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This work closes certain gaps in the literature on material reference systems in general relativity. 
It is shown that perfect fluids are a special case of Dewitt’s relativistic elastic media and that the 
velocity-potential formalism for perfect fluids can be interpreted as describing a perfect fluid coupled 
to a fleet of clocks. A Hamiltonian analysis of the elastic media with clocks is carried out and the 
constraints that arise when the system is coupled to gravity are studied. When the Hamiltonian 
constraint is resolved with respect to the clock momentum, the resulting true Hamiltonian is found 
to be a functional only of the gravitational variables. The true Hamiltonian is explicitly displayed 
when the medium is dust, and is shown to depend on the detailed construction of the clocks. 
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I. INTRODUCTION 

The use of material reference systems in general rela- 
tivity has a long and noble history. Beginning with the 
systems of rods and clocks conceived by Einstein [l] and 
Hilbert [2], material systems have been used as a physical 
means of specifying events in spacetime and for address- 
ing conceptual questions in classical gravity. That such 
systems also provide important tools for quantum grav- 
ity was pointed out by Dewitt 131, who used them to 
analyze the implications of the uncertainty principle for 
measurements of the gravitational field. 

The original systems of rigid rods and massless clocks 
discussed by Einstein and Hilbert represent unphysical 
idealizations. Since their time, attempts have been made 
to remedy this shortcoming by developing a more physi- 
cally realistic description of the reference medium. While 
still a phenomenological description, a dynamical refer- 
ence system consistent with relativity may be found in 
the clocks and elastic media studied by Dewitt [3]. In the 
same spirit, perfect fluids [4] have been employed as ref- 
erence systems in the quantization of various model prob- 
lems in gravity [5,6]. More recently, Kucha? et al. [7] have 
developed a scheme for incorporating reference systems 
in general relativity through the introduction of coordi- 
nate conditions [8]. For the cases examined thus far, the 
reference materials that arise through this approach have 
certain unphysical properties. This has motivated the in- 
vestigation of pressureless perfect fluid (dust), which is 
unrelated to any obvious coordinate condition, as a phe- 
nomenological but physically realistic reference system 
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Here, we pursue the modest goal of closing certain 
gaps in the literature on reference materials. First, we 
establish in Sec. II the connection between the elastic 
media of Dewitt [3] and the relativistic perfect fluids of 
Refs. [lO,ll], which include dust as a special case. In par- 
ticular, we show that perfect fluids are equivalent to elas- 
tic media when the latter are homogeneous and isotropic. 

We then turn to the study of reference systems de- 
fined by the coupling of clocks to reference matetials. 
In Sec. III A we demonstrate that a perfect fluid, as de- 
scribed by the action S of Rei%. [X,12] for the isentropic 
case,’ can be interpreted as a perfect fluid coupled to a 
fleet of clocks (with thd details presented in Appendix 
A). We show the inequivalence of this clock coupling to 
the coupling used by Dewitt [3], and discuss the advan- 
tages of Dewitt’s method. We also point out that for a 
nonisentropic perfect fluid S, the thermasy 1141 can be 
reinterpreted as a clock variable with Dewitt-type cou- 
pling. Then, in preparation for Sec. IV, we perform in 
Sec. III B a Hamiltonian analysis of the reference system 
formed by adding clocks (in the manner of Dewitt) to 
the elastic medium. This proceeds along the lines of that 
done in Refs. [11,12] (see also [15,6]) for perfect fluids. 

In Sec. IV we study the coupling of the reference sys- 
tem to gravity and the resulting canonical constraints. 
A canonical formalism for dust and matter clocks has 
proven useful in the study of homogeneous quantum cos- 
mologies [5] and quantum gravity in general [9]; the re- 
sults of Sec. IV set the stage for similar investigations 
using other reference systems. When the Hamiltonian 
constraint is resolved with respect to the clock momenta, 

‘This action is a modification of the action of Ref. [4], which 
in turn is a relativistic generalization of the nonrelativistic 
perfect Buid action of Ref. [13]. 
1835 01996 The American Physical Society 
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we find that the true Hamiltonian depends only on the 
gravitational variables, not on the clock or particle sari- 
able. (Some details are derived in Appendix B.) The 
case of dust is particularly simple, and, we explore the use 
of more general clocks than those used in Ref. [9]. For 
this medium and for appropriately designed clocks, the 
constraints can be resolved with respect to the clock mo- 
menta using only analytic operations (i.e., without taking 
a square root). This allows us to bypass a technical dif- 
ficulty when defining the quantum theory [9] although, 
as we point out, interpretational difficulties appear in its 
place. 

We use the following notation, which is consistent with 
those of Refs. [11,12]. The action for a reference system, 
which includes both matter and clocks, will be denoted 
by S, while the action for the corresponding reference ma- 
terial alone, without clocks, will be denoted by .?. Thus, 
the addition of clocks changes a “barred” system into an 
“unbarred” system. 

II. ELASTIC MEDIA AND PERFECT FLUIDS 

In this section we address the relation between 
Dewitt’s elastic media and the perfect fluids of 
Refs. [lo-121. In fact, the main difference is th& the 
elastic medium is presented in the Lagrangian picture 
while the perfect fluids are typically presented in the Eu- 
l&m picture. Thus, we first review the elastic medium 
in the original Lagrangian description, and then rewrite 
it in the Eulerian picture. The perfect fluid action is then 
recognized to be a special case of the action for an elastic 
medium. 

We use the terms Lagrangian and Eulerian in the fol- 
lowing way. The term “Lagrangian picture” refers to the 
description in which the basic variables tell the spatial 
location of a given particle, or the spacetime location of 
a given event on a given particle world line. The term 
“Eulerian picture” refers to the description in which the 
basic variables tell which particle resides at a given spa- 
tial location, or which particle passes through a given 
spacetime event. 

