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We present an explicit general family of inhomogeneous cosmological models. The family contains 
an arbitrary function of comoving time (interpretable as the cosmological scale factor) and four arbi- 
trary parameters. In general, it is a solution of Einstein’s field equations for a fluid with anisotropic 
pressures, but it also includes a big subfamily of perfect-0uid metrics. The most interesting feature 
of this family is that it contains l$h all the diagonal separable singularity-free cosmological models 
recently found and all the Friedmann-Lemaitre-Robertson-Walker standard models. This property 
allows one to speculate on the construction of some interesting models in which the Universe has 
been FLRW-like from some time on (for instance, since the nucleosynthesis time), but it also went 
through primordial singularity-free inhomogeneous epochs (in fact, there are quite natural possibil- 
ities in which these primordial epochs are inflationary) without ever violating energy conditions or 
other physical properties. Nevertheless, the physical processes leading to the isotropiaation and ho- 
mogenization of the Universe are not fixed nor indicated by the models themselves. The interesting 
properties of the general model are studied in some detail. 

PACS number(s): 98.80.Hw, 04.20.Dw, 84.20.Jb 
I. INTRODUCTION 

The purpose of this paper is to present an interest- 
ing general family of explicit inhomogeneous cosmolog- 
ical models which contains both all the spatially ho- 
mogeneous and isotropic cosmologies, the F&dmann- 
Lemaitre-Robertson-Walker (FLRW) models [l-4], see 
also [5-71, together with all the Gz diagonal and sepa- 
rable perfect-fluid cosmologies 18-111 considered in the 
general class studied in [12]. As is well known, within 
this last class there are all types of cosmologies with dif- 
ferent singular behaviors [IZr], among which we have the 
solutions of (13,141, the explicit solutions presented in 
(121, the p = p/3 singularity-free solution of [15] (see also 
[16-18]), and its generalization given in Ref. [12] itself. 
Therefore the mentioned singularity-&e models become 
equal to the standard models from a theoretical point of 
view, because they both belong to the same single explicit 
class and one can move from one to the other within the 
family “continuously,” as we ,shall presently see. 

The interest in considering spatially inhomoge- 
neous cosmologies has been recognized since long ago 
[7-10,19,20], mainly due to the following fundamental 
reasons. The first reason is because of the obvious fact 
that the actual Universe is not exactly spatially homoge- 
neous, not even at the largest scales. The second reason 
is because of the desire to avoid postulating very spe- 
cial initial conditions. Thus it would be very interesting 
to construct general inhomogeneous models which nev- 
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ertheless become homogeneous and isotropic enough at 
late times (late might mean just 1 s after the beginning 
of the present expansion era) to be in accordance with 
the existence of the microwave background radiation or 
the regular distribution of helium. The third reason for 
interest in these cosmologies is in order to see whether or 
not the formation of large scale structure in the Universe, 
such as voids, great walls, great attractors, superclusters, 
etc., can be somehow scientifically explained. And the 
fourth reason is because inhomogeneity might be the way 
to avoid the initial big-bang singularity, a fundamental 
problem in cosmology given that no present kn&n laws 
of physics can be applied to understand the breakdown 
of regularity at this initial singularity (remember that all 
physical quantities become infinite at the initial singular- 
ity and that no satisfactory quantum theory applicable 
to this situation has been found yet). 

In this sense, the powerful singularity theorems [6] 
seemed to provide a final negative answer to the pos- 
sibility of avoiding the initial singularity in classical gen- 
eral relativity. However, the general reasoning presented 
in [S] (p. 350) makes use of the geodesic motion of the 
cosmological matter, an assumption which is clearly not 
supported by any theoretical M observational reason. In 
fact, since the work of Fiaychaudhuri [21] it has been 
known that acceleration (or rotation) may prevent the ex- 
istence of a universal singularity in our finite past. This 
was explicitly manifested by the recent appearance of 
the singularity-free inhomogeneous model of 1151 (see also 
[22]). This perfect-fluid model has a well-defined cylindri- 
cal symmetry, a realistic equation of state for radiation- 
dominated epochs p = p/3, nice causality global prop 
erties (161, and a contracting era previous to the sub- 
sequent expansion era starting after a rebound time; it 
satisfies all possible energy, conditions, and nevertheless 
is geodesically complete (therefore singularity-free) [16]. 
1799 0 1996 The American Physical Society 



1800 JO& M. M. SENOVILLA 53 
Prior to its publication, the nonexistenck of ,such mod- 
els was thought to be established because they had not 
been found and the singularity theorems seemed to indi- 
cate their mathematical impossibility. This very simple 
model, however, was later generalized to include energy 
flux [l7] and also to a much more general family depend- 
ing on three arbitrary parameters 1121 but still satisfy- 
ing energy and causality conditions [12] together with 
geodesic completeness [23]. Other new singularity-free 
models have also been found quite recently [24]. 

