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In supersymmetric theories a field can develop a vacuum expectation value M > 10’ GeV, even 
though its mass rn is of order 10’ to lo3 GeV. The finite temperature in the early Universe can 
hold such a field at B~IO, corresponding to a false vacuum with energy density Vo - naMs. When 
the temperature falls below V,l14, the thermal energy density becomes negligible and an era of 
thermal inflation begins. It ends when the field rolls away from zero at a temperature of order 
rn, corresponding to of order 10 e-folds of infl&tion which does not affect the density perturbation 
generated during ordinary inflation. Thermal inflation can solve the Polonyi/moduli problem if M 
is within one or two orders of magnitude of 10” GeV. 

PACS number(s): 98.8O.Cq, 12.6O.J~ 
I. INTRODUCTION 

There is at present a “standard model” of the Uni- 
verse before nucleosynthesis, which is described in many 
reviews and several textbooks; According to this model, 
an early era of inflation sets the initial conditions for a 
hot big bang, which starts far above the critical temper- 
ature for the electroweak transition (T N 100 GeV) and 
continues without interruption until the present matter 
dominated era begins. 

This picture is pleasingly simple, but it is by no means 
mandatory in the context of current thinking about the 
fundamental interactions beyond the standard model. To 
be precise, it will not be valid if one or more scalar fields 
have a sufliciently large vacuum expectation value (VEV) 
while at the same time having an almost flat potential. 
The reason is that the particle species corresponding to 
the oscillation around such a VEV is typically both abun- 
dant and long lived, which modifies the simple picture in 
a significant and sometimes disastrous way. Extending 
an old terminology [l], we shall call a scalar field with a 

large VEV and a flat potential a “flaton field,” or simply 
a “flaton.” 1 

Although Baton fields are by no means inevitable, they 
are natural in the context of modern particle theory and 
in our opinion their possible cosmological consequences 
should be taken very seriously. Some aspects of the cos- 
mology of flaton fields are already well known [1,3-lo], 
and in a recent work [ll] we drew attention to a new fea- 
ture which we termed “thermal inflation.” The present 
paper, along with two more in preparation [l&13], aimS 
to give a systematic account of the subject. 

‘Note the etymology. The term “Baton” refers to the flat 
potential, not to inflation. Conversely, the familiar word “in- 
flaton” refers to the field which is slowly rolling during in- 
flation. We shall also use the term “flaton” to denote the 
particle species corresponding to a flaton field. 
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Let us begin by being more precise about what is meant 
by a “large” VEV, and a potential which is “almost flat.” 
These terms are defined with respect to the energy scale 
lo2 to 103GeV, which is the scale of supersymmetry 
breaking as defined by the masses of the supersymmet- 
ric partners of known particles [14]. The VEV is defined 
as the position of the minimum of the potential, and a 
“large” VEV M is one satisfying M > IO3 GeV. An “al- 
most flat” potential V is one whose curvature lV”1’/’ is 
of order 10’ to lo3 GeV (except near any points of inflex- 
ion) out to field values much bigger than lo3 GeV, and if 
the field has a,large VEV this is supposed to be true out 
to at least the VEV. For an almost flat potential the par- 
ticle mass rn is therefore of order 10’ to lo3 GeV. From 
now on we drop the qualifier “almost,” referring simply 
to a flat potential. 

The most widely discussed &ton candidates are the 
moduli occurring in superstring theory. The potential of 
a modulus is indeed flat, and if its VEV is nonzero it is 
typically of order the Planck scale Mpl = (8?rG)-‘1’ = 
2.4 x 10” GeV. A modulus with such a VEV’ is known to 
be fatal to the standard cosmology since the correspond- 
ing particles are very abundant and do not decay before 
nucleosynthesis [2,16-201. As we shall see, the failure to 
decay before nucleosynthesis is likely to persist for any 
flaton with a VEV exceeding 1Ol4 GeV, making all such 
flatons fatal to the standard cosmology 17). 

