of free parameters. First of all, these are the solu- 
tions derived by Biicklund transformations (I,21 (and for 
the Minkowski flat background in an even more explicit 
determinant form [3]), Belinskii-Zakharov vacuum soli- 
tons [4,5] and their determinant form [6], explicit form of 
vacuum solutions derived by symmetry, or Hoenselaers- 
Kinnersley-Xanthopoulos (HKX) transformations [7-lo], 
electrovacuum N-soliton solutions [11,12] with the deter- 

minant form of these solutions given in [13,14], or in an- 
other B&zklund transformation [15] or the potential space 
[16] contexts, as well as a very large class of solutions in 
which the Ernst potentials on the symmetry axes p = 0 
are arbitrary rational functions of the t coordinate. Its 
derivation was described in detail in (141 and its general 
explicit determinant form has been presented in [17]. 

However, in spite of such a large variety of formally 
known stationary axisymmetric solutions, only a re- 

stricted number of them possess some interesting phys- 
ical mterpretations. An obvious majority of the so- 
lutions derived by these methods belongs to the most 
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simply interpretable subclass of stationary axisymmetric 
solutions-asymptotically flat ones. A considerable num- 
ber of physically interesting solutions are known which 
are not asymptotically flat. Among the last ones are MI- 
ious electromagnetic ?miverses,” such as the Melvin so- 
lution [18] (earlier, however, this solution was derived by 
Bonnor [19]) and the Bert&ti-Robinson solution [20,21] 

(with z homogeneous or completely spatially homoge- 
neous magnetic fields, respectively) as well as the par- 
ticlelike solutions with. additional physically interesting 
parameters, the C metric [22] and the more general 
Plebaliski-Demiariski solution 1231, or the solutions which 
describe the interactions of black holes with various ex- 
ternal fields, such as the Schwarsscbild black hole on the 
Weyl static background [24], the Ernst “electrified C met- 
ric” [25], which demonstrated the disappearance of nodal 
singularity on the symmetry axis for the special choice of 

parameters which provides the balance between the elec- 
tromagnetic forces and acceleration of each of the two 
black holes, or at last, the extremely elegant Ernst solu- 
tion [ZS] for the Schwarzschild black hole in the Melvin 
magnetic universe as well as its generalization for the 
Kerr-Newman black hole immersed in this magnetic uni- 
verse [27]. 

The main purpose of this paper is to present some 
three-parameter family of exact static axisymmetric elec- 
trovacuum solutions given in a simple form which pos- 
sesses a clear physical interpretation: tbis is a so- 
lution for the external gravitational and electromag- 
netic fields outside an uncharged nonrotating black hole 
(i.e., Schwarzschild black hole) immersed in a back- 
ground space-time with spatially homogeneous pure mag- 
netic (or, after a dual rotation, pure electric) field-the 
Bert&ti-Robinson electromagnetic universe. 

A’number of interesting properties of this solution and 
important differences with the Ernst solution for a black 
1853 0 1996 The American Physical Society 
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hole in the Melvin universe will be discussed in the sub- 
sequent sections. These are the physical interpretation 
of parameters, the connection between the law of motion 
and the conditions for the absence of nodal singularities, 
the existence of nonzero acceleration of the black hole at 

rest in the background field (whose value is dependent 

upon the position of a black hole in this field), the influ- 
ence of the specific background topology (which admits 
the existence in this space-time of two parallel axes of 
symmetry), and some others. 

Because of the simplicity of the solution presented here 
and its direct physical interpretation, as well as of its 
nontrivial physical, geometrical, and topological proper- 
ties, we hope it could be found interesting and useful for 
various purposes. 

At first we had not planned to include in this paper any 

details concerning the method used for the derivation of 
the solution as well as some other pure mathematical 
questions, because such descriptions could overshadow 
the discussion of various physical aspects. We then re- 
stricted our explanation to a short comment only that we 
use the integral equation method developed in [32] and 
described later in more detail in [14], or even more pre- 
cisely, we had referred to, derived by this method and 
presented in 1171, a general explicit form of the class 

of solutions, which Ernst potentials are defined by their 
boundary values on the axis of symmetry given as arbi- 
tnmy rational functions of the Weyl coordinate along this 
axis. 

Now, however, for benefit of the readers who are also 
interested in pure mathematical questions, we present an 
extended version of our paper supplied by the Appendix 
with rather detailed discussion of the method itself, its 
most important applications, and the comparison with 

other methods, reiterating (sometimes even in a more 
convenient form) some useful results. 

II. FORMAL SOLUTION IN BIPOLAR 
COORDINATES 

The most simple form (at external glance, at least) our 
solution assumes in bipolar coordinates {zI, yI, z2, yz}. 
This form is 

-b2(1 -Y;&: - l&,2 

(I1 + YZ12 
(1)

where {a,p} are the usual Weyl coordinates (stan- 
 

dard notations {p, z} for these coordinates xe not used 
here, and they are reserved for another more convenient 
pair of conformally flat coordinates). The Weyl coor- 
dinates {cx,fl} and every two of the four coordinates 
{ccl, yr, 12, yr} can be expressed in terms of any two oth- 
ers, due to the following relationship between them: 

a2 = m’(zf - l)(l - yf) = b’(z; + l)(l - y;) , 

0 = PI + ~ZIYI = Pz + b=wz> PL - Pz = 1 

The real parameters rn, b, and 1 will be the only essential 
parameters of our solution. The conformal ,factor f in 
(1) is given by the expression 

where the constant parameters “/ = b/m, 6 = l/n. The 
arbitrary real constant f. has to be chosen as f,, = 1; 
this is one of the necessary conditions for the absence of 
nodal singularities on the axis of symmetry. 

The two nonzero components of a complex electromag- 
netic potential a; (whose real parts are the correspond- 
ing components of the usual four-vector electromagnetic 
potential Ai) can be expressed in the form of 

which are the potentials of a pure magnetic field. 

III. EXPLICIT FORM OF THE SOLUTION IN 
CYLINDRICAL COORDINATES 

For the analysis of this solution it will be more conve- 
nient to use two other systems of coordinates: the “in- 
ternal” or Schwarzschild-like spherical coordinates {v, 0) 
and the “external” cylindrical coordinates {p, z} which 
are better adapted for the geometry of the background 
Bertotti-Robinson space-time. These coordinates are de- 
fined by the relations 

II = (T - m)/m, 22 = - sinh(t/b) , 

yl = COSB, yz = -cos(p/b) 

The coordinates {T, 6’) can be expressed in terms of {p, z} 
in the form 
R+ = I+m-bsinh~cose]‘+bZcosh2~sinZ~, (2) 

R- = 1 - rn - b sinh i cos e 
bl’ 

+ ba cash’ f sin’ e 
b 
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Then the metric (1) takes the form 

(3) 

where, in accordance with (2) T = ~(p, z), and the conformal factor is 

r-rn-mcos0-bsinh~+(l+m)cos~ ’ 

r-m+mcose-bsinh%+(l-m)cos~ 1 (4) 
c

The nonzero components of the complex electromagnetic 
potential are 

{G+,@+,}= i sinhi- EmsB 

I( 
b 

) 

, 

br 1- cos g [ 1 -T-?n-mm1 (5) 

The next step is to show that the background Bertotti- 
Robinson solution and Schwarzschild solution are limit- 
ing cases of the solution (2)-(5) and to clarify the physical 
interpretation of the parameters rn, b, and 1. 