Sometimes it has been considered as highly intriguing 
that inhomogeneous models can be free of singularities 
without violating energy conditions. This is due to a 
simplified view of the singularity theorems. As is well 
known, there are several types of singularity theorems. 
Perhaps the simplest one is that due to Raychaudhuri, 
stating that irrotational and geodesic expanding models 
must have a big-bang singularity in the finite past if the 
strong energy condition holds [21]. Of course, this the- 
orem does not apply to general inhomogeneous models, 
because they are nongeodesic (acceleration is not zero). 
In fact, this has a clear explanation in physical terms, 
because acceleration of matter is equivalent, via conser- 
vation equations for the energy-momentum tensor, see 
[25], to the existence of a gradient of pressure, which is a 
force opposing generally gravitational attraction. With 
regard to the most complicated and powerful singular- 
ity theorems [SI, let us remark that all of them have 
the same structure. Usually, they assume energy and 
causality conditions plw a boundary or initial condition. 
This last condition can adopt several different forms it- 
self, although in general it amounts to the existence of a 
causally trapped set [6]. A causally trapped set C is a set 
such that E*(C) is bound to be compact; by E*(c) we 
mean the set of points in spacetime that can be reached 
from 6 by a future- (past-)directed null curve but cannot 
be so reached by a timelike curve. Some examples are 
closed trapped surfaces (the original Penrose hypothe- 
sis, see [6]), compact achronal sets without edge (such as 
space in closed cosmological models), points with recon- 
verging light cones, slices with bounded-above (-below) 
zero expansion, etc. This boundary or initial condition is 
the one which is bypassed by the known singularity-free 
inhomogeneous models. Thus, for instance, the very first 
and simple singularity-free model of [15] was extensively 
analyzed in Ref. [16] in this sense. It was shown that 
the model was singularity-free and in accordance with 
all singularity theorems. These theorems do not apply 
to the solution because the boundary condition does not 
hold: there are no closed trapped surfaces, no compact 
achronal sets without edge, no points with reconverging 
light cones; etc. All these facts were explicitly proved in 
[16]. In summary, there were no causally trapped sets in 
the model of (151. 

In spite of the above, the hitherto explicitly known 
singularity-free models are not realistic in the sense that 
they cannot explain the isotropy in the temperature of 
the microwave background radiation (they can certainly 
explain its existence, though) and some other obserm- 
tional features. For this reasbn, and given that they 
were not generalizations of the FLRW standard models, 
the relevance of these singularity-free cosmologies for the 
study of the actual Universe has been very limited. It 
is here where the new family we are about to present 
may have some importance, because it combines quite 
naturally the irrefutable good physical properties of the 
FLRW cosmologies with the new singularity-free models, 
thereby opening a classical way for the construction of 
a realistic model which never passed through the unfor- 
tunate situation of suffering the initial singularity --an 
indisputably desirable feature. 

II. THE MODELS AND THEIR GENERAL 
PROPERTIES 

Let us now directly present the explicit family of solu- 
tions, given in cylindrical-like coordinates {t, T, 4, z} by 
the line element 

ds2 = TZ(1+“)&+2”(*-‘) (-d72 + ““) 

+@(‘+“&2”C’2&,+2 + @(‘-“)~+“)&2, 
(1) 

where T(T) is an arbitrary function of only the time coor- 
dinate T,~L 2 0 is a constant, primes stand for derivatives 
with respect to T, and C(T) is a function of r which, for 
the only purposes of the present work,* will be assumed 
to satisfy the simple differential equation 

p - (MC2 + N - ,KCW”)) = 0, (2) 

where M, N, and K are arbitrary constants. Therefore 
this metric depends on one arbitrary function of time 
and on four arbitrary parameters. The interpretation of 
these parameters and of the function T(T) is given in 
what follows. 

Before entering into the physical properties of the mod- 
els, let us just make some comments about Eq. (2) and 
its solutions. Of course, this is not a remaining differen- 
tial equation to be solved in order to get the solution in 
complete closed form. As is obvious, a simple change of 
the coordinate r would allow one to give the metric in 
explicit form (for example, by choosing E itself as a new 
coordinate). However, it is better to keep the differential 
equation (2) because, fist, C will not always be a good 
global coordinate, and, second and more important, be- 
cause the behavior of the function C with the physical 
coordinate T varies depending essentially on the sign of 
M and the values of the other constants. 