A. A review of elastic media 

We now begin with a summary of Dewitt’s elastic me- 
dia [3]. A single free relativistic particle moving in a 
spacetime M = C x R with metric ~~0 can be described 
by the action 

S,[r”;7ap] = -/dom~a. (2.1) 

Here, g is an arbitrary parameter along the particle world 
line and ye = Ta(o) are the spacetime coordinates of the 
particle. Also, rn > 0 is the mass of the particle and the 
dot denotes a derivative with respect to C. The semi- 
colon notation in S1[Ta; y,p] indicates that this action 
is to be varied with respect to T”, with ^iap treated a~ a 
background field. 
As in Ref. [3], we may also consider fleets of such par- 
ticles and we may add local interactions. If the parti- 
cles are labeled by a set of Lagrangian coordinates c”, 
i E {l, 2,3}, then such a system can be described by the 
action 

(2.2) 

where S is the “matter space” manifold [lO,ll] whose 
points C E S label the particle world lines. In Eq. (2.2), 
the dynamical variables Ta are functions of ti and c”. 
The quantity 11 is the particle number density, so that 
nd35 is the number of particles in the coordinate cell 
d3C. The quantity w is the interaction energy density 
in the comoving frame, so that Ed3C is the interaction 
energy in the coordinate cell d3< as measured in the rest 
frame of the particles. In order to make the transforma- 
tion properties of these expressions clear, we explicitly 
indicate density weights with respect to changes of the 
coordinates c” on S with underlines. Thus, 1~ and g are 
densities in the matter space S. 

The functions rn, TZ, and u, can depend explicitly on ci 
and, in addition, the interaction energy u can have an 
ultralocal dependence on the matter space metric (“fleet 
metric”) hii. The fleet metric is defined such that ds = 

&@@ measures the orthogonal distance ds between 
neighboring, world lines with Lagrangian coordinates 6f 
and 5’ + dc. By including an explicit dependence on C 
in the mass rn and interaction energy 3, we allow for the 
possibility that the particles are not identical. In terms 
of the matter four-velocity 

(2.3) 

the matter space metric takes the form 

h;i = Tn,i (7c+ + UcxUp)T’,j) (2.4) 

where the commwdenote derivatives with respect to c”. 
In general, h;j will not be the metric of any hypersurface 
of the spacetime manifold M. 

The system described by the action .?,, of Eq. (2.2) 
is referred to as an elastic medium. The subscript LL 
indicates that it is the Lagrangian form (as opposed to 
the Hamiltonian form) of the action in the Lagrangian 
picture. Observe that this system is reparametrization 
invariant. That is,,S,, is invariant under the trans- 
formation CP’ = -‘YE induced by a reparametrization 
0 + v + ~(0, C) of the particle world lines, where E van- 
ishes at the end points in C. 
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B. The connection to fluids 

We will now derive the Eulerian description of the elas- 
tic medium, in which the action is written as an integral 
over arbitrary spacetime coordinates y” on M, and show 
its relations to the perfect fluids of Refs. [lo-121. 

To begin, let us assume that in the region of spacetime 
described, one and only one particle of the medium passes 
through each event. Then the Lagrangian coordinates ci 
along with the world line parameters 0 form a set of 
coordinates in the spacetime region. These coordinates 
are related to the coordinates y” by the mappings y” = 
P(o, C). We can introduce the inverse mappings 
0 = ZTY) > c” = z’(y) , (2.5) 

such that yQ = Ta(ZO(y),Zi(y)) is an .identity. Note 
that Z’(y) give the labels c of the particle present at the 

event ye. The transition from the Lagrangian picture to 
the Eulerian picture is obtained by a change of dynami- 
c$ variables in which Y(u, C) is replaced by Z”(y) and 

Z’(Y). 
To perform this change of variables, we first calculate 

the Jacobian /a(~, <)/a~/. Let us assume that the coor- 
dinate system Q, c” has the orientation of M. Then, we 
have the identity 
I 

do A dc’ A dc2 A dc= = Z’,, Z’,‘g Z=,? Z3,s dy” A dy0 A dy7 A dy’ 

- -1Ez,aLw - 
31 JiE 

cjjkZo,, Z”,@ Zj,, Zk,g dy’ A dy’ A dy2 A dy3 , (2.6) 
where the commas followed by greek letters denote 
derivatives with respect to ya. Here, Pp-f’ is the totally 
antisymmetric contravariant tensor on M with P3 = 
-l/e, and 7 is the determinant of the spacetime met- 
ric 7+ Similarly, E+ is the totally antisymmetric co- 

variant tensor on S with ~~~3 = 6. Observe that the 
inverse fleet metric can be written as 

h’j = zi 
IOI 7=@Zj,o , (2.7) 

so that h can be expressed in terms of the Eulerian vari- 
ables as h = l/det(h’j). It will also be convenient to 
express the particle four-velocity Ua in terms of the new 
variables: 

u- = -(1/3!)@+~4,~ zj,? zk,& Eijk (2.8) 

One can see that ,this expression is indeed the particle 
velocity by verifying that PZ”,, = 0 and PU, = -1. 
This allows us to rewrite the measure (2.6) as 

du A dc’ A dc= A dc3 

= mz”,m U”dy’ A dy’ A dy2 A dy3 (2.9) 

Finally, note that Ta is proportional to Ua and 
*‘“zo,, = 1, so that Ti-- = i?/(UflZ’,p). Combining 
this with the above results, we find that the action (2.2) 
takes the form 

S&+; rn/31 = - J &&?&m-t 4 (2.10) 
M 

in the Eulerian picture. Here, the mass rn and number 
density n are fixed functions of Zi while the interaction 
energy w is a fixed function of h;j and Zk. The fleet 
metric h;j is taken to be a function of the spacetime 
metric ^lap and the variables Z” through Eq. (2.7). 