IV. THE BACKGROUND LIMIT: rn = 0 

By settidg rn = 0 in (2)-(5) the background Bertotti- 
Robinson electromagnetic universe is obtained immedi- 
ately: 

ds2=~~~h2(~)dt2-ddp2-d~2-b2~in2(~)d~2, (6) 

with the complex electromagnetic potential in the form 

{@t,@,}={isinh(~),-b[l-cos(~)]} (7) 

To understand the nature of the parameter b, we con- 

sider the solutions (6) and (7) in more detail. First of 
all, we can see that the inverse value of the parameter 
b determines the strength of the electromagnetic [pure 
magnetic, as in (7)] field; the only nonzero component of 
this field in the orthonormal frame is 

This field completely vanishes in the limit b + ca. 

From the expression (6) for the background metric 
follows another, pure geometrical interpretation of the 
parameter b: two-sections {t = con&r = con&} of 
this space-time possess a homogeneous internal geome- 
try which coincides with the geometry of the usual two- 
sphere of radius b. Hence the space-time (6) is closed in 
p directions, and the radius of this closure is p = rb. 

If we consider the points of the axis p = 0 on these 
osg 

spheres as the poles, then the coordinate lines p will be 
directed along the meridians and the opposite (“antipo- 
da?‘) poles will constitute another, “antipodal,” axis of 
symmetry. The distance between these axes of symme- 
try is also rb; i.e., it coincides with the radius of closure 
of this space-time in p directions. When b + ca (while 
the values of p and t remain finite), the curvature of the 
two-surfaces {t = const,z = const} vanishes, and the 
radius of the closure becomes ‘infinite; i.e., this closure 

disappears and the space-time metric becomes flat: 

ds= = dt= - dp= - dz= - p=dlp= 

This simple analysis shows that, for any linear or ex- 
act nonlinear perturbations of this geometry (or of other 
fields in this space-time) produced by the sources placed 
on the axis p = 0, it would be natural to expect sxne 
“cylindrical mirror” effects, i.e., the appearance of focus- 
ing of the strength lines of these fields at the “antipodal” 
axis p = nb. This focusing can give rise to the presence 
of some singularities there, which can be interpreted as 
additional.sowces of these fields. 

Another interesting property of this background space- 
time is that in an arbitrary static frame, with the metric 
components of the form (6), the world line of any test 
particle at rest will not be geodesic provided its location 
does not coincide with the origin of this static frame. The 
acceleration of any such resting particle is given by the 
expression 

(hence W = 0 if and only if z = 0). At the same time it is 
useful to note that, because of the space-time symmetry, 
any space-time point can be chosen as the origin of some 
static i?ame with metric (6). 

Referring to the equivalence principle we can conjec- 
ture that for a black hole (at least of small enough mass) 

the similar situation takes place; to be at rest anywhere 
in scum static frame in the external field (6) a black hole 
must possess nonzero acceleration. This acceleration will 

be zero; i.e., the black hole will fall freely in this exter- 
nal gravitational field if and only if its location (in some 
sense) will coincide with the origin of the static frame. As 
we shall see from a further analysis of the presented exact 
solution, this is just the case, and this “application” of 
the equivalence principle to a black hole of a finite mass 
turns out to be quite correct. 
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V. THE SCHWARZSCHILD LIMIT: b -+ rn 

The electromagnetic field in the solution (2)-(5) in 
the limit b + co (keeping finite the values of p and 2) 
completely vanishes and metric (3) coincides with the 
Schwarzschild metric in its standard form 

&= = ~ r-2mdt2- 

T 
&dr2-~2(d0Z+sin2Bd~2)‘, 

where we have used the limiting relation between (p, z) 
and (Y, 0) coordinates 

p2=~(~-22m)sin20, z=tl+(r-m)cos@. 

We can conclude from this limiting case that the pa- 
rameter rn characterizes the mass of a black hole. Of 
course, in the presence of the external field, i.e., for finite 

values of b, the mass of the black hole can differ from 
the value of the parameter rn, being a function of rn and 
b (see the expression for the area of the horizon given 
below for the case 1 = 0): 

VI. “BUFFER ZONE” STRUCTURE OF THE 
SOLUTION FOR rn < T < rb 

If the mass of a black hole is small enough in compar- 

son with the characteristic scale of the external field, then 
the space-time outside the black hole splits on zones with 
different solution behavior. Thus, in the region nearest 
to a black hole T ,-w 2~72, the solution can be consid- 
ered as the Schwarsschild solution slowly perturbed by 
the external field. At larger distances from the black 
hole (rn < T < rb), we have a “buffer” zone where 
a proper field of the black hole decreased considerably 
but the “long-scale” in&xnce of the external field is not 
important yet. In this zone, the metric approaches the 

Minkowski space-time metric, and only for T Y nb the ge- 
ometry becomes the geometry of the Bert&ti-Robinson 
space-time which is locally perturbed (considerably, how- 
ever) by the existing distant black hole due to focusing 
effects caused by the topological properties of the back- 
ground space-time. 

VII. THE HORIZON 

As could be expected, there is a regular horizon whose 
location is given by the conditions 

H:{p=O, l- m<bsinhf<1+m}. (9) 

(The image of the horizon in these coordinates is simply 
a segment on the z axis, but this means the degeneration 
of these {p, z} coordinates on the horizon. This situation 
is completely similar to that one on the horizon in the 
Schwarzschild solution, where the horizon is described by 
the segment {p = 0,Z - rn 5 z 5 1 + rn}.) 

The metric components are regular functions of the co- 
ordinates near these points (other than the poles, which 
can be the points of local non-Euclidean structure of the 
geometry-see below about these singularities) and their 
behavior near the horizon can be determined in terms of 
the p2 expansions [for p --t 0 and t satisfying (9)]: 

Stt = Cb2 - 
12+m2+2bl sinh$)‘p’ 

4b4 [rn2 - (I - b sinh i)‘] 
+ WP4) , 

f= 
4m2 (b2 - 1’ + rn2 + 2bl sinh g)” p2 

[b2 + (1 7 m)2]2 [rn= - (I - b sinh f)‘] ’ o(p4) ’ 

9~~ _ 4b4 cash’ ($) [rn2 - (I- b sinh $)‘I 

(b2-~2+m2+2blsinh~)2 
+ O(P2) 

In the most physically interesting case 1 = 0, the area 
of the horizon of the free falling in the external field black 
hole is given by the nontrivial enough expression 

A = 47rm= 
2-l 

dFc 

VIII. CURVATURE SINGULARITIES 

At the points of the segment I? on the “opposite” axis 
of symmetry p = rb, with the same values of t as for 
the points of the horizon H, other irregularities of the 
space-time geometry are located. These points are 

I?: 
{ 

p=nb, 1-m<bsinh~<l+m}. 

These irregular points can be considered as additional 
field sources in the studied solution. To understand its 
nature in the most simple way, put our position on this 
second axis and “turn off’ the external electromagnetic 
field; i.e., consider the transformation 

p”p’=?rb-p 

in the solution (2)-(5) and calculate the limiting form 
of this solution for b + co. In this limit the external 

electromagnetic field vanishes, the horizon on the lirst 
axis will be ‘+ifted” to an infinitely large distance &rn 
the points of H, and a pure vacuum solution will remain, 

which can be considered (and this appears quite natural) 
as describing the character of the proper external field of 
this additional source. This limiting vacuum solution in 
the {r, 6’) coordinates, after the transformation 

r+r’=r-2m, 

takes the easily recognizable form 

ds2 = 7-l + 2m 2 7dt - &dr12 - .r2(d02 + sin’ 0 d@) . 

This is nothing but the field of the negative mars (-rn) 
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) 
located there. This source does not possess a horizon. 
The points of H, which correspond to T’ = 0, are the 
points of curvature singularity in our solution. It is clear 
that the appearance of this additional source is caused 
by the special kind of background space-time topology, 
i.e., by the closure of the physical three-space t = const 
in p directions. 