Moduli are by no means the only flaton candidates. On 
the contrary, any field (in the observable sector) with a 
VEV much bigger than lo3 GeV is likely to have a flat 
potential, and so to be a flaton. The reason, as we dis- 

‘A field with these properties occurred in the first example 
[15] of a nonrenormaliaable supersymmetry-breaking hidden 
sector, which contained a single complex field. It was called 
the Polonyi field, and the associated problem [2] was called 
the Polonyi problem. Most of what we say concerning the 
moduli applies to any species with these properties. 
17x4 01996 The American Physical Society 
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cuss in detail below, is that it is natural to construct all 
available mass scales from just the two basic scales rn and 

Mpl. Apart from the moduli, the most familiar examples 
of fields with nonzero VEV are those which are charged 
under a Continuous symmetry, the VEV’s then indicating 
a spontaneous breakdown of the symmetry. If the sym- 
metry is local then the field is by definition a Higgs field, 
and presumably the examples of this type occurring in 
nature (apart from the higgs fields breaking electroweak 
symmetry) are the Higgs fields breaking the GUT sym- 
metry, whose VEV are of order 10” GeV. Alternatively 
the symmetry could be global, a likely candidate for this 
case being the Peccei-Quinn field with a VEV perhaps 
of order 10” GeV. On the other hand, it makes perfect 
sense for a field to have a nonzero VEV even if it is not 
charged under any continuous symmetry. For example, 
a right-handed neutrino mass might be generated by a 
VEV, without lepton number being a good symmetry 
[21,13]. 

As mentioned already, moduli as well as any other fla- 
tons with a VEV bigger than 1Ol4 GeV are fatal to the 
standard cosmology. How are we to solve this “moduli 
problem” if it exists? 

The usual recipe for getting rid of unwanted relics in 
cosmology is to invoke an early epoch of in&&m, last- 
ing at least 50 to 60 Hubble times or so. Such an era 
is also desirable for other reasons [22,23], one of which 
is that it can generate an adiabatic density pertwba- 
tion of the right magnitude to explain the cosmic mi- 
crowave background anisotropy and large-scale structure. 
To do this the potential at the end of inflation must 
satisfy V1/4 5 1016GeV 1241, and the lowest value of 

V’14 that has been proposed in a plausible model is 
V’14 - 10” GeV [25,26]. 

Inflation at such a high scale does not solve the moduli 
problem, because although it sufficiently dilutes moduli 
present before inflation they are regenerated with an un- 
acdeptable abundance afterwards. We show in [Ill, and 
in much more detail below, that to avoid excessivb regen- 
eration one requires 

Vi ~10’to108GeV T ’ 
( > 

where 2’~ is the reheat temperature. An era of inflation 
at such a low energy scale seems impossible to realize in 
the context of sensible particle physics, if it is required 
also to produce the cosmological density perturbation. 
Randall and Thomas 1181 therefore suggested that the 
density perturbation is produced by an era of inflation 
at the usual high-energy scale, while a second era of in- 
flation at a low-energy scale solves the moduli problem. 
However, even without the constraint of producing the 
density perturbation it is difficult to construct a model 
of inflation giving a sufficiently low-energy scale, within 
the usual paradigm where there is an inflaton field rolling 
slowly down the potential. The reason stems from the 
fact that a necessary condition for slow roll is that the 
i&&on mass (or more precisely the curvature IV”11/2 
evaluated while the field is rolling) be much less than the 
Hubble parameter H N VJI’/Mpl. The bound displayed 
in Eq. (1) corresponds to a very low mass 5 10 MeV. 

The central purpose of this paper is to explore the 
fact that a flaton field can lead to a completely different 
type of inflation, called thermal inflation Ill], which can 
solve the moduli problem provided that the VEV M is 
within 1 or 2 orders of magnitude of lo*’ GeV. During 
thermal inflation the flaton field is held at the origin by 
finite-temperature effects so that no field is rolling. The 
potential during thermal inflation is the value V, of the 
flaton potential at the origin, which is of order m2M2. 