Observe that the Eulerian form (2.iO) of the ac- 
tion does not depend on the variable Z”. This 
is a consequence of reparametrization invariance: A 
reparametrization of the world lines induces the trans- 
formation SZ” = e while leaving the other variables Zi 
alone. The action (2.10) is invariant precisely because it 
is independent of Z “.’ This gauge freedom is removed 
simply by dropping Z” from the list of dynamical vari- 
ables. Thus, we view the action (2.10) as a functional of 
Zi (and ^iup) only. 

From the action (2.10), it is straightforward to,show 
that the isentropic perfect fluid action s given by 
Eq. (6.15) of Ref. [ll] (or the isentropic case of Eq. (4.20) 
of Ref. [12]) is equivalent to a “homogeneous and 
isotropic elastic medium.” To do so, consider the case 
in which the mass rn is independent of the particle labels 
Z”, so the particles are identical. Also assume that the 
proper interaction energy density w = g/v’% (which is 
the interaction energy per unit proper spatial volume as 
measured in the rest frame of the matter) depends only 
on the proper particle number density n = z/& (which 
is the number of particles per unit proper spatial volume 
as measured in the rest frame of the matter). That is, 
u depends on Z” and hij only through the combination 

w = &I+/&) for some function w(n). 
The factor (~lm+x)/JiE that appears in the integrand 

of the action s‘;,, is the proper energy density of the 
medium, which we will denote by p. Our restriction to a 
homogeneous and isotropic medium implies that p only 
depends on the proper number density, p = p(n). Thus, 

‘There is a subtle point here. The action (2.2) is defined for 
a fixed integration region in S x R; that is, for fixed ranges of 
the integration parameters.u and 5’. The integration region 
in M is determined by the integration region in S x R only 
if we fix T” at the boundaries. Then, in particular, the end 
points in c determine initial and final hypersurfaces in M 
which we assume to be spacelike. Since the range of c in 
(2.2) is fixed, the action functional (2.10) is defined for the 
class of variables Z’(y) with fixed values on the initial and 
final hypersurfaces in M. Therefore the gauge freedom in 
(2.10) consists of variations 62’ = l for which z vanishes on 
the initial and final hypersurfaces. In this way, we see that 
the gauge freedoms for the actions (2.2) and (2.10) coincide. 
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the action (2.10) in the homogeneous, isotropic case may 
be written as 

s&5 YapI = - J bd=G(4 , (2.11) 
M 
where n = rz/&. This is precisely the perfect fluid ac- 
tion 3 given in Refs. [l&12] for. the isentropic case, al- 
though in those references the number density n was ex- 
pressed somewhat differentlv. To see that the definition 
of ‘~1 in Refs. [11,12] agrees with the present definition, we 
use Eq. (2.7) to write the number density explicitly as 
Here, E+ is the antisymmetric tensor density (of weight 
-1) on S with El23 = 1. If we identify the tensor 
q+(C) of Refs. [11,12] with s(C)zGjiik, then the expression 
(2.12) exactly matches the definition of n given through 
Eq. (5.1) of [II] (and through Eqs. (4.23) and (4.26) of 
[12]). As a result, the (“barred”) one component isen- 
tropic perfect fluid of Refs. [11,12] is seen to be a special 
case of the relativistic elastic medium of Dewitt [3]. 

III. CLOCKS AND REFERENCE SYSTEMS 

Reference materials such as elastic media and perfect 
fluids can be used to provide a physical system of coor- 
dinates in space. However, by itself, a reference material 
does not provide a complete coordinate system in space- 
time, as all points along a given particle world line are 
labeled by the same coordinates c”, This can be remedied 
by adding an additional degree of freedom to the parti- 
cles whose value changes along the world lines. Such a 
degree of freedom may be called a “fleet of clocks” and 
a reference medium coupled to a fleet of clocks is said 
to constitute a reference system. Note that, so far, we 
have not distinguished between “good clocks” which ac- 
curately measure proper time and “bad clocks” whose 
readings vary along the world lines in a more complicated 
Way. 

A, Coupling clocks 

The literature contains two different mechanisms for 
coupling additional “clock” degrees of freedom to a ref- 
erence material. One of these was used by Dewitt [3] 
and was explicitly described as a coupling of clocks to an 
elastic medium. The other is implicitly contained in the 
literature on isentropic (single component) perfect fluids 
[4,11,12], although the word “clock” does not appear in 
any of these works. Moreover, with a reinterpretation 
of variables and a suitable choice of equation of state, 
a nonisentropic perfect fluid is actually equivalent to a 
homogeneous, isotropic elastic medium with the DeWitt- 
type clock coupling. The following summary along with 
the results in Appendix A should clarify this situation. 

We first restrict our attention to isentropic perfect flu- 
ids. Historically, two different action principles were de- 
veloped for relativistic perfect fluids which both used 
scalar fields (“velocity potentials”) as the basic variables. 
These actions were later shown to be equivalent [12]. In 
particular, the action of Ref. [4], which we will denote 
by S, was shown to $ffer from the action of Ref. [lp], 
which is denoted by S in Eq. (2.11), by the addition of 
one degree of freedom per space point. This additional 
degree of freedom is cyclic, so the action 3 can be derived 
from S by removing the extra degree of freedom through 
Routh’s procedure 116). 

Since the “unbarred” description of perfect fluids con- 
tains an extra degree of freedom per space point, and 
since this degree of freedom changes along the world lines, 
the philosophy stated at t&e beginning of this section al- 
lows us to interpret this degree of freedom as represent- 
ing a fleet of clocks. For this reason, we refer to the 
“unbarred” fluid as a fluid coupled to a fleet of clocks. 