IX. THE LAWS OF MOTION AND EXISTENCE 
OF “NODAL” SINGULARITIES ON THE 

SYMMETRY AXES 

The solution (2)-(5) depends on three real parame- 
ters. As we have shown before, two of them, rn and b, 

are respectively the maas of a black hole on the first axis 

of symmetry (as well as the negative rnas8 of “induced” 
source on the opposite axis) and the external homoge- 
neous electromagnetic field. The third one, 1, determines 
the location of the black hole on the symmetry axis p = 0 

in the chosen static frame. 
As was mentioned in Sec. IV, in the background 

Bertotti-Robinson universe any world line of a particle 
resting in scune static frame (6) will not be geodesic pro- 
vided its position does not coincide with t,he origin of this 
frame. A similar situation takes place for a black hole in 
this background field, and the parameter 1 describes not 
only the location of a black hole on the axis p = 0, but 
its acceleration as well. 

However, it is clear that in the solution presented here 
there is no physical basis for nonzero black hole accelera- 
tion. As is well known now, such apparent contradiction 
with the laws of motion finds its solution in the appear- 
ance of additional singularities of a special kind. These 
are nodal singularities, which are not curvature singular- 

ities, but they consist of points of local non-Euclidean 
structure of the space-time geometry (L‘conical points”). 
These points can fill scnne finite or even infinite regions 
of the axis of symmetry. 

The appearance of such nodal singularities in the 
space-times where the equilibrium of the field sources 
has not been provided by sxne forces (or some non- 
gravitational interactions) has been observed in a num- 
ber of other solutions of this type (C metric [28,29], 
“multi-Schwarzschild” solutions [30], “double-Kerr” so- 

lution [3], “double-Cwzon” solution [31], Ernst solution 
for a charged black hole in electric field [25], and some 
others). These singularities can be interpreted as some 
concentrated sources, whose internal stresses provide the 
resulting equilibrium of different parts of the source or 
cause the accelerations possessed by each of these parts. 
In a more simple and perhaps more physical approach, 
instead of these singularities themselves, one can consider 
the conditions of the absence of such singularities as an 
important physical condition on the parameters of the 
solution which play the same role in general relativity as 
the well known laws of motion (or equilibrium conditions) 
in the Newtonian theory. 

To find these conditions for the solution (2)-(5), con- 
sider the structure of the symmetry axes p = 0 and 
p = ?rb; each of these axes can be divided into three 
parts with different behavior of the fields nearby when 
p + 0 and p + nb, respectively: 

(l),(l’): -co<sinhi<l-rn, 

(2), (2’) : 2 -rn 5 sinh f 5 1 + rn , 

(3), (3’) : I + rn < sinh; < rn , 

where the regions (l), (2), and (3) have p = 0, while 
for the points of the regions (l’), (2’), and (3’) the p co- 
ordinate is equal to p = nb. The regions (2) and (2’) 
have been considered before. These are the points corre- 
sponding to the horizon and curvature singularity, re- 

spectively. To establish the local Euclidean structure 
at the points of the axes of symmetry in the regions 
(l), (3) and (l’), (3’) we consider some small circles 
{t = const, p = const,z = con&} surrounding these 
points and calculate for each of them the limit for van- 
ishing radius of the ratio Po of the radius (J”,” Jfdp) mul- 

tiplied by 27r to the length (J,“” -dy). The values 

of P,,, for the different regions under consideration, are 
given by the expressions 

for (1) and (3) , 

for (1’) and (3’) 

For regular points of each of the axes, where the local 
Euclidean structure of the space geometry takes place, 

the limit of this ratio must be equal to 1. 
Direct calculations of these limits lead to the results 

(1) : P, = 1, (1’) : P,’ = 1 , 

(3) : P,” = 
b= + (1 + rn)2 = 

b= + (1 - rn)2 1 ’ (10

One can see from these expressions that for general 
values of the parameters rn, b, and 1 there are regions 
on each of the two symmetry axes where Po # 1. This 
means that at these points the local Euclidean structure 
is lost, and nodal singularities arise there. At the same 
time, it follows from (10) that for rn # 0 all these sin- 
gularities completely disappear, and the values of Po” at 
these regions become equal to 1 if and only if we set 1 = 0. 

X. FREELY FALLING BLACK HOLE IN A 
MAGNETIC UNIVERSE 

The choice I = 0 corresponds to the equilibrium posi- 
tion of a black hole at the origin of a chosen static frame 
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in the background field. To be at rest in this place for 

a test particle as well as for a black hole it is necessary 
to possess zero acceleration or, in other words, to be a 
freely falling body in the external gravitational field. Just 
this situation is described by the solution presented here 
with 2 = 0. Thus the most physically acceptable two- 
parametric subfamily of solutions (with free parameters 
rn and b) takes the form 

_ b%(r - 2m) sin’ e 
“2 dv2 , 

[T - rn - rn co* f] 

where the conformal factor 
[~-~-,COS$ 

f = (r - my - rn2 COG e 

[ 

r - rn - b sinh % - m (cos 6’ - cos g) 1 ’ x 

r - rn - b sinh i + rn (cos 8 - cos g) 9 (12) 

the nonzero components of a complex electromagnetic 
potential are 

-t”--rn-mcosg (13) 

and the function T = r(p,z) is given by the expression 
XI. CONCLUDING REMARKS 

The discussion given above on the physical and ge- 
ometrical properties of the presented solution shows a 
number of interesting features of tbis solution. 

Considered locally, in some finite region in the vicinity 
of a black hole horizon, this solution gives us a completely 
physically acceptable description of the interaction of the 
proper gravitational field of a black hole with the external 
homogeneous pure magnetic (or, after duality rotation, 

pure electric) field. 
The global structure of this solution is determined by 

the specific topology of the background space-time; its 
closure in some directions originates certain focusing phe- 
nomena. 

Our complete family of solutions confirms, in a realis- 
tic enough situation, the conjectured long ago connection 
(or even equivalence) between the laws of motion (equi- 
librium conditions) and the conditions of the absence of 
unphysical noncurvature singularities of the correspond- 
ing space-time geometry. 

The proposed analysis of this solution showed its es- 
sential difference with the Ernst solution [ZS]; namely: 
completely spatially homogeneous structure of the ex- 
ternal (background) electromagnetic and gravitational 
fields, the influence of the background space-time topol- 
ogy on the structure of the fields, explicit nontrivial rela- 
tion between the laws of motion and the conditions of the 

absence of unphysical noncurvature singularities. Some 
of these properties are not possessed by the field config- 
uration described by the Ernst solution, while the oth- 
ers do not appear so explicitly in his solution because 

the three-space closure in p directions (which also takes 
place in the Melvin and Ernst solutions) arises there at 
the infinite distance from the symmetry axis only, where 
the behavior of space-time metric, however, is even less 
regular than in the Bertotti-Robinson solution. 

Following the main purpose of this paper, to present 
the considered above solution and to discuss some of its 
interesting properties, we decided to exclude from tbis 
paper the discussion of a more wide but more complicated 

family of solutions which depends upon other physically 
interesting parameters such as the angular momentum 
and the charge of a black hole as well as some variations 
of the properties of the background space-time geometry. 
We also have not considered here a time-dependent coun- 

terpart of our family of solutions which automatically 
arises as a result of application of the method used here. 
(Some wavelike or cosmological interpretation of this so- 
lution also could possess interesting features.) These con- 

siderations we would like to postpone for future publica- 
tions. 
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APPENDIX: ON THE CONSTRUCTION OF 
SOLUTIONS FOR INTERACTING FIELDS 

The general method of analysis of Ernst equations 
which was used for the construction of the solution pre- 
sented in this paper had been developed more than ten 
years ago and presented in a condensed form in [32]; 
later it was described with more detail also in 1141. This 
method is based on the “monodromy data transform” 
(i.e., on the representation of any local solution of the 
Ernst equations in terms of the monodromy data of the 
corresponding fundamental solution of the associated lin- 
ear system), and on the construction of the linear singular 
integral equation which can be considered as an equiva- 
lent integral equation form of the Ernst equations. 