‘In fact, the line element (1) is a solution of Einstein’s equa- 
tions for anisotropic fluids in general, that is, for any arbi- 
trary function C(r). However, we shall only consider here the 
particular case in which C satisfies (2) because this will bet- 
ter help us in our aim of combining clearly and in a simple 
way the general properties of FLRW models with those of 
the singularity-free metrics. Let us simply remark that rela- 
tion (2) is a necesswy, but not sufficient, condition for having 
a perfect-fluid energy-momentum tensor. Thus the FLRW 
models included in (1) will always satisfy (2). 
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In order to illustrate these points, let us give the so- 
~lution of (2) in some particular c&es. For example, if 
nK = 0, then the solution is obviously either a trigono- 
metric function, such as cos(+/?@~), when M < 0, or a
linear function of T when M = 0, or a hyperbolic function 
when M > 0. In this last case M > 0, the hyperbolic 
function will be a hyperbolic cosine, an exponential, or 
a hyperbolic sine depending on whether N is less than, 
equal to, or greater than zero, respectively. Analogously, 
the general case N = 0 (n # 0) can be explicitly solved 
ind the solution of (2) is given by 

N=O (n#O) ==a C(T) = ak(znr), 

where the function Z(z) satisfies again the trivially solv- 
able equation 

d3 a “( > z 
= ME2 - nK. 

Thus again we have the trigonometric (M < 0), linear 

(A4 = 0), or hyperbolic [M > 0, with sinh(&?z) or 

cosh(mz) according to whether nK is positive or neg- 
ative] behaviors, adequately “weighted”, in each case by 
the power 1/2n and the argument I = 2nr. 

The properties shared by ,these examples are in fact 
g&wml, as we are going to see. Of course, the general 
behavior of the function C can be given without hav- 
ing to solve (2) explicitly. The procedure is standard. 
We only have to notice that (2) can be seen as a typi- 
cal equation with C” as the square of a “velocity” and 
V(C) = - (MC’ + N - nKC2(‘-2”)) < 0 as the poten- 
tial. Then the behavior of C follows from the plot of V(C) 
and its maxima and minima, its zeros, etc. Thus, for ex- 
ample, when V(C) vanishes at a finite value &, > 0 &am 
which V decreases monotonically without bound, then C 
behaves l&e a hyperbolic cosine. Similarly, all possible 
cases can be analyzed. In summary, and for the sake
of brevity, we give the following behaviors: If M < 0,
C alwayS behaves like a trigonometric function, which 
can be taken as a cosine, plus perhaps a’constant. The 
case M = 0 is a little bit more involved but nevertheless 
treatable in the above elementary form. Now, there are
several cases with linear combinations of different powers 
of T and some other possibilities, such as trigonometric 
or hyperbolic functions again. 

Finally, when M > 0, C always behaves like a hyper- 
bolic function, being a sinh, a cash, or an exponential 
depending on the particular values of N, K, and n. Let 
us remark that in this case we can always choose the 
value of N in such a way that C behaves like a hyper- 
bolic cosine. The important thing about this particular 
case is that X does not vanish for any value of T. This 
will be of great importance for the later analysis of the 
singularities of the metric (1). 

From the above analysis we learn two important things. 
First, the coordinates could be properly resealed such 
that the constant M would take one of the values 
I-1,0,+1}. Nevertheless, we shall not do so because 
the constant M carries physical dimensions of length to 
the power -2) and we prefer to write cos( AT) rather 
than cos(i) for a new adimensional coordinate f. And 
second, in most cases, the potential V(C) will vanish for 
some values of C. In fact, this means that C! will van- 
ish there and, from inspection of the line element (l), 
this implies in turn that the coefficient of d@ vanishes. 
This will not be, however, a singularity of the metric 
in general, as can easily be checked from the F&ci and 
Weyl tensors (see below). What happens here is that the 
above metric has well-defined cylindrical symmetry, with 
an axis defined by C’ = 0, which is regular in most cases. 