For both the clock coupling discussed by Dewitt and 
the one implicit in the perfect fluid literature, the essen- 
tial idea is to add a pair (0, J) of first order degrees of 
freedom for each particle in the medium. Thus, we con- 
sider two fields, O(u,C) and J(u,C), and add the first 
order kinetic term 

to the Lagrangian picture action (2.2). The Eulerian 
form of the kinetic term,may be obtained from Eq. (2.9) 

and the relation 6; = Te.Zo,p +Ta,< Z”,p, and is given 

by 

The clocks are then coupled to the particles by letting 
either n(c) or m(C) depend on .7 in the original action. 

To produce the “unbarred” fluid action of Refs. 
[4,11,12], the clocks are coupled by letting z(C) + J%(C) 
in the action (2.11) and adding the kinetic term (3.2). 
A detailed explanation of how this produces the “un- 
barred” action is given in Appendix A. This method of 
clock coupling does not, in general, lead to a “good” set 
of clocks. This can be seen from the equation of motion 
for 3, which is 

Q,, lJa = p’(Jn/&), (3.3) 

where p’(n) = ap(n)/&. The relation (3.3) shows that 
the rate of advance of the clock variable 0 relative to 
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the flow of proper time may depend on the particle den- 
sity 7~. Thus, for clocks coupled in this way, the internal 
clock mechanism is not shielded from the external pres- 
sures and forces between particles. For some equations of 
state p(n), such clocks may not even run monotonically 
in proper time. 

Because the method II + Jn of clock coupling does 
not, in general, yield a good set of clocks, we will focus 
on the method described by Dewitt [3]. In this method, 
the mass rn is allowed to depend on .7. Thus, the mass 
of each particle is no longer a fixed constant and, in fact, 
it acts as a Hamiltonian m(c,J) that drives the mo- 
tion of the clock O(c) attached to particle c”. In the 
Lagrangian picture, the action S,,[+P, J, O;-i,,] is ob- 
tained by adding Eqs. (2.2) and (3.1) and taking the num- 
ber density, mass, and internal energy density t? depend 
on c”, J, ,and hjk through 3= n(c), rn = m(c,J), and 
1~! = x(c’, hjk). The action also takes a simple form in 
the Eulerian picture: 

= J d4y&?f+J% urn - (P + ul)} , (3.4) 
M 

where n = g(Z”), rn = m(Z”,J), and g = w(Zi,h+). 
Note that the equation of motion for .7 shows that the 
clock satisfies 

Q,, U” = &n/dJ , (3.5) 

while the equation of motion for 0 shows that J (and 
therefore &n/&7) is a constant along each particle world 
line. Thus, for the Dewitt-type coupling, 0 increases in 
direct proportion to proper time along the world line and 
always defines a good clock. We see that (3.3) and (3.5) 
coincide when the medium is dust, since in that case p’ 
is a constant. 

Also note that many different clock Hamiltonians 
m(C,J) lead to equivalent results. This is because, for 
any invertible function f(J), the replacement of .J by 
j = f(J) and 0 by 6 = O/f’(J) changes the kinetic 
term (3.1) only by a boundary term but changes the clock 
Hamiltonian from m(<, J) to m(C, f(J)). Thus, any two 
clock Hamiltonians ml and nz2 related by m*(C, J) = 
mz(C, f(J)) for invertible f are equivalent. 

Finally, consider a homogeneous and isotropic refer- 
ence system with Dewitt-type clock coupling. As be- 
fore, the internal energy density has the form II! = 
&(n/&), and now the mass is a function of .7 only: 
rn = m(J). From Eq. (3.4), the action becomes 

= J &d?{nJQ,, UalJiE - &Iv’% J)} , 
M 

(3.6) 

where p(n, J) = nm(J) + w(n). This action is equiva- 
lent to the action (referred to as the “hybrid action” in 
Ref. [12]) for a nonisentropic perfect fluid with equation 
of state p(n, J) = nm(J) + w(n). In the perfect fluid 
literature, the variable J is interpreted as the entropy 
per particle and the variable 0 is interpreted as the ther- 
masy [14]. (The thermasy is a variable whose gradient 
along the particle world lines is proportional to the local 
temperature.) The connection between the action (3.6) 
above and the action of Ref. [12] can be established eas- 
ily. One simply uses Eqs. (2.7) and (2.8) to show that the 

quantity ,&&!P that appears in the action (3.6) is 
the .same function of Z” and 7,~ as the quantity J” that 
appears in the “hybrid action” of Ref. [12]. 

B. Hamiltonian formulation of reference systems 

We would like to study the diffeomorphism invariance 
of general relativity by using the reference system de- 
fined by Dewitt’s method of coupling clocks to an elastic 
medium. Since we will examine this issue from the canon- 
ical perspective, we first perform a Hamiltonian analysis 
of the reference system. In order to make contact with 
the usual Hamiltonian description of gravity, we will work 
initially in the Eulerian picture. 

We begin by foliating spacetime M with a famiJy of 
hypersurfaces Ct labeled by the parameter t. If P are 
coordinates on a hypersurface, then the spacetime co- 
ordinates y” are related to (&cP) through mappings 
y” = Y”(t,z). As usual, the lapse function NI, shift 
vector Na, and spatial metric gOa are related to the space- 
time metric by 

+ = N’n” + N”Y”,, , (3.7) 

Sat. = Y”,, 7.apYo,b > (3.6) 

p = -n%@ + Y”,, gabYfl,, , (3.9) 

where na is the unit normal of the hypersurfaces. The 
quantities NI, N”, gobr and na are functions of t and 
za. The spacetime metric depends on t and za through 
the mapping Ye’; that is, 7ao = mp(Y(t,s)). Note that 
we are now using the overdot to denote t3/8t. 