With A4 - 1Ol2 GeV this gives V”4 - 10’ GeV which 
can satisfy Eq. (1). Thermal i&&ion starts when the 
thermal energy density falls below Vi which corresponds 

to a temperature roughly Vi’4, and it ends when the 
finite temperature becomes ineffective at a temperature 
of order rn, so the number of e-folds is i ln(M/m) - 10. 
It turns out that this can sufficiently dilute the moduli 
existing before thermal inflation (especially if reheating 
after thermal in&&ion is delayed) and it will not interfere 
with the density perturbation generated during ordinary 
inflation. There is also the intriguing possibility that 
two or more bouts of thermal inflation can occur in quick 
succession, allowing an even more efficient solution of the 
moduli problem. 

The present paper and its two successors are comple- 
mentary to recent papers by Dine, Randall, and Thomas 
[20,27]. The latter focus on fields with a flat potential 
but zero VEV. These fields too are liable to be oscil- 
lating in the early Universe and if they carry nonzero 
lepton or baryon number they can lead to baryogenesis 
(the Aflleck-Dine mechanism). However baryogenesis in 
this way works only if there is no thermal inflation, and 
that in turn is a viable possibility only if there is no mod- 
uli problem. The two sets of papers therefore represent 
mutually exclusive scenarios for the early Universe, and 
only time will tell which if either is correct. 

The rest of this paper is divided into two main’sec- 
tions plus a concluding one. In Sec. II we study the 
effective potential expected for flatons, both in the early 
Universe and in the present era when it reduces to the 
ordinary low-energy effective potential. Special attention 
is paid to the case of moduli, which is different from that 
of other &tons because the moduli potential vanishes 
if supersymmetry is unbroken. The flaton decay rate is 
also estimated. The reheat process for homogeneous fla- 
ton oscillations is considered, taking account of possible 
parametric resonance. In Sec. III a systematic account 
is given of the history of the Universe, assuming that 
thermal inflation occurs and that there is a moduli prob- 
lem. The concluding section summarizes the results, and 
points to future directions of research. 

II. FLAT POTENTIALS AND FLATONS 

In a generic supersymmetric gauge theory there will be 
a large number of directions in the space of the complex 
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scalar fields3 in which the potential V is exactly flat, 
before supersymmetry breaking and nonrenormalizable 
terms are taken into account. (Thii is true, for example, 
in the minimal supersymmetric standard model.) After 
these effects are taken into account the potential is still 
almost flat, in the sense that the energy scale IV”1”’ 
specifying the curvature of the potential is only of or- 
der lo2 to 103GeV, out to field values many orders of 
magnitude bigger than this scale. In this paper we are 
interested in flaton fields, which by definition correspond 
to flat directions with a nonzero VEV. The central theme 
of this paper is that flaton fields are cosmologically sig- 
nificant, because they typically lead to thermal inflation, 
and because they in any case oscillate homogeneously 
until a relatively late epoch. 

A field with a nonzero VEV is by definition either a 
Higgs field or a gauge singlet. We will focus on the lat- 
ter case in this paper, since a straightforward interpre- 
tation of the data indicate that the VEV of the grand 
unified theory (GUT) Higgs field is of order 1016GeV 
which is too high to give viable thermal inflation. Note, 
though, that in some GUT models there are additional 
Higgs fields with much smaller VEV’s [28]. 

The cosmology of a given flaton field is 1a:gely deter- 
mined by the form of its effective potential. One needs to 
know both the low-energy effective potential which is rel- 
evant at the present era, and the effective potential in the 
early Universe. Also, since the case of moduli is some- 
what different from that of flatons in general we treat the 
moduli in a separate subsection after the general discus- 
sion. 

A. The low-energy effective potential 

Consider a complex flaton field 4. In the limit where 
the potential is absolutely flat there is a global U(1) sym- 
metry under the transformation 4 + e”*& with an ar- 
bitrary choice for the origin of 4. In the full theory this 
symmetry may survive for one choice of the origin, at 
least to a good approximation, or it may be so badly 
broken as to be unrecognizable. 