Discussions of various applications of this method, be- 
sides [14], can be found in a number of proceedings of 
various conferences at those years. Thus a brief sketch 

of pure mathematical construction was given also in [33]; 
a general outlook concerning the properties of the mon- 
odromy data functions and the problem of construction of 
exact solutions with some a priori defined properties (in- 
cluding the construction of asymptotically flat solutions 
with given multipole structures or the solutions deter- 
mined by some rational functions as the boundary values 
of the Ernst potentials on the axis of symmetry) have 
been presented in [34]; some new simple particular exam 
ples of static electravacuum asymptotically flat solutions 
can be found in [35]; the properties of some wavelike exact 
solutions have been considered in [36,37]; the application 
of this method for the construction of a pure linear al- 
gorithm for the solution of various boundary value prob- 
lems for the Ernst equations (the Cauchy problems and 
characteristic initial value problems for time-dependent 
fields as well as some boundary value problems for sta- 
tionary fields) have been discussed in [38]; and, at last, 
the general explicit form of the whole class of solutions 

with arbitrary number of free parameters corresponding 
to arbitrary rational boundary values of the Ernst po- 
tentials on the axis of symmetry (or more generally, on 
some degenerate regular orbits of the space-time isome- 
try group) was presented in [17]. Just this general form 
of solutions was used for the derivation of the so simple 
form of the nonlinear superposition of fields considered 
in this paper. 

In the very short publications listed above various pos- 
sible applications of this method have not been presented 
with enough completeness, but a more extended paper is 
expected to be published elsewhere in the near future. 
Hence some brief sketch of the method and of some of 

its applications probably could be found useful to be 
appended here. The present Appendix reiterates some 
of the results from the above-mentioned short commu- 
nications (sometimes with some small generalizations or 
convenient simplifications), making to the end an empha- 
sis on the construction of exact solutions for interacting 
fields produced by given sources. 
1. The Ernst equations and the space of their local 
solutions 

Using the differential form notations, where d means 
an exterior derivation on the “orbit space” {z’,z2} of 
the two-dimensional Abelian space-time isometry group 
and * is a Hodge star operator, such that l dz1 = -&x2, 
*dx2 = -dz’ with e = 1 for time-dependent fields and 
6 = -1 for stationary fields, the Ernst equations may be 
written in a compact form:’ 

(ReE + a%) 
( 

d*d& + $ *d&) - (dE + 26d@)*dE = 0 , 

C-41) 

(ReE + G&) 
( 

d*dQ + g *da) - (d& + Z&d+)*d@ = 0 , 

where E and @ are two complex Ernst potentials. The 
real function a(~*, z”) is a “harmonic” function, which 
satisfies a linear equation (d’Alembert equation for E = 1 
or Laplace equation for c = -l), yielding the exis- 
tence of another real “harmonically conjugated” function 

p(z’,+2): 

d*da = 0, do= -c*da (-42) 

The functions a and 0, chosen as any solution of (A2), 

provided *da A da # 0, constitute a convenient set of 
local coordinates (“generalized Weyl coordinates”) used 
further in special linear combinations .$ = p + ja,~ = 
p - jar where j is a “square root” of 6: j = 1 for E = 1 

and j = i for E = -1. The coordinates [,?J are two real 
light-cone coordinates in the “hyperbolic” case (e = l), or 
two complex conjugated to each other coordinates in the 
“elliptic” case (e = -1). For example, one may set < = 
xi-t, q = x-t or[ = tfip,~ = z-ipfor time-dependent 

or stationary axisymmetric fields, respectively. 
The gauge freedom existing in the definitions of the 

Ernst potentials enables one, without any loss of gener- 
ality, to set for any solution of the Ernst equations at 
some chosen regular point Po(& rp,): 

E(Eo,vd = co, Wo,m) = 0 , (A3) 

where ~0 = -1 for 6 = 1, and ~0 = *l for z = -1 provid- 
ing the Lorentz signature of the corresponding space-time 
metric. 

Everywhere below we consider the entire space of lo- 

cal solutions of the Ernst equations at some initial point 
Po(&q,), i.e., the whole set of pairs of complex poten- 
tials E, + which are holomorphic functions of t and 7 in 

some local domains of the point Po and which satisfy the 
Ernst equations (Al) [together with (A2)] in these do- 
mains and fit the “normalization” conditions (A3) at the 
point Po. 

‘For brevity we do not use a wedge symbol A in the products 
of differential forms. 
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2. Associated linear system and deflnition of 
monodromy data 

The first step of our analysis of the Ernst equations is 
similar to that presented, more or less explicitly, in most 
of the known approaches for the construction of various 
solution generating methods for these equations. This 

is the construction of some overdetermined linear sys- 
tem of partial differential equations with a free complex 
(“spectral”) parameter. The integrability conditions of 
this associated linear system together with some auxil- 
iary conditions imposed on the structure of its general 
matrix integral are equivalent to ‘the Ernst equations. A 
remarkable feature of the structure of this equivalent ma- 
trix problem2 is that, despite a great variety of different 
solutions of the Ernst equations as functions of the space- 

time coordinates < and 7, the corresponding fundamental 
solutions q of the associated linear system possess some 
universal analytical properties on the plane of the com- 
plex parameter w. At the same time, some details of the 
analytical structures of Q(t, 7, w) are different for differ- 
ent solutions and, moreover, they permit one to charac- 
terize uniquely any individual local solution. 

The analysis accomplished in [32] allowed us to asso- 
ciate with any local solution of the Ernst equations a set 
of four functions depending upon the complex parameter 
w only: 

where the pairs of functions {u+(w),v+(w)} and 
{U-(W), v-(w)} are holomorphic in some local domains 
a+ and IX- near the points w = to and w = 70, re- 
spectively. These domains are the “images” on the w 
plane of the local complex domains, which t and q run 
independently near .$ = to and 11 = 70, respectively: 
SI+ = {UJ,W = t} and n- = {w,w = II}. Each of the do- 
mains S& should be chosen symmetrically with respect 
to the real axis on the w plane for the case e = 1, or they 

‘For electrovacuum fields this is a 3 x3-matrix problem while 
the same matrix problem, but for 2 x 2 matrices, corresponds 
to a pure vacuum case. The linear system (which is a part of 
the matrix problem considered in [32]) for a pure vacuum 
case coincides with the linear equations discovered ‘in [39] 
for the generating matrix function which produces an infi- 
nite hierarchy of matrix potentials for the Ernst equations. 
For the electrovacuum case, the same linear system in a little 
different form was used in the Hauser-Ernst integral equa- 
tion method for effecting Kinnersley-Chitre symmetry trans- 
formations [40-42] and in the construction of electrovacuum 
N-s&on solutions suggested by one of the authors in [11,12]. 
The other conditions, constituting our 3 x 3-matrix problem 
also appeared in the papers mentioned above, but mostly as 
the necessary conditions which follow from the Ernst equa- 
tions. It is important that the set of such necessary condi- 
tions, which were included in the formulation of our matrix 
problem, provides the equivalence of this problem to the Ernst 
equations. 
are symmetric to each other with respect to this axis for 
the case 6 = -1. 