The variables Zi(y), 0, and J are spacetime scalars. 
They can be pulled back from M to C x R by the map- 
ping Y”(t, z) to yield t-dependent scalars on C which we 
denote by the same kernel letter: for example, Z”(y) + 
Zi(t, z). With the definitions above, it is not difficult to 
show that (with a slight abuse of notation) 

Zi,-n“ = (i” - N”Zi,,)/N’ , (3.10) 

Z”,,YU,, = z”,, , (3.11) 

Zi,” = -naZ”,p np + ym,,ga*zi,* (3.12) 

Similar relations hold for 0 and J. 
The function Z”(t, z) is a t-dependent mapping from 

the space C to the matter space S. It is useful to con- 
sider the inverse mappings Xa(t!<), defined by ci = 
Z”(t,X(t,C)). The mappings .Z’ and X” are related 

by the identities 9 = Z”,,X”,j, St = XO,iZ”,a, 3 = 

-Z”,,XD,t, and X” = -X”,;Z”,t. The notation used 
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here is somewhat abbreviated in that we have omitted 
any explicit specification of the functional dependences. 
We will continue this practice below. 

Now consider the clock kinetic term (3.2). From 
Eq. (2.8) we have 

Q,,lJ” = -~e,8~aQ,~z”,“Zi,~Zk,geijk (3.13) 

which, using Eq. (3.12) and the identity 
n%,,j,~Yfl,~ Y-‘,b Yb,, = E,L,~, takes the form 

Q,,Ua = A(6 - N”Q,,);@Z”,, ZjybZ”,,eijk 

-&i’ - NaZ”,,)~abCQ,, Zj,b Z”,,eijk. 

(3.14) 

It is convenient to write this result as 

Q,, U” = rb/N’ + r(V” - N”/Nl)O,, , (3.15) 

where 
1 
r 5 --new = 3!Eabcz*,, zj,* zk,, cijk , (3.16) 

V” E $(k’ + N”) 

1 

= -2NLr 
-~“%ijkZj,~Z~,c(ji - NV”,,) . (3.17) 

Here, V” is the spatial velocity of the particles as mea- 
sured by the observers who are at rest in Ct and r = 

l/d1 - VagabVb is the relativistic “gamma” factor that 
characterizes the boost between these observers and the 
comoving reference frame. 

Using Eqs. (2.7) and (3.16), we find that the fleet met- 
ric and its determinant can be expressed ar 

hij = z”,, zj,* (ga” - V”V”) ) (3.18) 

Jil = ,/$/(det Z”,,) (3.19) 

These results, along with Eq. (3.15), show that the action 
(3.4) can be written as 
I 

S[Z’,J,O;N’,N” >%*I =pJ, w e d d t Z”,,) sJ6 + sJ(N’V” - Na)@,, -N’(ryz +$/I’ ( (3.20) 

It is now straightforward to proceed with the canonical an?lysis. The momentum conjugate to 0 is (det Zi,, )@, 
which we will denote by II. The momentum conjugate to Z’ is 

pi G f$ = -(det Zj,,) [r(~m + ut)vb + tkLZk,s Z’,, vc/r + z~o,h]x*,i , (3.21) 
where & = 2(&/&;j) is the Lagrangian frame stress 

tensor [3]. Note that i’ appears in this expression only in 
the combination Va = -(@Xe,i -N&)/NI. Thus, the 
solution for i’ as a function of the canonical variables, 
lapse, and shift has the fo;m 

i” = (Na - NLVa)Zi,, , (3.22) 

where we view V” as a function of the canonical variables 
through Eqs. (3.21) and (3.18) for P; and h”j. 

Collecting together the above results, we find the 
Hamiltonian form of the action for an elastic medium 
coupled to clocks in the Eulerian picture: 

S,,[Z’,P,,Q,H;N’,N=,gn*] 

where 

(3.23) 

Tltl:: = piz’,, +IIo,. , (3.24) 

xy = (det z”,. )[qEm + XI) + tijzi,, vazj,a v*/rl 
(3.25) 
Here, r is defined in Eq. (3.16) and the matter spa- 
tial velocity V” and fleet metric hdj are defined as 
functions of the canonical variables through Eqs. (3.18) 
and (3.21). The clock Hamiltonian, number density, 
and interaction energy density have dependences rn = 
m(II/E(det Z”,,),Zj), II = n(Z”), and u = &jj,Zk). 

IV. REFERENCE SYSTEMS IN GENERAL 
RELATIVITY 

Thus far we,have treated the gravitational field as an 
external background. In this section, we shall include 
gravity as a dynamical field and study our ref&ence sys- 
tem as coupled to general relativity. 

A. Coupling clocks to the gravitational field 

Since the action for the matter-clock system contains 
no derivatives of the spacetime metric, the action for that 
system coupled to gravity is obtained by adding its action 
to the gravitational action. In the Eulerian setting, we 
have 
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= 
II’ 

dt d%{P;i” + II6 + pab& 

-N& + 319,) - N”(‘H; + FL:)} , (4.1) 

where 319, and 31: are the familiar constraints of vacuum 
general relativity [17]. The coupled system is subject to 
the constraints 

311tx;“+x;=0, (4.2) 
31,z.31::+31:=0, (4.3) 

since the lapse function NI and shift vector N” are var- 
ied in the action principle. 