Global U(1) symmetry 

We begin by considering the case where the symmetry 
survives. Extensions of the standard model can indeed 
contain spontaneously broken global U(1) symmetries, a 
well known example being the Peccei-Quinn symmetry 

3Each scalar field is complex in supersymmetric theories be- 
cause supersymmetry relates it to the two degrees of freedom 
associated with a left- or right-handed spin-half field. In this 
paper we are assuming that the fields are canonically normal- 
ized in the regime of interest. (One cannot in general canon- 
ically normalize the fields exactly over an extended region of 
field space.) 
associated with the axion [29,22,23,30,31]. We initially 
suppose that the U(1) symmetry is exact. The potential 
then depends on 4 only through 141, and assuming an 
effective theory that is valid right up to the Planck scale, 
the potential in the flat direction is typically of the form 

V = V, - m~~~~2 + 2 X,Mp;2n~~~2n+4. (2) 
n=* 

The 1$12 term comes from soft supersymmetry breaking, 
which means that mo N 10’ to lo3 GeV, and the higher 
order terms are nonrenormalizable terms. The dimen- 
sionless couplings X, are at most of order 1, if the theory 
is indeed valid up to the Planck scale. 

The crucial feature of this potential, which distin- 
guishes it from the potential of a generic field and makes 
it flat, is the absence of a term ,+#I4 with X - 1. Such 
a term can be forbidden by discrete or continuous gauge 
symmetries, in combination with supersymmetry. Su- 
persymmetry breaking then generates a X/# term with 
a suppressed coupling X N (mo/Mp#. Such a term is 
negligible for flaton fields which are not moduli and we 
have lost nothing by omitting it from Eq. (2). (The case 
of moduli will be discussed in a moment, and in more 
detail in Sec. IIE.) 

As the notation suggests, we have in mind the case 
where the mass squared at the origin, -rn& is nega- 
tive. This means that the VEV of 141 does not van- 
ish but rather has a value M > mo. To estimate M, 
suppose first that all of the X’s are of the same order. 
Then as one increases 141, the I# term comes in first, 

leading to M = (3X1)-‘/%7~~‘~M~~ N X;1’4 x 1O1’ 
to 10”GeV. Now suppose instead that this term is 
negligible, so that the I# term comes in first. Then 

M = (4X$‘hn~‘3M;{ N AZ-*/~ x 1013 GeV. If more 
terms are absent the VEV will be raised further so the 
predicted range is M 2 1O’O GeV. In the entire regime 

141 5 M the curvature IV”ll/’ of the potential is only 
of order mo, which is of order 10’ to lo3 GeV. In par- 
ticular the mass rn of the Baton particle is of this order, 
and &om now on we shall generally use it instead of mo 
when writing down order of magnitude estimates. The 
requirement V(M) = 0 gives VW - m2M2, corresponding 
to 

(,:::,) - ( 10l~eV)l’r (3) 
If the nth term dominates in Eq. (2), then” 

rn2 = 2(n + l)& 

M2”+2M~2n = [2(n + l)(n + 2)X,]-%?, 

V, = [2(n + 2)]-1m2MM2. 

(4) 

(5) 

(6) 

4The mass squared of the flaton particle is fV”(M) because 
the canonically normalized complex field 141 is related to the 
canonically normalized real &ton particle field S+ by 141 = 
M i 6$/v’?. 
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Rather than the nonrenormalizable terms being sup- 
pressed by the Planck scale, they might be generated by 
integrating out particles with GUT scale masses and so 
instead be suppressed by MG”= N 2 x 10’6GeV. This 
would correspond to taking X, < (A~~I/?&uT)~” and 
would give the somewhat looser lower bound 

M 2 lo9 GeV. (7) 

We noted a moment ago that in Eq. (2) the I# term 
has a coupling X - (m/A&)’ which is many orders of 
magnitude less than 1. It may happen that the same 
is true of one or more further terms. But for a flaton 
which is not a modulus one expects to find, at not too 
high order, a term whose coupling X, is not many orders 
of magnitude less than 1. As a result, one expects the 
VEV of flaton which is not a modulus to be several orders 
of magnitude below Mp,. By contrast one expects for a 
modulus that all couplings are strongly suppressed, be- 
cause the potential of a modulus vanishes exactly when 
supersymmetry is unbroken. A natural order of magni- 
tude for the couplings of a modulus is (rn/&.1)’ making 
the VEV of order &I, though there are other possibili- 
ties. We shall discuss moduli in more detail in Sec. HE. 