In general 021 do not overlap each other, and the func- 
tions u+(w) and u-(w) [as well as the functions v+(w) 
and v-(w)] are not the analytical continuations of each 
other. However, it will be convenient to further consider 
instead of four functions u+(w) and v*(w) only two func- 
tions u(w) and v(w) each defined in the disconnected 
region fi = 0, U a-. Each of these functions is repre- 
sented in fl* by two (different in general) holomorphic 
functions: 

u(w) = 
t 

u+(w), w E a+, 
u-(w), WJ E o-, 

v(w) = 
1 

v+(w), ‘w E a+, 
VT(W), w E o-. 

The complex conjugation of these functions, defined as 

u+(m) = “(ti), v+(w) = v(a) , 
has to be understood taking into account that for any 
w E 0+(0-) its complex conjugated point 27 E 0+(%) 
for e = 1, while 6 E a-(0+) for e = -1. Then 

for 6 = 1 : 

u+(w) = 
r 

MY WEQ+, 

U-W, WEfL, 

for e = -1 : 

u+(w) = ~ 
t- 

“-(ti), w E a,, 

u+(U), UJ E n-, 

and the function v+(w) has to be defined, in general, in 
a similar way. 

The functions u(w),v(w) [or their representatives 
u+(w),v*(w)] can be called “monodromy data func- 
tions,” because their definitions arose from the special 
structure of the monodromy matrices which characterize 
the behavior of @([, II, w) at its singular points on the w 
plane. A simple definition of the monodromy data func- 
tions, which we are going to recall just below, formally 
differs from (but is equivalent to) that one given initially 
in [32] and [14], and it arises immediately from the gen- 

erally analytical structure of q (t, 7, w) described there. 
For any local solution of the Ernst equations, a holo- 

morphic branch of the corresponding fundamental ,solu- 
tion *((,a~) of the associated linear system can be 
chosen so that it satisfies the following two “normaliza- 
tion” conditions, one at the initial point Po(&,q,,) for 
any w E @ and the other at w = M for any [,q near 
t = co and q = TJ,,, respectively? 

‘These conditions lead to the dependence ofour construction 
upon the choice of the initial point Po(.$, 70); however, for 
brevity we shall not show further the dependence of various 
functions upon &, and qO. 
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‘&‘(&,,q~,w) = I and ‘P([,~,w = co) = I. (AS) 

The matrix function V!(t, q, w) chosen in this manner 
and its inverse will be holomorphic everywhere on the w 
plane (including w = ca) besides the four branch points 

w = to, w = 70, w = E, w = 17 and the points of the cut 
L joining them, where the components of ?Ir and q-’ 
exhibit jumps.* 

We chose the cut Z, consisting of two disconnected 
parts: L+ with endpoints w = & and w = [, and L- 
with endpoints w = ‘lo and w = 7. The cuts L+ and L- 
are local in the sense that L+ c Q+ and L- c X, and 
they arechosen as the segments of the real axis on the 20 
plane for E = 1 or symmetric to each other with respect 
to this axis for E = -1. 

The local behavior of ‘@([,a~) and its inverse near 
the singular points and at the points of the local cuts 
LA can be characterized as follows. If one considers a 
path in the local region a+ (or a-), which starts from 
some point at one of the edges of the cut L+ (or L-), 
goes around one of the endpoints of L+(L-), and ends 
at the corresponding point of L+(L-) on its other edge, 

‘the analytical continuation of *(E, 7, w) along this path 
can be described by one of the linear transformations 

where w is any point of the corresponding cut L+ or L-. 
It can be shown that the monodromy matrices C+ and 
C- are holomorphic functions of w in the local regions 
a+ and &, respectively. The Ernst equations imply also 
a nice algebraic structure of these matrices: 

(Al’4 
where k+(w) and l+(w) as well as k-(w) and l-(w) are 
complex three-dimensional row, and column, vector func- 
tions holomorphic in Q+ and a-, respectively. 

In addition to that, the existence and the Hermitian 
structure of the first integral of the associated linear sys- 
tem imply (and actually are equivalent to) the existence 
of explicit expressions for l+(w) in terms of k*(w) (see 
these expressions below). Hence all the components of 
C*(w) are completely determined by k+(w). 

On the other hand, it is easy to see from (AlO) that 
C*(w) themselves determine the components of k+(w) 
and k-(w) only up to arbitrary common scalar multipli- 
ers holomorphic in a+ and Il-, respectively, and, with- 
out loss of generality, we can set the tist components of 

“These “global” analytical properties of ‘Z and 9-l follow 
from a very useful general theorem proved in 1421 for such 
linear systems with a free complex parameter. However, its 
application in the present context needs some modification 
taking into account the specific structure of the cut L which 
in general consists of two disconnected cuts. 
k+(w) equal to 1. Denbting the other components as 

(All) 

we can consider these expressions as definitions of the 
functions {u+(w),v+(w)} discussed above. By virtue of 
(A5) we can omit the indices “f” in this definition. 

As one can see now, the functions {u+(w),v*(w)} 

are determined uniquely by the monodromy properties of 
the analytical function U(e, 7, w) near its singular points 
(i.e., in the local domains a+ and a-). At the same 
time, the matrix function ‘Z!(t, 11, w) is uniquely deter- 
mined for any given solution of the Ernst equations as 
the holomorphic branch of the fundamental solution of 
the associated linear system with the initial conditions 
(A8). This allows us to consider the sets of functions 
{u(w),v(w)} [or equivalently {u&J),v&)}] as char- 
acterizing the individual local solutions and to study the 

properties of the arising mapping between the space of 
such functions and the space of local solutions of the 
Ernst equations. A further analysis showed that this is 
a one-to-one correspondence between these two spaces, 
and hence this mapping can be called “monodromy data 
transform.” 

3. Inverse problem of the monodromy data 
transform: The solution of the Ernst equations for 

given monodromy data 

The general analytical properties of the fundamental 
solution Q?(c, 7, w) of the associated linear system enable 
one to express the functions 8 and e-l, satisfying the 
initial conditions (A8) for any w E c, as the Cauchy in- 
tegrals of their jumps over the cut L. In addition to that, 
there exist some linear relations between the limit values 

of these functions on the cuts L+ with the monodromy 
data functions u+(w), v+(w) as the coefficients of these 
relations. The use of the known Sokhotski-Plemelj for- 
mulas allows us to reduce these linear relations to three 
decoupled scalar (i.e., nonmatrix) linear singular integral 
equations for the components of the jumps of 9 on the 
cut L [32].5 

The common scalar kernel of these integral equations 
as well as their right-hand sides are completely deter- 
mined in terms of the functions u+(w), v+(w) and their 
complex conjugations. The important point is that the 
general structure of each of these integral equations pro- 
vides the existence and uniqueness of the solution for any 
given set of monodromy data functions {u*(w),v*(w)} 
(see [43]). It has been shown that the solution of only two 
of these equations is enough to determine the correspond- 
ing Ernst potentials E and Q, in quadratures. Therefore 
our monodromy data transform actually determines a 

‘Three other equations which can be derived for the jumps 
of components of ‘X-l are equivalent to the previous ones. 
These equations possess an even more convenient structure 
and just these equations will be discussed below. 
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one-to-one mapping between the space of arbitrary cho- 
sen monodromy data and the entire space of local solu- 
tions of the Ernst equations, and this allows us to con- 

sider the derived equations (or even only two of them) as 
an equivalent integral equation form of the Ernst equa- 
tions. 