By choosing the natural orthonormal cobasis 

the energy-momentum tensor of (1) takes the form 
T,,=diag(p,p,,pc,p,), so that (1) is a solution of Ein- 
stein’s field equations for a fluid with anisotropic pres- 
sures (two different pressures and no energy flux) relative 
to the fluid velocity one-form u= -0’. Obviously, the 
coordinates are adapted to the fluid (or comoving). The 
explicit form of the energy density p and pressures p, and 
p, of the fluid are given, when (2) is taken into account, 
by (&rG = c = 1) 
(2n-l)(n-l)(n+3)nK+C4*(n+l)(n’-3) M-g 

P= Tz(‘+n)pn(n+l) 
( ), 

(4) 

(2n - l)(n - l)%K + X4” (n - 1)2M - [(n + lj(n - 3) + 21 g - 2; 

PT = 
( 
T2(‘+“)~2”(““) 

1, 
(5) 

(2n - l)(n - l)%K + X4”’ 
( 

(n+ 1)2M - (n+ l)(n - 1)s - 2(n+ I); 

Pz = 
) 

p(‘+“)~2”(““1) (6) 

where overdots stand for derivatives with respect to T., As is obvious, the above fluid will be perfect if and only if the 
pressures p, and p, are equal, so that &am (5) and (6) this condition becomes 



1802 JOSB M. M. SENOVILLA 53 
Perfect fluid - p, = p, q p - n 
Thus the matter content of the spacetime will be a perfect 
fluid if and only if either n = 0 (with arbitrary 7’) or the 
function T takes one of the explicit forms (with arbitrary 

4 

Acosh(2aT) + Bsinh(2JiGi7) if M > 0, 
if M=O, 

Acos(2m7) + B sin(2&%7) if M < 0, 

(8) 

where A and B are arbitrary constants. We shall not 
assume this form of the function T, though, as we want 
to keep the arbitrary function T for the metric (1) and 

(2). 
Spacetime (1) and (2) is Petrov type I in general (and 

at generic points), as can be trivially checked from the 
following Weyl scalars: 

*‘1= Q3 = 0, 

3q2 = 
&w-n) 

T2(“+1) 

2n+l ri.2 

+ 2 
-F-Mn-(n-l)~, 1 @(I-n) *o - *4 = 24n2 - 1) T2(“+‘) 

x 
(MC2 + N _ ,KCz(‘-2”))‘/2 F 

c T’ 

+2M(nZ-n-1)+(2n-I)+1); , 
1 , 

which have been computed with respect to the natural 
null tetrad associated with (3). As is evident from these 
expressions, the metric is conformally flat for n = 0, and 
the Petrov type is D if n = 1 or at points where E’(r) = 0, 
that is to say, at the axis. 

III. PHYSICAL ANALYSIS OF THE MODELS 

First of all, let us compute the kinematic quantities of 
the fluid velocity vector. It is obvious that the vorticity 
tensor vanishes, while the expansion and the nonvanish- 
ing components of the acceleration and the shear tensor 
are given by, respectively, 

e = (n + 3)x+“)&’ (9) 
a* = lL(n. - l)y(‘-“) c’ 
p+“C’ (10) 

ol1 = v22 = -y = zp1-nL& 
(11) 

where all the components are given relative to the cobasis 
(3). As we can see from (7) together with (10) and (ll), 
the acceleration and shear vanish when n = 0, in which 
case the fluid is also perfect. As is well known (see, for 
instance, [5,7,25]), from this it follows that the metric for 
n = 0 is a FLRW model. Actually, all FLRW models 
are included in (1). The FLRW models are invariantly 
characterized within (1) and (2) by the simple condition 
n = 0 and then the function T is the FLRW scale factor. 
In fact, when n = 0 the metric (1) becomes 

ds= = TZ (-“” + dr2 + E”d# + C2dt2) 

where now C” = MC2 + N. This is a familiar form (in 
parametric time T) for the general FLRW model (71. In 
this FLRW case, the density and pressure read 

from where we immediately see that -sgn(M) is the 
usual curvature index in FLRW models, so that the 
FLRW model is open, flat, or closed whenever M is pos- 
itive, zero, or negative, respectively. Remember that, in 
the general case n # 0, the sign of M also chooses the 
form of the function C. Thus this interpretation of M as 
the index selecting the openness, flatness, or closedness 
of the model holds somehow for the general case. 