The flat potential Eq. (2) is not at all what cosmolo- 
gists generally assume when they consider spontaneous 
symmetry breaking in the early Universe. Rather they 
assume, as for instance in the textbooks [22,23,32] and 
the reviews [29,33] that the potential is like the standard 
model Higgs’ potential5 

v = X(1412 -My (8) 

with X - 1. For the standard model Higgs boson whose 
VEV is of order lo2 GeV, this potential is indeed natural 
from the viewpoint of supergravity; it simply corresponds 
to a nonflat direction, in which there is a X1414 term. But 
when M is much bigger than rn it becomes far less nat- 
ural, and in our view Eq. (2) rather than Eq. (8) should 
be regarded as the “default” case. 

So far we have taken the U(1) symmetry to be exact, 
so that the Goldstone boson corresponding to the angu- 
lar direction is massless. If the symmetry is broken the 
Goldstone boson will acquire a mass. This mass is by 
definition much less than that of the flaton if the sym- 
metry is only slightly broken. On the other hand, as we 
now discuss the symmetry may be strongly broken which 
means that the would-be Goldstone boson becomes just 
another flaton particle. 

No U(1) symmetry 

As a simple example, consider the superpotential W = 
(X/4Mp# with X - 1. After supersymmetry breaking 
the corresponding potential is of the form 

‘In the case of the standard model 4 is a doublet and the 
symmetry is SU(2) but this is an irrelevant complication for 
OUT purpose. 
v(4) = v, - m;1412 + AW + B#c + C.C. 
a4 > 

aw 2 
+3$ I I 

with mo and the magnitudes of A, B and C all of order 
lo2 to lo3 GeV. 

In this example U(1) has been broken down to Z, 
(which leaves @ invariant), and there are four vacua each 

with the same VEV I#1 = M N ~XI-‘h~‘2M~~. In 
a given vacuum there are now two particles with mass 
lo2 to lo3 GeV; one of them is the one corresponding to 
the radial oscillation that we considered before, and the 
other is the would-be Goldstone boson corresponding to 
the angular oscillation. We shall generally refer to them 
both as flatons. Note that in the regime 141 < M the 
U(1) symmetry is approximately restored, since the term 
-m~l# dominates. 

The Z, symmetry surviving in this example has en- 
sured that there are no linear terms in the expansion 
of 4 about the origin, and this feature will become au- 
cial when we consider the effective potential in the early 
Universe. Of course any Z,, symmetry will do for this 
purpose, and it does not need to be exact. 

In our discussion -rn; has been taken to be negative. If 
it is positive the potential has a minimum at the origin. 
If this is also the position of the VEV (i.e., if it is the 
absolute minimum) then the field is not a flaton and does 
not concern us. It can however happen, as for instance in 
the model of [34], that the origin corresponds to a false 
vacuum, with higher order terms generating a large VEV 
so that we are dealing with a flaton. Thermal inflation 
with such a flaton is viable only if tunneling to the true 
vacuum is rapid, which is typically not the case. 

For simplicity we shall from now on make frequent use 
of the notation appropriate to the case where there 1s a 
U(l), writing the potential as a function only of 141 and 
using rn to denote the mass of the flaton particle. 

B. The flaton decay rate 

There is a general expectation that a flaton particle 
corresponding to oscillations around a VEV M will cou- 
ple only weakly to particles with mass much less than 
M. In particular, one expects [1,5,6,8-X] that the flaton 
decay rate r is at most of order d/M’. 

Consider first the decay into a pair of identical spin 
zero particles which correspond to a real field $J, with 
the renormalizable effective interaction Xl#@. Setting 
141 equal to its VEV this interaction gives a contribu- 
tion 2XM2 to the mass-squared rn:. Barring a precise 
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cancellation,6 it follows that 

where the right hand side is at most a(n~/M)~ or the 
decay would be forbidden by energy conservation. Sub- 
stituting 141 = M + 64/d, one finds that the flaton 
decay rate corresponding to this interaction is 

Maximizing this expression subject to the constraint 
Eq. (11) gives l? 5 10~%n3/M2. 