4. The linear integral equation form of the Ernst 
equations 

We are ready now to discuss the structure of the above- 
mentioned linear singular integral equation. For brevity 
of notations we shall not write further the indices “f” for 
various functions, keeping in mind that all functions used 
below of the complex parameter w or of the points 7, C on 
the cut L = L+ + L are defined in the union of the two 
disconnected local regions 0 = a+ U S, where each of 
these functions is represented by two different holomor- 
phic functions which may not be connected to each other 
by analytical continuation; we say in this case that these 
representative functions, in general, are not analytically 

adjusted to each other. Assuming these notions, the main 
linear integral equation can be written in the following 
general form, with the Cauchy principal value integral at 
the left-hand side? 

1 

z t 
L~df)~6 = k(T) , W4 

where the cut L = L+ +L-, with the cuts L+ c SI+, and 
L- c O-, where S& has been defined earlier; 7,C E L; 

the kernel Ic([, II, 7, C) is a scalar function, while the un- 
known p(<, 7, C) and the right-hand side k(T) are three- 
component row-vector functions. Therefore (A12) is a 
set of three decoupled linear integral equations with the 
same scalar kernel but different right-hand sides. 

The structure of K(T,~) is determined by the 
expression’ 

W,C) = -PI<(W). l(C))> 

x = JCC -NC - q)l(C - Eo)(C - 90) , (A131 

‘The coordinates E and q enter this equation as parameters: 
they define the location of the endpoints of L+ on the w plane 
and enter explicitly into the kernel K through the function X 
(see the expressions given just below). However, for simplic- 
ity, we omit here the dependence of K and of the unknown (o 
upon < and 7. 

‘Instead of this function X we can consider another (more 
simple perhaps) function defined as 

X<,%f) = 
{ 

X+(E,C) = JK - E)l(f - Eo), c E L+, 

X-(%f) = J/cc - 7))/(f - 90), 6 E L-. 

This redefines the unknown functions 1p+ and (o- by the mul- 
tipliers X-(q,c) and X+(c,[) holomorphic on L+ and L-, 

respectively. 
where [Xl, means the jump at the point C E L of the 
function X(<,v,c) which characterizes the branching of 
K(T,[) at the four endpoints of L; (.) means a scalar 

product of the vector functions k(7) and l(C), the corn- 
ponents of which are determined in terms of the functions 
u(w), V(W) and their complex conjugations: 

( 

1 + ieo(C - P&‘(C) 

l(C) = -+o(C -Po) + &u’(C) 

)> 

W4) 

4dC - 5oHC - d”‘(C) 

where CYO = (CO - 70)/2j, 00 = (50 + 7e)/2; the functions 
u+(w), v+(w) have been defined in (A6) and (Ai’). For 
various classes of fields the sign symbols are E = fl and 
Eg = -1 for e = 1 or Eg = fl for E = -1. 

At last, if the equations (A12) are solved for some given 
u(w) and V(W), then the components of a complex 3 x 3. 
matrix function R(t, 7) can be calculated by quadratwes: 

R = $ JL[W @ (o(f)d6 
In this way, all the metric components (except only one 
of them, called the “conformal factor,” which can be cal- 
culated by quadrature of another kind) and the compo- 
nents of the electromagnetic potential can be expressed 
algebraically in terms of the components of R and their 
complex conjugations. The Ernst potentials also can be 
expressed in these terms as 

E = E,, - 2iR;, @ = 2iR; 6416) 

This shows that in order to find any local solution 
{E(E, ?I), Q(E, o)} of the Ernst equations one has to solve 
only two of the equations (A12) with the same scalar 
kernel Ic and with the functions U(T) and V(T) at the 
right-hand sides. Just these components of p(C) take 
part in the expressions (A15) for the components of R 

present in (Ai6). 

5. Applications: General analysis, exact solutions, 
and boundary value problems 

The above-described definition of the monodromy data 
functions associated with any local solution of the Ernst 
equations, the construction of the corresponding mon- 
odromy data transform between the entire space of local 
solutions and the space of arbitrary chosen monodromy 
data, as well as the reformulation of the Ernst equation 

in the equivalent linear integral equation form provide us 
with some base to analyze various problems. 

First of all, the constructed monodromy data trans- 
form allows us to analyze the structure of the space of 
local solutions of the Ernst equations: besides some for- 
mal classification of all possible solutions in accordance 
with the analytical structure of their monodromy data 
functions, various physical and geometrical properties of 

solutions can be expressed directly in terms of the analyt- 
ical properties of these functions [34,35]. This suggests, 
in particular, some way to compare various solution gen- 
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eration methods, to recognize among the generated so- 
lutions various known cases, and to clarify the physical 

interpretation of their parameters. 
Moreover, large families of solutions with any finite 

number of free parameters can be calculated explicitly 
[14,34,17]. A great number of the known solutions can 
be recognized as particular cases among these explicitly 
calculated families. This opens the way for various gener- 
alizations of these known solutions and for consideration 
of their nonlinear superpositions (see the last subsections 
of this Appendix for more details and the main part of 
this paper for an example). 

At last, another interesting question concerning the re- 
lation between the monodromy data and some complete 
set of the boundary data for the solutions could be men- 
tioned here also. This question has been considered in 
(14,381, where it has been shown that the monodromy 
data transform provides us with some method for con- 
sideration of the initial value problems (Cauchy problem, 
characteristic initial value problem) for time-dependent 
fields, as well as some boundary problems for station- 

ary fields. In all cases, a given complete set of boundary 
data functions permits one, in principle, to determine 
uniquely the monodromy data functions {u+(w), V(W)} 
through the solution of a certain system of linear ordinary 
differential equations with a complex parameter. Then, 
the solution of the boundary value problem could be con- 
structed through the solution of the linear integral equa- 
tion with these monodromy data functions in its kernel 
and at the right-hand side. 

So, the linear integral equation method, whose key 

points were outlined in this Appendix, provides us with 
the most general base for various applications. It does 
not imply any restrictions on the class of fields under 
considerations, as well as on the space-time region where 
the fields are considered. The presented unified form of 
the method is valid for vacuum as well as electrovac- 
uum fields in both stationary or time-dependent cases. 
[It would be useful perhaps to note that this approach 
admits a nontrivial generalization, which introduces also 
“into the game” a massless two-component spinor (“neu- 

trino”) field.] The Einstein-Maxwell-Weyl field equa- 
tions with the same two-dimensional space-time isometry 
group (the integrability of which was proved in 1441) also 
can be reduced to a scalar linear integral equation form 

[321. 

6. Comparison with other approaches 

We postpone a detailed comparison of the present ap- 
proach with various earlier developed solutions gener- 
ating algorithms and with the known integral equation 
methods to some more enlarged publication, restricting 
ourselves here to some short comments only. 

Thus the lirst sketch of the construction of some Ftie- 
mann problem and of the corresponding linear integral 
equation (but in the matrix form and for the vacuum case 
only) have been presented by Belinskii and Zakharov [4] 
(see also Cosgrove [45] for more details). 