But the family (1) and (2) is much richer than the 
FLRW model. For example, let us note that the mod- 
els are locally rotationally symmetric (LRS) when n = 1 
(acceleration is then zero). The metrics in [13,14,26] be- 
long also to (1) and (2). However, more important for 
our purposes is to note that all Gz diagonal separable 
singularity-free perfect-fluid models satisfying energy con- 
ditions [12] are also included within the family (1). They 
are given by one of the explicit functions T of (8) with 
the appropriate choice for C. In fact, their explicit form 
given in [12] can be easily recovered by setting 

M > 0, T2 = cosh(2&%), 

CZn = cosh(2n&&), N =‘nK - M, 

together with the following elementary change of coordi- 
nate T -i FI 
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dr= = 
M sinh2(2n&&)d@ 

M cosh2(2&&) + N cosh(2”-1)‘n(2n&@~) - nK’ 

I 
The singularity-free models with a realistic equation of 
state for radiation-dominated matter p = p/3 [12] can 
be trivially obtained by putting then n = 3. The very 
first and simple p = p/3 singularity-&e model of [I51 is 
given by choosing further M = 3K. Of course, within the 
singularity-free family given above there are some FLRW 
models (when n = 0), but they violate the strong energy 
conditions [6]. 

As a matter of fact, there are many singularity-free 
metrics included in (1) and (2). Within the singularity- 
free metrics, we shall only consider those satisfying the 
strong energy conditions and with non-negative energy 
density (both these conditions imply also the weak en- 
ergy conditions [SI). An elementary analysis shows that, 
under these conditions, no metric with M < 0 can be 
singularity-free. Nevertheless, in this case the singular- 
ities may be timelike (noninitial), and sometimes they 
only appear in the Weyl tensor, having well-behaved mat- 
ter quantities. Similarly, there axe no singularity-free 
metrics with M = 0 under those energy conditions. Fi- 
nally, the singularity-free subclass within the family (1) 
and (2) and satisfying the strong energy conditions is 
uniquely characterized by the properties 

M > 0, K 2 0, n > 1, T # 0, 

(T”-‘Y 
T”-’ I (n - VM. (12) 

The first of these conditions implies that the singularity- 
free models are open in general, and together with the 
second it also implies that N can be chosen such that C 
behaves like a hyperbolic cosine. These singularity-free 
metrics have non-negative energy density everywhere if, 
in addition to (12), we have either 

n=3or 
1 

T.2 
n>3and9<M . 

1 
(13) 

Finally, under the above requirements (12) and (13), the 
dominant energy conditions [S] also hold if 

0<2M<$+$<2M+(n-3) M-g 

( ) 

From this formula follows the remarkable fact that the 
general singularity-&w models in (1) and (2) satisfying 
strong and dominant energy conditjons can have only me 
single rebound time (defined by T = 0). This forbids 
cyclic singularity-free models and gives a good invariant 
definition and physical sense to the “bang” happening at 
the rebound, where expansion changes from negative to 
positive values. Therefore the expanding era starts at the 
rebound and will not have an end. 
Thus we have seen that, within the singularity-free 

metrics, those with values of n close to zero (which gives 
almost-FLRW models) violate energy conditions, while 
those with bigger n may both be singularity-free and 
satisfy energy conditions (even with realistic equations 
of state). This leads us to the interpretation of the fun- 
damental parameter n in the general metric (1). Using 
(9) and (ll), a straightforward calculation for the relative 
shear a/b’, where 2~7’ E u&‘“, gives 

0 2n 

e-Jjn+3’ 

From this simple formula we see that the parameter n 
measures the anisotropy of the model. The relative shear 
is constant for every single model independently of the 
arbitrary function T, and depends only on the explicit 
value of n. Thus for n = 0 the relative shear is zero, as it 
should be for FLRW models, and then it is an increasing 
function of n. For n + ca the relative shear approaches 
the maximum value 2/a. As an example, when n = 3 
(which includes the p = p/3 singularity-free perfect-fluid 
models) the relative shear has an “intermediate” value of 

1/a. 
As we saw before, the function T is the scale factor for 

the FLRW models. In fact, this interpretation remains 
true for the general family (1) in the following sense. If 
we define the scale factor R of any cosmological model 
by the equation [25] 

uW,,R = “R 
3 ’ 

where u’ is the velocity vector of the fluid, we get for the 
general line element (1) 

R(T) =Tq. (14) 

Mind, however, that the scale factor R is obviously de- 
fined up to an arbitrary function of the comoving space- 
like coordinates, which allows one to put it as a function 
of the proper time if desired. Notice also that 7 is not 
proper time for the fluid; the proper time t for the fluid 
of (1) can be chosen as 

which is a function not only of 7 but also of r. 
Let us now compute the quantity relevant for infla- 

tionary models and the variation of the expansion: the 
deceleration parameter 4. This is defined by the general 
expression 125) 
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1 
uw, -j 

0 

from where we can immediately get 

*= & (,,+3-32) (15) 

for the general metric (1). Let us first remark that p de- 
pads only on the time coordinate 7, a property which is 
due to the separability of the metric functions in comov- 
ing coordinates. On the other hand, given that the func- 
tion T is completely arbitrary, we can have any desired 
behavior for Q. In general, for very anisotropic models 
(for big enough n), p approaches the value 2. 