It is also useful to consider the coupled system in the 
Lagrangian picture. The Hamiltonian form of the ac- 
tion, namely S,,, can be obtained from a 3+1 decom- 
position of the Lagrangian form of the action in the La- 
grangian picture, namely S,,. Alternatively, S,, can be 
obtained from the Eulerian picture action S,, by per- 
forming a point canonical transformation from Eulerian 
to Lagrangian variables. The details of this transforma- 
tion are described in Ref. [12] for the perfect fluid case 
and are essentially the same here. Thus, we define the 
new matter variables X”(C) such that Z”(X(C)) = c”. 
We also define the new clock variable O(C) = 0(X(<)) 
and the new gravitational field variable 

Sij(C) = X”,i (W,j (Ch4x(C)) (4.4) 

This is the spatial metric expressed in the Lagrangian 
system of coordinates induced on the slices C by the mat- 
ter. The new conjugate momenta are defined by [12] 

E,(f) = -(detX*,j )‘%(X(C)) > (4.5) 

II(C) = (det xb,j )Wx(C)) > (4.6) 

p_“(f) = (detXC,k )Z”m (x(f)W,b (x(C)) 

XPabcwH (4.7) 

With this transformation, the action (4.1) becomes 

where the lapse and shift are functions of X”(C) and the 
Hamiltonian constraint is & = (det X”,;)%.L. In terms 
of the new canonical variables, we have 

7t,=r(nm+ut)+~~jz’,,vazj,bvb/r+~~. (4.9) 

Here, we have used z:(C) = (detX”,i)?J;(X(C)) to de- 
note the pullback [by the mapping.X(C)] of the gravita- 
tional contribution to the Hamiltonian constraint from C 
to S. Since the Lagrangian gravitational variables gij(C) 
and p’i(C) are obtained from the Eulerian gravitational 
variables g&z) and p”*(z) by the pullback mapping from 
C to S, the term g: is constructed by replacing the Eule- 
rian variables in %T with the corresponding Lagrangian 
variables. Likewise, we can define the pullback of the 
gravitational contribution to the momentum constraint 
by s(C) = (det X*,j )Xa,i 31:(X(C)). 

The velocity V” and fleet metric hij that appear in 
the Hamiltonian constraint (4.9) must, of course, be ex- 
pressed in terms of the new canonical variables. It turns 
out to be convenient to work with VeXa,<, which is the 
velocity expressed in the Lagrangian coordinate system, 
in place of V”. In Appendix B we show that h;j and 
VaXa,< can be express&d in terms of a, k,X-,i, gsj, and 
pG, 

In the action (4.8), the lapse function and shift vector 
are functions of X”(C). We can define the new variables 
NI(C) and Ni(C) = Z”,, Nn(X(C)) by mapping N’(z) 
and N”(r) from C to S. The action then reads 

-Nlz, - N’X;} , (4.10) 

where the Hamiltonian and momentum constraints are 

7ii = -&XQ,; (4.12) 

Here, the Hamiltonian constraint 7& is obtained from 
Eq. (4.9) and the identity (B2) of Appendix B. The 
momentum constraint Bi equals the result obtained by 
mapping 31, to the matter space S; see Eq. (4.5). 

As a final remark, let us point out that there are two 
symmetries that play important roles in the description 
of reference systems [9,11,12]. The first is the freedom to 
reset the clocks. That is, the action is invariant under 
a transformation in which the zero point of each clock 
is changed. The infinitesimal version of this transforma- 
tion is generated through the Poisson brackets by the 
functional 

Q[B] = J, d3CBlJ = J, d%ti(Z(z))U(z) (4.13) 

Thus, the clock at c” is transformed according to SO(c) = 
{O(c), Q[29]} = g(C). The canonical variables in the La- 
grangian picture, other than O(c), remain unchanged 
under this transformation. In the Eulerian picture, we 
have SO(z) = @(Z(z)) and SE(I) = -8,i (z(z)) II(z), 
with the other canonical variables unchanged. The set- 
and symmetry is an invariance with respect to changes in 
the Lagrangian coordinate labels. That is, the action is 
invariant under diffeomorphisms of the matter space S. 
The infinitesimal version of this transformation is gener- 
ated by 
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= - y(z(z))Pi(l) ) J (4.14) 

where the vector field e(C) is the infinitesimal generator 
of the diffeomorphism. The canonical variables in the 
Lagrangian picture just transform according to their S- 
tensor character. For the Eulerian picture variables, we 
find @(r) = -9(2(z)) and @i(r) = Ej,i (Z(z))Pj(z), 
while the remaining variables (which are tensors on C) 
are invariant. 

B. New constraints and the gravitational 
Hamiltonian 

When the Hamiltonian constraint can be resolved for 
the clock momenta, a new set of constraints may be intro- 
duced that allows the system to be deparametrized. We 
begin by recalling that, as shown in Appendix B, the fleet 
metric hij and velocity V,Xa,i are functions of a, gij, 
~$3, and 31; = -&Xa,i. It follows that the Hamiltonian 
constraint (4.11) depends on the gravitational canoni- 
cal variables gij and p’j, the clock momentum ll, and 
also the particle cano&al variables in the combinations 
given by the momentum constraints xi, We can set Bi 
equal to zero in ztil without changing the content of the 
constraints 31, = 0, 3: = 0. Then the Hamiltonian 
constraint & depends only on gij, pij, and a.3 

Let us assume that we can res&e the constraint 
& = 0 with respect to a. We would then obtain a 
new constraint that has the form 

ZL+ = !I+ !&Cjr$‘] > (4.15) 

where the true (gravitational) Hamiltonian & is a func- 
tional of the gravitational variables only. The constraints 
& = 0 and & = 0 constitute a complete set of con- 
straints for the system which are equivalent to the orig- 
inal Hamiltonian and momentum constraints. We can 
smear & with a prescribed function NT(C) on S to form 

the functional H[NT]. The smeared constraint H[Nf] 
generates, through the Poisson brackets, changes in the 
canonical variables that result when the hypersurface C 
is displaced along the particle world lines by the clock 
time NT(<). 