For vacuum and electrovacuum cases, an elaborated 
and effective approach, the construction of some homo- 
geneous Hilbert problem and of the corresponding ma- 

trix linear integral equation for effecting the Kinnersley- 
Chitre symmetry transformations, has been developed 
by Hauser and Ernst [40-421. Later some technical im- 
provement of the Hauser-Ernst approach for the case of 
the Minkowski seed metric was suggested by Sibgatullin 
[46], who reduced the Hauser-Ernst matrix integral equa- 
tion for this case to a much more simple one-component 
integral equation. The Hauser-Ernst analysis includes 
many nice and useful auxiliary results, however, it was 
based on the essential restriction on the class of solu- 

tions under consideration given by the regularity axis 
condition. This condition [which is equivalent in terms 
of the above-defined monodromy data functions to the 
constraints u+(w) = u-(w) and v+(w) = v-(w),~ with 
a necessary location of the initial point Po on the axis 
of symmetry] is very reasonable physically for stationary 
axisymmetric fields but it loses this physical motivation 
for nonaxisymmetric and time-dependent fields (waves, 
cosmological solutions). In addition to that, a character- 
ization of the solutions in terms of their boundary data on 

the axis of symmetry makes very problematic a consider- 
ation (even in principle) of the boundary value problems 
even for the fields satisfying the regularity axis condition 
but on the boundaries which do not coincide with the 
axis of symmetry. 

Another approach to the analysis of pure vacuum field 
equations, without any additional restrictions on the 
class of solutions under consideration, within the inverse 

scattering context was proposed by Neugebauer [47]. It 
was based on a different idea which allowed one to reduce 
the vacuum field equations (equivalent to the correspond- 
ing Ernst equation) to a one-component linear singular 
integral equation as well as to derive some analog of the 
Gelfand-Levitan-Marchenko equation. At tist glance, it 
appears (purely subjectively, perhaps) that this singular 
equation possesses a slightly more complicated structure 
than the similar equation arising from the construction 
presented above. However, it seems that a more care- 
ful analysis could relate directly Neugebauer’s scattering 

data functions a(h) and b(k) with the monodromy data 
functions u+(w) for the vacuum case where v+(w) = 0. 

A brilliant application of the integral equation methods 
was found recently by Neugebauer and Meinel(481. Their 
analysis of a complicated and very interesting physical 
problem-the structure of a dust disk rigidly rotating in 
its own gravitational field-provided not only an exam- 
ple of an effective solution of the corresponding boundary 
value problem, but it was the first example of a simul- 

taneous solution of the internal and external problems: 
the derived density distribution in the disk provides the 
regularity of the asymptotically flat external field. 

As was mentioned earlier, the class of solutions of the 
equation (A12) constructed explicitly (14,171 (see also the 
last subsections of this Appendix) corresponds to arbi- 

%rther on we refer to this case as analytically adjusted 
monodromy data. 
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tnwy analytically adjusted mtional monodromy data func- 
tions and includes the solutions with an arbitrary large 
but finite number of free param&rs. Concerning the re- 
lationship between these solutions and various families 
constructed with the use of different solution generating 
approaches or integral equation methods, the following 
things should be noticed. 

(1) In the vacuum stationary axisymmetric case, the 
simple poles in the monodromy data function u(w) c 
u+(w) = u-(w) [with V+(W) = 0] correspond to 
Belinskii-Zakharov solitons or Neugebauer’s BHcklund 
transformations with the Minkowski or some other back- 
ground (or seed) solution, where Ernst potential on the 
axis p = 0 is a rational function of the Weyl coordi- 
nate z. In the electravacuum case, the simple complex 

poles of the functions u(w) = u+(w) z U-(W) and 
v(w) E v+(w) = v-(w) correspond to electravacuum 
solitons [11,12] on the electravacuum background with 
similar properties. The multiple poles obviously corre- 
spond to some limit cases of soliton solutions also. How- 
ever, the presence of real poles of the functions u(w) 
and V(W) in the electrovacuum case, as well as of their 
polynomial parts, generates new solutions which do not 
arise as the result of application of the above-mentioned 
soliton generating techniques [14]. (Some of the polyno- 
mial solutions can be generated however by other solu- 
tion generating methods- by Harrison transformation, 
for example, or by another (a little more general) non- 
soliton solution generating method 1491.) 

(2) The solutions, with analytically adjusted mon- 
odromy data functions u+(w) = u-(w) = u(w), 
v+(w) = v-(w) z v(w) in the stationary axisymmet- 
ric case, possess (locally) a regular axis of symmetry 
and therefore, in principle, these solutions with rational 
U(UJ), v(w) can be calculated also using the Hauser-Ernst 

integral equation method or its, appropriated for the 
Minkowski seed metric, more simple Sibgatullin’s form. 
Eventually, a number of asymptotically flat solutions of 
this kind have been published recently by Manko and 

Sibgatullin (see for example [50] and the papers cited 
there). However, all these formally calculated solutions 
obviously are very specialized particular cases of the gen- 
eral and compact form of the whole class of such solutions 
presented in (171, and at least some of them simply have 
to coincide with solitons or their limit cases. In addi- 

tion to that, some technical problem which has not been 
avoided in [50] and related papers can be noted here. 
This is the dependence of the constructed solutions upon 
the specific set of parameters determined implicitly-the 
roots of certain algebraic equations, whose order depends 
on the complexity of the chosen rational boundary values 
of the Ernst potentials on the axis. The matter is that a 
trivial change of the system of independent parameters 
together with the use of the existing identities between 

any two pairs of bipolar coordinates enable one to sim- 
plify (sometimes considerably) the constructed solution 
(see the next subsection for more details and the solution 
presented in the main part of this paper for an example). 

(3) The analyses of the structure of the monodromy 
data functions and the corresponding solutions of the 
singular integral equation for some already known es- 
sentially different solutions (such as some singular wave- 
like or cosmological-like solutions), as w&as of some 
links with other solution generating procedures (such as 
the construction of finite-gap solutions suggested by Ko- 
rotkin and Matveev [51]) could show ,some new ways 
for a systematical construction of new types of solutions 
characterized, for example, by analytically not adjusted 
[U+(W) # u-(w) and v+(w) # v-(w)], but rational, 
perhaps, or some algebraic, respectively to the above- 
mentioned cases, monodromy data functions. 

Despite the rather simple form of the linear integral 
equation (A12) and the existence of the solution for any 

given functions U+(W) and v*(w), the explicit calcu- 
lation of solutions can be performed for some special 
choices of the functions u+(w),v+(w) only. A very large 
class of explicitly derivable solutions arises if we suppose 
that the following three conditions are satisfied [14,34,17]. 

7. Calculation of exact solutions 

(1) The functions U+(W), as well as the functions 
v+(w), are analytically “adjusted,” i.e., they are the an- 
alytical continuations of each other: 

u+(w) = u-(w) EU(W), v+(w) = v-(w) c V(W) 

(A171 

Then, the region of holomorphicity of u(w) and V(W) cov- 

ers both cuts L+ and only one vector function p(E, 7, C) = 
p+(,$,q,C) = v-(E,q, C) should be determined from 
(A12) and used in (A15), (A16) for the calculation of 
the solution. 

(2) The initial point Po is located on the curve (or 
surface) a = 0, i.e., we set ao = O.g The condition 
ao = 0 is not necessary for the explicit calculation of the 
solutions but it simplifies the structure of the kernel of 
the integral equation, as well as the final expressions.“’ 

(3) The functions u(w),v(w) are arbitrary rational: 

U(w) V(w) U(W) = &o and 4~) = &o ) w3) 

‘The condition (A17) provides (locally) the regularity of the 
space-time geometry at the points with a = 0, and the initial 
point PO can be conveniently located there. For this choice of 
PO the functions u(u) and V(W) can be simply related with 
the boundary values of the Ernst potentials on the boundary 
c( = 0: 

WJ) = en - w - Po)u(P), 9(O,P) = Zi(P -po)“(p) 

“For more special classes of fields, such as the asymptoti- 
cally flat stationary axisymmetric fields (with n I p,p z z), 
for example, an additional simplification of the structure of 
the main linear integral equation can be achieved if we shift 
the initial point PO along the z axis ta infinity using the sub- 
stitution lin~ir,+~ u(w)/po --t U(W) and limp,,, v(w)//30 + 

v(w). 
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where for the polynomials U(w), V(w), and Q(w) we use 
the notation 

Q(w) = k< Np = 0, 

“2 =nd Q(w) = n(w - h), 
V(w) = c lJkWk, k=, 

k=ll 
Np > 0. 

