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Inhomogeneous cosmological models in Brans-Dicke scalar-tensor theory are studied and a family 
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general relativity. In contrast with the,general relativistic solution, the present one is not invariant 
under time inversion. 
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I. INTRODUCTION 

The renewed interest in the scalar-tensor theories of 
gravitation is caused by two main factors. First, most of 
the unified theories, including superstring theory, natu- 
rally predict a dilaton theory of gravity, and it is at the 
present time the only theory that treats gravity in a con- 
sistent way with quantum mechanics. Second, the new 
scenario of extended inflation which solves the fine-tuning 
problem of old, new, and chaotic inflation has a scalar 
field that slows the expansion rate of the universe, from 
exponential to polynomial, allowing the completion of the 
phase transition from the de Sitter phase to a radiation- 
dominated universe; that is, scalar-tensor theories pro- 
vide a possible solution to the “graceful exit” problem. 
There are no experiments that contradict Einstein’s the- 
ory, but most of them are within the parametrized post- 
Newtonian (PPN) framework that has the limitation of 
testing objects in weak gravity. Homogeneous cosmolog- 
ical models in scalar-tensor theories have received a lot 
of attention (see, for example, Refs. [1,2] and references 
therein). However, inhomogeneous cosmological models 
have not been considered in these types of theories. 

On the other hand, in general relativity some very in- 
teresting inhomogeneous cosmological models have ap- 
peared. In 1990, Senovilla [3] found a new perfect-fluid 
inhomogeneous cosmological solution without a big-bang 
singularity and without any other curvature singularity. 
The matter content of that solution was radiation. This 
solution was shown to be geodesically complete and satis- 
fied causality conditions such as global hyperbolicity [4]. 

The singularity-free solution was generalized in a paper 
Ref. [5] to the case of Gz diagonal cosmologies and all the 
different singular behavior were possible. 

In a recent paper [6] a new perfect-fluid cosmological 
solution of Einstein’s equations without a big-bang sin- 
gularity or any other curvature singularities was found. 
Neither the energy-momentum tensor nor the Weyl ten- 
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sor was singular. The equation of state corresponds to 
a stiff flmd p = p, with density positive and nonvan- 
ishing everywhere and satisfying a causality condition, 
namely, global hyperbolicity. This solution possesses a 
two-dimensional Abelian group of isometries acting on 
spacelike surfaces, but with neither of the Killing vectors 
being hypersurface orthogonab that is, the metric is non- 
diagonal and it belongs to the class B(i) of W&wright 
for Gz cosmologies [SI. This solution was obtained previ- 
ously by Let&er 171. For some interesting properties of 
Gz geometries see Ref. [lo]. 

The purpose of this paper is to study inhomogeneous 
cosmological models in one of the simplest scalar-tensor 
theories, the one due to Brans and Dicke [ll]. 

II. FIELD EQUATIONS 

The field equations of Brans-Dicke scalar-tensor theory 
are 

q $=O, (2) 

where we use the signature (-,+,+,+), w is the cou- 
pling parameter of this theory, and general relativity is 
the limit of this theory when w + ca; the solar system 
experiments imply that [WI > 500. 

In this section owe set the field equations of the scalar- 
tensor theory of gravitation in the metric with local 
spherical symmetry: 

ds2 = q(t)bl(r)(-dt’ + d?) + az(t)b#dc+? 