In order to get’s flavor of the different behaviors of 
4 let us concentrate for a moment on the perfect-fluid 
models included in (1) and (2). Then we must choose 
the function T as in (8). The resulting q(7) is 
2 if M=O, T==Ar+B, 
6 

t+- 
nf3 

tanz(2J--iGi7), if it4 < 0, T2 = sin(2aT) 

2ncosh2(2JiC?7) + 6 

(n + 3) cosh’(2aT) 

- I 

T2 = sinh(2JiC?T) (16) 

2n T=@t 
n+3 

~2nsinhZ(2a7) - 6 
T2 = cosh(2&i%). 

(n + 3) sinh’(2aT) 
As we can see, the three possibilities M = 0, M < 0, 
and M > 0 give different deceleration parameters. First, 
for the oerfect-fluid case with M = 0. we have that 
Q is exactly 2 for any n. When the pkrfect fluid has 
M < 0 (general closed models), q(7) > 2 as can easily 
be checked from (16): at the big-bang Q(O) = 2, then Q 
increases with 7 and becomes unbounded at the recol- 
lapsing time, 7 = *, from where Q decreases until 

it reaches again the original value 2 at the big crunch 
(T = &). In this case, however, Q does depend on the 

anisotropy of the model, and the bigger the value of n, the 
smaller the value of Q at each 7. Finally, when the per- 
fect fluid has &J > 0 (general open models), there appear 
the three inequivalent subcases shown in (16). When T2 
is a hyperbolic sine, the deceleration parameter satisfies 
0 5 $ 5 q(7) 5 2, so that q is always positive but less 
than the initial big-bang value q(0) = 2 and it decreases 
with time, approaching asymptotically its minimum $‘&. 
This minimum depends on the anisotropy of the model 
in such a way that q is smaller for smal1er.n. When 

T = ear, the function q is actually a constant, as we 
can see in (16), and its explicit value depends on n, being 
bigger for bigger n. Finally, when T2 is a hyperbolic co- 
sine, it is easily seen that q is such that q(-r) 5 $$$ < 2. 
These models are singularity-free, and they have a con- 
tracting era (for --03 < 7 < 0, when 0 < 0), an expanding 
epoch (for 0 < 7 < co, when 0 > 0), and at 7 = 0 there is 
a rebound. For the expansion era, and after the nonsin- 
g&r “big bang” that occurs at the rebound time 7 = 0 
where q = --co (it is obviously a bang, even though there 
is no singularity), the deceleration parameter is negative 
for a period given by 

r,,f E inflation duration where sinh 2v’%~i.r 
( )=Ji. 

Actually, the fact that singularity-free models are in- 
flationary is quite general, and all hitherto known 
singularity-free models [15,12,24] have inflation epochs 
(this is also true for FLRW models, because FLRW in- 
flationary models have pFLRw + 3p,,, < 0 so that they 
violate the strong energy condition and therefore can be 
free of the initial singularity). From the formula above 
we see that the duration of inflation depends on n, that 
is, on the anisotropy of the model. For the FLRW model 
(n = 0), inflation lasts forever, which is a typical behav- 
ior. On the other hand, the non-FLRW models have a 
finite duration for inflation, which is shorter for bigger 
n, and they can also satisfy all energy conditions and 
other physical requirements [for example, the p = p/3 
singularity-free model of [15] (n = 3) is inflationary with 
a realistic equation of state and satisfies all energy and 
causality conditions [16] 1. After inflation, the decelera- 
tion parameter grows with time approaching asymptoti- 
cally its maximum &, which depends on the particular 
value of n. 