This effective interaction with a coupling of order X N 
(~I/M)~ is quite natural. For instance an interaction 
l#X2 might give some field X a maa of order M, and 
then an interaction @X2 would generate it through the 
diagram with a single X loop. 

For an effective interaction involving more powers of 
the fields and/or derivatives the arguments are generally 
less precise, but one expects suppression because such 
terms are nonrenormalizable and therefore involve in- 
verse powers of some scale ti which is presumably at 
least of order M. Consider for instance a term involving 
one power of 4 and two of 4, with 2n derivatives. Its co- 
efficient is expected to be at most of order X’Mmzn with 
X’ N M, and since the energy of all particles is of order 
rn (in the 4 rest frame) this gives the decay rate Eq. (12) 
with X - (rn/M)‘“. For n > 1 this is much smaller than 
the upper limit Eq. (ll), but for n = 1 it is bigger by a 
factor (m/m+)’ leading to l? - (8~)~W/M’. On the 
basis of this discussion, we shall assume that 

withy < 1. 

r = 10-2ym3/M2 (13) 

The decay into Goldstone bosom 

A definite example of a derivative coupling is provided 
by the decay of the “radial” flaton into the “angular” fla- 
ton, or Goldstone boson. Near the VEV, the canonically 
normalized radial field s and angular field a are defined 

by 

4= (~+M).~~p(ia/hVf). 

Expanding the canonical kinetic term &in = a,@P$ 
to first order in s, one finds the canonical kinetic terms 
for s and a plus an interaction term 

‘It has been pointed out to us by Dvali that such a cancel- 
lation does occw in an SU(5) GUT where the doublet-triplet 
splitting problem is “solved” by a fine tuned cancellation. In 
such a case the decay rate has~the unsuppressed value r N rn. 
When the problem is solved in a more acceptable way this 
need not be so, but we will not pursue the point here because 
our main focus is not an the GUT. 
We should first clarify what is meant by the “effective 
potential V(b).” There is in reality a single effective po- 
tential V(&+, .), which is a function of all the scalar 
fields. It is natural to define the effective potential of any 
individual field as the full potential with all other fields 
held at their VEV’s, and this is the definition that we 
had in mind for the low-energy effective potential V(4). 
However in the early Universe all sufficiently light scalar 
fields are significantly displaced from their VEV’s, either 
homogeneously in the manner we have been discussing for 
&tons, or inhomogeneously as for instance if the field is 
in thermal equilibrium. Instead of evaluating the full ef- 
fective potential V(4,$, .) with the other fields at their 
VEV’s one should set them equal to their current time- 
averaged values, so that for instance a term @@ is re- 
placed by (@)@. In addition, the actual form of the full 
effective potential is affected by the presence of pwti- 
cles with nonzero spin and also by kinetic terms, so that 
the effective potential V,,I,(~, $, .) in the early Uni- 
verse is different from the low-energy effective potential 
l&.,(6,11,. .) which applies at present. For both of these 
reasons, the effective potential V..+,($) in the early Uni- 
verse is different from the low-energy effective potential 
V,,,,,.(4) which applies at present. 

Although the form of the effective potential V(4) 
changes with the history of the Universe, its gradient will 
always vanish at, the origin provided that it is invariant 
under at least a Z, symmetry. This tends to be at least 
approximately true in simple models, and we shall take it 
for granted in what follows. Let us pause briefly though 
to see why such a symmetry is common. If the full po- 

The coefficient is of the advertised form X’/M2, with X’ = 

MlA. 
The Goldstone bosons produced by this coupling can 

be cosmologically dangerous, because their interaction 
can be too weak to therm&e them. This will be dis- 
cussed in connection with the axion in [12] (see also [31]). 

The flaton freeze-out temperature 

Though we have focused on the decay rate, similar 
considerations apply to collision rates. The rates for 
collisions involving a flaton and other light particles are 
suppressed at energies well below M, and therefore the 
freezeout temperature below which flaton particles cease 
to be in thermal equilibrium is very roughly of order M. 
Note that this applies only in the true vacuuti, where 
the flaton field is oscillating about the VEV. 