+=,(t)[dz + b&+#, (3) 

where ai and bi, are functions of t and T, respectively. 
The field equations for this metric are given by 
I 

asb? 2&j 2&j 2&j --+----- 
a&z a1 f a2 f a3 f 

2wp 26; g’ 2 b; g’ 2wg’2 

f2 + bzg +x-T 
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ci2 ba 113 b’z ci1 ba cia ba -+- --_ 2&g’ 4fg’ 4wjg’ 

az ba ~3 ba 
+ 

al ba 
+ 2K.i -+-----=O 

azbz bzf al!2 fLl fs 1 (5) 

‘2 
3as bi= _ b, f- 

26=f 2azbzbf 2wj= 

azbz b: 
-~- 

a2 f 4b;f f2 
2wa=b=j= + 2b’zgl 

asb;f= ba g 

4b;g’ 2wgr= 
+- 

2wa=b=g’= 2Ll 

g= + asbig= al 

2a=b=& 2 lia -- 2a=b=ii= 

bs g 
--- 

alasb: az a; b; 

26; 

+bz+ 

2a=b=b; + 2b; 4b; 4f- 4a=b=j 4 a2 b= g” 

as&b; ba b= f aab;g (6) 

2bf ci; 262 b;= b’ b’ 3 a3 bi= 2iL=j 2wj= 2 b; g’ .p2-b2-F+2A--~-p - 
2 2 2 ba ba az ba a2 f f= + hg 

2b;g’ 2wg’2 

hg + g= 

2Lif 6; 2 b;= b2 3a=bz 2li=j 2wj2 
7+2-F-F+----- 

2 2 2 aa ba a2 f f2 

2b;g’ 2wg’2 -- 
+ bag + g= 

2&j 2wp I--- 2 b’, g’ 2 b; g’ 

asf f= +bz--- bag 
where the prime means a derivative with respect to T and 
the overdot with respect to t and we have assumed that 
4 = f(t)g(r). In the next section we give a family of 
exact solutions to the field equations. 

III. EXACT SOLUTIONS 

I have found the following exact solution to the field 
equations: 

&2 = $5 pr2 cosh(2pt) (-dt” + dy=) + T= cosh(2pt)dv’ 

l 
+cosh(2pt) 

(dz+Pr=&)= 1 1 
ht 

4=&e- 3 (121 

where h, s, and p are constants satisfying the relation 
h=(3 + 2~) = 4(s - p), (13) 

and ~$1 is an integration constant, and the range of vari- 
ation of the coordinates is 

--m<t,z<co, O<r<m, 0 5 $0 5 27r. 

This spacetime has a well-defined axis of symmetry at T = 
0 where the so-called elementary flatness [9] is satisfied 
and therefore the coordinate T has to be interpreted as a 
radial cylindrical coordinate. 

We notice here that this metric is conformally related 
to that obtained by Mars [6] in general relativity for a 
stiff fluid as the material source. The conformal factor 
is eht and it is well behaved as well as its derivatives; 
therefore no curvature singularity appears in this new 
solution. What about the contribution of the scalar field? 
The components of the ‘Lenergy-momentum” tensor [see 
Eq. (I)] of the scalar field, for this solution, are 
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T 
VT 

= h=(l + w) + 2hp tanh(2pt) 

2 
(14) 

T,, = Tt, = hsr, (15) 

Tw = 
h=T=(l+ w) [l+ pZ~=sech(2pt)=] + (2hpr=) [l- 2p2r2sech(2pt)= ] tanh(2pt) 

2e”‘” 
(16) 

T 
21 

= (h=(l+ w) -2hp tanh(2pt)]sech(2pt)= 

2 

T,,= (3 +w)h2+2hptanh(2pt) 
2 
As we can see, the contribution of the scalar field shows 
no singularity, that is, we have a solution without matter 
singularity as well. Another important property of the 
scalar field of Bran&i& is that it satisfies the weak, 
dominant, and strong energy conditions [12]. 

This metric reduces to the general relativistic case 
when h = 0, that is, when 4 is a constant. A quali- 

tative difference from the metric of Mars is that in the 
present case we do not have invariance under time reflec- 
tion, and the constant h is a measure of the asymmetry 
and is a direct consequence of the existence of the scalar 
field. Since the solution given here is conformally related 
to that of Ref. [6] it is of type I except at T = 0, where it 
is type D in accordance with the theorems of Ref. [lo]. 
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