The constraints Z7 have vanishing Poisson brackets 
among themselves and with the momentum constraints 
&. As usual, the momentum constraints form a repre- 
sentation of the Lie algebra of spatial diffeomorphisms. 

3This perhaps surprising result can be understood from the 
following simple observations. The clock variable 0 does not 
appear in XI since 0 is cyclic. In addition, the particle 
variables X” and P, must appear in ?& in the combination 
%X0,;, since this is the only combination of canonical vari- 
ables that involves X” or c and transforms as a tensor on 
S. By setting %X-,5 equal to zero, we find that & dependi 
only on gij, $j, and n. 
53 

(Note that, since the gravitational variables gij, p_‘i and 
clock variables 0, a are independent of C, they have 
vanishing Poisson brackets with Xi.) Since there are no 
nonvanishing cross terms in the brackets of & with it- 
self, the gravitational Hamiltonian h must have vanish- 
ing brackets with itself: {/z(C),h(C’)} = 0. We should 
emphasize that this property holds for any gravitational 
Hamiltonian b that can be derived through the coupling 
to an elastic medium with clocks; that is, for any choice 
of internal energy density u = w(c, h+). In practice, 
the equations that determine & are not solvable by an- 
alytical means except for the simplest of cases, such as 
dust (w = 0).4 

Finally, note that the constraint (4.15) allows the sys- 
tem to be deparametrized. That is, consider the action 
S,, with N1& replaced by NT&. The particle vari- 
ables X” and P- are completely decoupled from the grav- 
itational and clock variables and can be dropped from 
the action. The variables N’ and a can be eliminated 
through the solution of their equations of motion, and the 
parameter t can be replaced by the clock time 0 = O(t). 
This leads to the action 

S(g<j,p”] = 
JJ 

dB s d3C{p_“i& - &j,zi’]} , (4.16) 

where the overdot denotes a/30. This action for the grav- 
itational field contains no gauge (diffeomorphism) invari- 
ance. 

C. The ease of dust 

We will now explicitly display the results for dust, 
where the interaction energy density vanishes (w = 0). 
In this case, the Hamiltonian constraint (4.11) becomes 

&==&LjCE$@f3Cgl. (4.17) 

Recall that 14 = 11(c) and rn = m(C,II(C)/$C)). Let 
us consider various possible choices for sm. With the 
clock Hamiltonian m(C, J) = J/k, where k is a positive 
constant, then nm = II/k and the new constraint takes 
the form Bt = a+ b with the gravitational Hamiltonian 

(4.18) 

This result can be found in the work of Demaret and 
Moncrief [6] [one must specialize their Eq. (51) to the 
case of dust] and is also derived in Ref. [Q]. 

As described in Ref. [Q], the presence of the square 
root in h creates a serious difficulty for defining a quan- 

‘Some other matter couplings also generate true Hamilto- 
nians that depend only on the gravitational variables. Ex- 
amples that can be solved analytically include the massless 
scalar field [18] and certain perfect fluids with “bad” clock 
couplings [6,19]. 
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turn theory. In particular, it implies that the physical 
Hilbert space must be restricted to those states for which 

the operator (At)” - A:@‘&: is non-negative, and the 
physical observables must be restricted to those opera- 
tors that keep the states in the physical Hilbert space. 
The difficulty is that the obvious candidates for physi- 
cal observables, the metric &j = g;jx and its conjugate 

p = -iJ/Jg, acting by multiplication and differentia- 
%on, do not satisfy this criterion. 

While different choices for the clock Hamiltonian are 
classically equivalent, as long as they are defined for the 
same range of J, they do not necessarily lead to the same 
quantum theory. Thus, we now investigate other possi- 
bilities. With the clock Hamiltonian m(C, J) = fl 

(where we assume J 2 0), we find that nm = m 
and the gravitational Hamiltonian is 

b = -k[(Z9,)’ - Xfg”Z;]/s (4.19) 

This result suffers from the same difficulty as the square 
root Hamiltonian (4.18) if we insist that the momentum 
n should be interpreted in terms of a real, non neg- 
ative clock Hamiltonian rn. In that case, B must be 
non negative (assuming the number density n is posi- 
tive), and the new constraint ?& = n+ h = 0 implies 
that h of Eq. (4.19) must be nonpositive; we again have 

the requirement &)’ - &f$j&: 2 0 on the quan- 
tum theory. On the other hand, it is not obvious that 
the condition n 2 0 must be kept, so one might a- 
gue that it should be dropped. This leads to a quantum 
theory that is free from the difficulties of the condition 

(&“,)” - &:@A: 2 0, but there might arise a problem 
of interpretation for the theory since the variables 0 and 
11 would no longer have a simple interpretation in terms 
of a real clock Hamiltonian. 