Let us now consider the question of how anisotropy and 
inhomogeneity &xt the local relative motion of matter 
in the general model (1). To that end, let us calculate 
the generalized Hubble law given by the rate of change 
of relative distance [25] between neighboring particles in 
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the cosmological fluid. The formula is [25] 

where D is the relative distance and tP is the relative ve- 
locity vector between neighboring particles with respect 
to the observer defined by the fluid, and np is a diiec- 
tion unit spacelike vector (orthogonal to the fluid velocity 
vector) indicating the instantaneous relative direction be- 
tween those particles (and thus the relative position vec- 
tor Dfi can be split as 0“ E Dn’, see 1251). The most 
general possible ii in our general metric (1) is obviously 
given by 

ii z sin 0 cos a& + sin 0 sin a;2 + cos O& (17) 

where 0 and a are angles selecting the particular di- 
rection at each point and {.?I, &, &} form the orthonor- 
mal spacelike triad of the basis dual to (3). Using this, 
a straightforward calculation for the generalized Hubble 
law leads us to 

u”EJ,D = x~“n~ = D [l - 1~ cos (ZO)] X”(l-“)& 

= D [l -n cos (ZO)] -& (18) 

where we have used (9) and have defined the Hubbk func- 
tion 31 z 6’/3 as usual. From this formula it is obvious 
that the receding velocity of typical particles in the cos- 
mological fluid is independent of the direction ii if and 
only if (iff) n = 0, that is to say, iff the model is FLRW. 
This is a very natural result. In the general case n # 0, 
the receding velocity does not depend on a, which is a 
very interesting property meaning that, at any possible 
event, all directions with the same 0 are equivalent from 
this particular loc?l point of view. Nevertheless, for ex- 
panding epochs (T > 0), neighboring particles recede in 
the direction ii (uQ,,D = vhp > 0) if and only if 

1 - n cos (20) > 0 

as follows i&n (18). Therefore, for 0 5 n 5 1 particles 
recede whatever the direction ii. On the contrary, when 
n > 1 there always exists a set of directions in which the 
particles do not recede but rather come closer to each 
other. This set of directions is defined by (17) with 

co* (20) > i (n > l), 0 5 * 5 27r, 

which obviously form the solid interior of a double cone 
at each point with e?$ as axis and an angle of $ arccos (k) . 
This angle is always less than 2. Of course, the recedmg 
velocity (18) depends not only on the direction but also 
on the particular point of spacetime. In general, when 
n > 1 the magnitude of the velocity decreases with T. 
The time variation depends on the particular model via 
the explicit function T. 
IV. DISCUSSION 

We have thus presented a general family of spacetimes 
which must be considered cosmological models because 
they are obvious generalizations of the FLRW standard 
models (which are included as particular cases). The 
only fundamental concepts of standard cosmology, that 
is, the arbitrary scale factor and the spatial curvature in- 
dex, have also been kept in the general family (1) and 
(2), represented by T(T) [through formula (14)] and M, 
respectively, as has been carefully explained above. Nev- 
ertheless, new parameters and associated physical con- 
cepts appear in (1) and (2). These are as follows. ~The 
fist is the fundamental parameter n, which defines the 
anisotropy and inhomogeneity of the model and measures 
the essential departure of any particular model with re- 
spect to its FLRW analogue (given by the same T and M 
but with n = 0). The second is the arbitrary constant K, 
which can be interpreted as a fixed initial or boundary 
energy density. Thus the maximum energy density at any 
instant of time 7 can be chosen as large (or small) as de- 
sired, even for the singularity-free models, and indepen- 
dently of the scale factor. Finally, there is the constant 
N, which is not directly related with the matter content 
of the universe but only with the Weyl pure gravitational 
part of the curvature. N is also indiiectly related to p, 
p,, and p, via the specific form of the function C. The 
cbnstruction of the family (1) and (2) shows that the 
singularity-free metrics presented in [15,12,17] (see also 
[23] and [24]) can be considered cosmological models as 
are the FLRW models, and the questions raised some- 
times concerning their possible instability or zero mea- 
sure in a hypothetical space of metrics may no longer 
be maintained unless they are also raised against FLRW 
cosmologies themselves. 

Of cowse, the fundamental question arises of whether 
or not we can construct any realistic singularity-free cos- 
mological model. In fact, one of the main purposes of this 
paper is to show clearly the simple fact that this question 
is still open. The family (1) and (2) cannot give a definite 
answer to this question. It may give some light, though, 
in the following sense. If we accept that the actual Uni- 
verse is and has been approximately FLRW-like around 
us from sane time up to now (for example, since nucle- 
osynthesis time), we must look for some models which 
resemble FLRW models at those times. Thus what we 
need is, schematically, 