WY 

Here N,,, N,, Np are arbitrary non-negative integers; 
uk, vk, and hk, for each k, are arbitrary real or com- 
plex parameters. Some of the constants hk may coincide 
providing Q(C) with roots of any multiplicity. 
The method for the construction of explicit solutions of 
the equation (A12) and the calculation of the correspond- 
ing Ernst potentials for the monodmmy data functions 

defined by (Ali’-(A19) have been explained in [14] and 
discussed in [34]. The explicit compact form of the gen- 
eral solution for this class of monodromy data functions 
was presented in [17]. We repeat this form here with a 
slight generalization due to the appearance of an addi- 
tional sign symbol ~0 and with /30 not necessarily equal 
to zero as it was in [17]. 

In order to construct the general form of the solution 
for the case (A17)-(A19) we define, first, a set of auxiliary 
polynomials P(C), Rk([) (k = O,l,. , No - 1): 
P(C) = &K)&+(C) + %d6 - Po)l~+(C)Q(C) - W&+(6)1 + 4eo(C - Pd2WY+K) > 

N&<)~x = ieo(< -o,,)&+(C) [ u(z)Q(T; 1 ;(T)Q(S)] 

V(6)Qb) - W)Q(C) 
-4~o(C-N2V+(c) [ c-T ] , 

L L 
W3) 
where N,, = max{N,,, N,, NP}, and a dagger denotes a where N,, = max{N,,, N,, NP}, and a dagger denotes a 
complex conjugation of the polynomial coefficients. We complex conjugation of the polynomial coefficients. We 
denote the degree of P(C) by NP and represent this poly- denote the degree of P(C) by NP and represent this poly- 
nomial in a factorized form nomial in a factorized form 

k=1 

where the new set of parameters {wk} (k = 1,2,. , NP) 
may consist of the real parameters as well as of complex 
conjugated pairs. These parameters as the roots of P(c) 

are obviously dependent upon the coefficients of poly- 
nomials in (A20), but the factorization (A21) does not 
mean at all that we need to solve the algebraic equation 
P(c) = 0 explicitly. Instead, we use {wk} (together with 
{hi} perhaps) as a new set of parameters, expressing the 
coefficients of P(c) and hence, the coefficients in (A24) 
(or some of them) in tenmof independent real and imag- 
inary parts of {wk}. 

Now we proceed to the calculations with the param- 
eters uk (k = 1,2 I..., NJ, uk (k = 1,2 ,..., NV), hk 

(iz = 1,2,.. ., N4), wk (k = 1,2,.. ., NP), and po, keeping 
in mind their mutual dependence through the equation 

P(C) = PO rI2~(C - Wk). 
As the next step of our calculations, we have to eval- 

uate a set of quadratares-the Cauchy principal value 
and proper integrals over the cut L = L+ + L--whose 
integcands are the products of the jumps on L of the 
functions X [defined in (Au)] or l/X and some rational 
where k,l = O,l,. . . , No. It is important to note that 
all these integrals are only abbreviations for the explicit 
expressions which are trivially calculated as the sums of 
residues of their integrals at the zeros of Q(C), the poles 
of Lk(<) [which coincide with the zeros of Q(c)], the ze- 
ros of P(c), and at infinity. I1 We keep the integral form 
of the expressions (A22) for brevity only, because all ex- 
pressions in this form remain the same independently on 
the multiplicity of the roots of Q(C) and P(c). 

At last, we define the components of two No x No ma- 
trices IIGIIIIFII: 

Then the explicit determinant expressions for the Ernst 
potentials a# 

E = E det lIGIl 
Yizjpjf> 

* = det 118’11 
LizjTqllDll w3) 

These expressions give us the general solution of (Al) 
for arbitrary analytically adjusted rational monodromy 

“At the initial point Po these potentials satisfy the condi- 
tions which differ insignificantly from (A3): &(.&qo) = 60, 

*(to,qo) = 1. 
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data functions (A17)-(A19) or, equivalently, for arbitrary 
given rational boundary values of the Ernst potentials (as 
the functions of 0) on the regular boundary a = 0 near 
the initial point Po. 

8. On the nonlinear superposition of fields 

Though the nonlinearity of the Ernst equations does 
not allow one to superpose any two given field configu- 

rations, thiscan be done (formally at least) within some 
restricted but very large classes of fields. Thus, besides 
vacuum static axisymmetric (Weyl) fields or linear polar- 
ized Einstein-Rosen waves, when the superposition facil- 
ities come from the reduction of the Ernst equations for 
these fields to the linear three-dimensional axisymmetric 
Laplace equation or Euler-Poisson-Darbou equation, re- 
spectively, the application of various solution generating 
methods to the Ernst equations (B&cklund or symme- 
try transformations, soliton generating techniques) per- 
mits one to superpose the fields of some special kinds of 
sources-the asymptotically flat external fields of Kerr- 
or Kerr-Newman-like sources or their coaxial combina- 
tions or limiting Casey as well as special kinds of incident 
waves with arbitrary chosen external (background) fields. 

The integral equation method based on the mon- 
odromy data transform provides us with some additional 
facilities. A large number of the already known solu- 
tions for the fields, whose interactions would be of some 

interest, possess rational analytically adjusted structure 
of the monodromy data functions (or, equivalently for 
this case, rational structure of the Ernst potentials at 
the boundary a = 0 as functions of another Weyl co- 
ordinate p). Below we present a short list of examples 
(discussed before in [14,35,34]) which shows the simplest 
cases of monodromy data functions and the correspond- 
ing well known solutions, or their generalizations, which 
can be derived as specifications of the general form (A23) 

(~0, ~1, ~0, vl, ho are arbitrary complex constants): 

u(w) = 0 
v(w) = 0 

Minkowski space-time , 

u(w) = u,, Ftindler flat metric (with the reference 
V(W) = 0 frame acceleration determined 

by Im uo # 0) , 
U(W) = 0 
v(w) = 210 

Bert&ti-Robinson electromagnetic universe, 

u(w) 7 ILO + UIUJ 
Y(W) = ZIo 

Melvin electromagnetic universe , 

u(w) = 3 

+J) = * 
Kerr-Newman solution , 

electrovacuum subfamily of 

the Plebariski-Demiariski solution , 

the solution for a black hole im- 

mersed in a homogeneous electro- 

magnetic field (a particular case 
was considered in this paper) 

In addition to that, the same calculations for different 
signs 6 = ?&co = fl lead us to the time-dependent 
analogs of various stationary solutions and vice versa. 

The existence of an explicit form (A23) for any solu- 
tion of the class (A17)-(A19) allows one to calculate the 
solutions corresponding to any superpositions (linear, for 
example), or, ewzn more generally, to any rational com- 
bination of their monodromy data (or boundary value) 
functions. The calculated superposed families of solu- 
tions will include the original solutions as the particular 
cases continuously connected by additionally arising pa- 
rameters. However, for the correct physical interpreta- 
tion of the new solutions one has to investigate, in detail, 
their physical and geometrical properties. 

The proposed method avoids the appearance of pure 
gauge parameters during the calculation. It allows one 
also to eliminate the parameters which cause the pres- 
ence in the solution of any unphysical singularities, as 
well as singularities, which can be considered’as some 
additional field sources, changing the expected physical 
interpretation of the constructed solution. 
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