Clearly, by choosing the clock Hamiltonian m(C, J) ap- 
propriately, we can arrange for the gravitational Hamil- 
tonian h to be given by any invertible function of (?$y)‘- 
zfgijx: (with n appearing as necessary to keep the den- 
sity weights balanced). In particular, for the clock Hamil- 
tonian m(C,J) = (J/k)‘/” (again with J 1 0), we have 
nm = n3/4(II/k)‘/4 and - - 

!& = -k[@8,)’ - xfgG%;]2/(11)3 (4.20) 

This choice for the gravitational Hamiltonian appears to 
avoid the problems encountered in the other cases. In 
particular, the clock momentum remains non negative, 
11 2 0, for all solutions of the constraint & = 0, even on 

states for which (&~)z-&~$j&~ is a negative operator. 
However, some difficulties with interpretation do arise if 
we attempt to take seriously the constraint in its original 
form 8, = 0. In that case, for states satisfying the 

constraints and on which (&t)” - &T$j&i is negative, 

we find that rn2 < 0. Thus, for such states the clocks 
are tachyonic5 One might also be concerned that there 

‘Said differently, if the mass is still defined by the real branch 

of (J/k) ‘Ia1 it will not satisfy & = 0 for all solutions of the 
new constraint & = 0. 
is something pathological about a Hamiltonian h that is 
eighth order in the gravitational momenta. 
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APPENDIX A: PERFECT FLUIDS AS FLUIDS 
COUPLED TO CLOCKS 

By making the substitution 11 + .Jn in the action 
(2.11) and adding the kinetic term (3.2), we obtain an 
action for an is&tropic perfect fluid coupled to clocks: 

S[Z”, J, O;-/e~l = 1 &[-v’=%(JdJiE) 
M 

-biJOm U-m] (Al) 

Here, h and U” are expre&ed in terms of the label fields 
Z’ through Eqs. (2.7) and (2.8), respectively. In this ap- 
pendix we show that this action is equivalent to the (isen- 
tropic) “unbarred” perfect fluid action of Refs. [4,11,12]. 
In notation consistent with the present work, that action 
is 

S[Ka,O,Zi,X<;^Inio] = 
I 

&l-d=7~(lKl/d?) 

+&o,, f&Z”,, )] , WI 

where IRI z v’s is the norm of the time- 
like, future-directed, spacetime four-vector density K-. 
(Here, our Ka’, Xi, and Z” correspond, respectively, to 
Ja, PA, and a” of Ref. [ll] and to J”, -Wk, and Zk of 
Ref. [12].) 

The essential step in comparing the actions (Al) and 
(A2) is to note that the equations of motion for some of 
the fields in the action (A2) can be solved algebraically 
for those fields as unique functions of the other fields. 
These “dependent” fields contain only redundant dynam- 
ical information and, when the corresponding equations 
of motion are solved and the solutions inserted into the 
action (AZ), the resulting action is equivalent to (A2). 
We will see that this procedure produces the action (Al). 

In order to identify the proper equations of motion to 
solve, we must first change coordinates on field space by 
writing K” = nlJ”, where U” is a unit future pointing 
timelike four-vector. Thus, the action (A2) can be writ- 
ten as 

S[K, u*!, @,Z”, k/c& = J, d”+v’=%(dd=7) 

+nU=(O,, +XiZi,,)] (A3) 

The variations in U” must preserve the normalization 
condition UaUa = -1. 

Note, in particular, the equations of motion that follow 
from varying A; and U”: 
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bS 
6x-=o*u”z’,,=o, 

ss- -= bU” 0 * Q,, +&z-i,, = cu, (A5) 

Here, C is a proportionality constant that arises because 
of the restriction on 6U”. These equations are easily 
solved for Xi and Ua. The solution for U” is just the 
expression (2.8). The solution for Xi is found by con- 
tracting Eq. (A5) with y”flZj,p and using Eq. (A4). The 
result is 

A< = -h;jO,,yaPZi,p , (-46) 

where the fleet metric is defined in terms of Z” by 
Eq. (2.7). The solution for U” and Xi can be substituted 
into the action (A3) to yield the equivalent action 

= s &+J-rp(~/~)+ ~U”QI , WM 
where U” is the functional of Z” given by Eq. (2.8). If we 

now identify IC = J%m (another change of coordi- 
nates on field space), this is just the action (Al). We see 
that the %nbared” fluid of Refs. [4,11,12] may be inter- 
preted as an isentropic perfect fluid coupled to a fleet of 
clocks. 

APPENDIX B: FLEET METRIC AND MATTER 
VELOCITY AS FUNCTIONS OF THE 

CANONICAL VARIABLES 

The velocity VaXa,; and fleet metric hij that appear in 
the Hamiltonian constraint (4.11) are expressed in terms 
of the Lagrangian picture canonical variables as follows. 
 ,, ’) 

First, combine Eq. (3.21) for P; with Eq. (4.5) for P+ to 
obtain 

+tijZ”,, Zj,, V*/l? - (det Xb,j )31: 631) 

By solving Eq. (3.18) for gab and inserting the result into 
Z’,, va = Z’,, g **Vb, we obtain the identity 

z”,, va = phqf p a 13 (B2) 

Then Eq. (BI) becomes 

&Xa,i +g = r[(mn + u)S{ + $5kh”j]V,Xa,j , (B3) 

where g is the pullback to S of the gravitational contri- 
bution to the momentum constraint. With the identity 
(B2), one can confirm that 

hij =gij + r2(ua,,)(biXb,j) G34) 

is indeed the fleet metric; that is, h<j is the inverse of the 
inverse fleet metric (3.18). 

Now observe that the gamma factor l- = l/m 
can be expressed in terms of V,Xa,i and h”j. This 
can be seen by again solving Eq. (3.10) for gab and 
inserting the result into V2 = V,gabVa. This yields 
Vz/rz = (VaX”,i)hij(VbXb,j )!,which can be solved for 
l? a~ a function of V,X”,; and h”. We therefore see that, 
in principle, Eqs. (B3) and (B4) can be solved for h;j and 
VaX”,i as functions of the canonical variables. In par- 
ticular, h;j and VaXa,t depend on 11 [which is contained 
in the argument of the clock Hamiltonian rn in Eq. (B3)], 
&X”,i [which appears on the left-hand side of Eq. (B3)], 
g<j [which appears explicitly in Eq. (B4) and on the left- 
hand side of Eq. (B3) in the combination Bf], and p”j 
[which appears on the left-hand side of Eq. (B3) in t&e 
combination a:‘]. 
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