T(T) N 
T,, around 7 = 0 with any n 
T,,, for 7 > ? with n = 0, (19) 

where ? is some fixed time, T,,, is the scale factor of 
the FLRW model best describing the Universe around us 
now, we have set the rebound time at 7 = 0, and T,, is 
any function T leading to a singularity-free scale factor 
there (any smooth nonvanishing function of 7 with a local 
minimum at the rebound time 7 = 0). Just to fix ideas, 
let us note that simple examples for T,, are. (1 + a’?)” 
or cosh”‘(a7). Of course, there are many other different 
choices for singularity-free scale factors. Let us remark 
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that ‘7 = 0 is a real birth time for the structured matter 
of the Universe, even though it is not an initial singu- 
larity. This follows because we can choose our model in 
such a way that any matter decomposes into its most 
elementary contituents (particles) in the collapsing era 
previous to our present expanding era. Thus the history 
of the Universe as usually explained will be just the same. 
What is really important for that history of the Universe 
is the existence of a highly compressed and very hot ex- 
panding phase, here represented by a period after the 
rebound by choosing the parameters and the scale factor 
appropriately. Thus the formation of light nuclei as well 
as the existence of the microwave background radiation 
might be fully explained without problems (but perhaps 
not their isotropy). 

The simplest way to achieve properties (19) is to as- 
sume n = 0 everywhere, that is, a FLRW model for 
every time and place. As is well known, however, this 
would lead to the violation of energy conditions, some- 
thing which is not desirable and manifestly against our 
purposes. In fact, if we assumed n = 0, we would sim- 
ply have the usual standard inllationary FLRW models, 
which of course do violate the strong energy condition. 
Here we can remark, by the way, the very curious fact 
that most cosmologists xe willing and happy to accept 
violation of energy conditions in the quite fashionable 
inflationary FLRW models, while they stick strongly to 
the view that singularity theorems imply the plausibility 
of the initial singularity if energy conditions hold. For 
the same price (violation of energy conditions), we could 
have inflationary sing&&y-free models. 

But OUT intention is to construct a realistic singularity- 
free cosmological model without ever violating energy 
conditions. Thus we cannot assume n = 0 for all 7; rather 
we must consider a transition period with a smooth (or 
“adiabatic”) variation of n from some n > 1 at small 7 
(say n = 3 so that we can have the p = p/3 realistic equa- 
tion of state for highly concentrated relativistic matter), 
to n = 0 for 7 > 7’. This seems the right answer, but it 
has some problems. Essentially the point is that, if the 
model is FLRW-like at some time, then the existence of 
closed trapped surfaces is inevitable [6], and thus the sin- 
gularity theorems [6] would apply proving that the model 
either is singular or violates the strong energy condition 
somewhere. The only way out of this situation is to as- 
sume the smooth variation of n not only with 7 but also 
with T (or other space coordinates). Thus we could have 
regions with 7~ = 0 for 7 > t and at the same time some 
other regions with n # 0 for 7 > t. If these regions 
are carefully chosen (mainly trying to avoid the situation 
that the FLRW regions with n = 0 are so big as to con- 
tain closed trapped spheres), then the model might be 
nonsingular and satisfy energy conditions. Notice that 
the horizon in FLRW models is at a distance similar to 
the radius of the trapped spheres around us [SI, so that 
we could very well live in a FLRW region contained in a 
non-FLRW bigger Universe. 

The above construction may seem somehow artificial, 
but it is the only thing we can do with the hitherto avail- 
able singularity-free models (1) and (2). Nevertheless, 
there are some nice features in this construction, such 
as, for instance, the natural inflationary character of the 
model near the rebound time, the fact that this inflation 
has finite duration, and all this without ever violating en- 
ergy conditions or any other physical requirement. An- 
other virtue of these models is their testability, because 
their global structure has influence on the observations 
that can be made at the FLRW regions. For example, 
the redshift of distant objects depends on the shear, ex- 
pansion, and acceleration of the model through an inte- 
gral along the corresponding null geodesic, so that the 
inhomogeneity of faraway regions has influence on this 
redshift. 

The physical processes leading to the variation of n 
with the coordinates are not clear nor are they fixed by 
any property at this stage. However, if we allow n to 
depend on 7 and T, then the matter content of (1) is no 
longer a fluid with two pressures, but something more 
general. Actually, with n(~, r) the only new nonvanish- 
ing component of the energy-momentum tensor is TOI. 
Therefore the existence of .some kind of energy transport 
leading to the homogenization of some regions and to the 
greater inhomogenization of &hers may be at the origin 
of those processes. However, our own opinion is that 
models more general than (1) will be the right answer. 
In ow view, the importance of this first step represented 
by (1) is to show the possibility of and the way towards 
singularity-free realistic cosmological models. 
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