C. The effective potential in the early Universe 

In the early Universe, the interaction of a given field 
with other fields will alter the effective potential of that 
field, and in particular the effective flaton potential V(6) 
will be altered. 
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tential V(+,$, . .) is expanded as a power s&s in all 
of the fields each individual term will be invariant under 
one or more Z,, symmetries unless it consists of just the 
first power of one field. For instance the term $+P is 
invariant under a Z, acting on 4, and another acting on 
11. As we discussed in Sec. IIA, only a few leading terms 
will be important in practice, so it is reasonable that one 
or more Z, symmetries will be approximately present in 
the full potential. Then the question of whether or not 
the potential V(4) of an individual field possesses an ap- 
proximate Z, symmetry depends on the form of the full 
potential, but again this is not unreasonable. 

Taking it for granted that the gradient of V(4) vanishes 
at the origin, let us ask what is the effective mass-squared 
V”(0) in the early Universe. [We continue to assume for 
simplicity that there is a U(1) symmetry, so that V is a 
function only of 161.1 

First consider the era of ordinary inflation. It has been 
known for some time [3,4,8,26] that by looking at the 
form of the full potential predicted by N = 1 supergrav- 
ity one can identify contributions of order +H2 to the 
mass squared of every field. For the inflaton field(s) these 
contributions have to cancel because otherwise inflation 
will not occur, but for a generic field one does not expect 
a cancellation. Assuming that &tons are not inflatons, 
the conclusion is that their mass squared during inflation 
is (at least) of order &HZ. 

After inflation it is not so clear what the mass-squared 
will be. In the extreme case where the interaction is 
of only gravitational strength one expects a contribution 
of the same order, fHZ [ZO]. We noted earlier that in 
the true vacuum, the interaction of flaton particles with 
other light particles is suppressed, so one at first sight 
expects something like this estimate to hold for a flaton 
field. However, that suppression occurs because the VEV 
of the flaton field is large (the flaton particles correspond 
to small oscillations around the VEV). Near the origin 
the flaton field can have unsuppressed interactions with 
light fields. 

To see why, take as an example the interaction 

~X/#@ that we considered earlier. When 4 is at its 

VEV this gives a contribution XM2 to rn& Barring can- 
cellations, X must therefore be small if rn+ is small. But 
suppose that in contrast rn+ is of order M and is gene- 
ated by this interaction. Then there is a coupling X - 1, 
and for flaton field values near the origin the + field be- 
comes light. The result is that near the origin the flaton 
field has an unsuppressed interaction with the light field 

+. 
If 4 is a Higgs field, charged by definition under a gauge 

symmetry, a coupling of this kind to at least the gauge 
bosom and gauginos is inevitable. In the case where C$ 
is neutral under all gauge symmetries, which is our focus 
here, such a coupling is not inevitable but it is still quite 
natural; for instance, in models of the kind discussed in 
[21,13,12] a flaton field couples in this way to the right 
handed neutrino and sneutrino. 

Assuming that the flaton field near the origin indeed 
has unsuppressed interactions with one or more particle 
species having effective rnas8 of order 141, it will be in 
thermal equilibrium in the regime 141 ,$ T. (The upper 
limit comes from the fact that at a given temperature 
particles with mass bigger than 2’ become too rare too 
maintain thermal equilibrium.) The finite temperature 
correction to the effective potential gives the flaton an ef- 
fective mass squared [1,35] of order (2’~rn:), which gives 
the effective potential a local minimum at the origin for 
T bigger than some critical temperature Tc - mo - rn. 
(As usual, -rn; denotes the effective zero-temperature 
mass squared at the origin, and rn denotes the flaton par- 
ticle rna which is the parameter we normally focus on. 
Recall that both mo and rn are of order lo2 to lo3 GeV.) 

In addition to the local minimum at the origin, the 
effective potential retains its true minimum at 4 = M 

except at very high temperatures T 2 M, but there is 
no significant tunneling between the two [1,35]. 

To summarize this discussion, if the flaton field has 
gravitational strength interactions its mass squared is 
expected to be of order iH2. If, on the other hand, 
it has unsuppressed interactions then it will be in ther- 
mal equilibrium in the regime 141 < T and in this regime 
there will be a necessarily positive maas squared of or- 
der Ta - (MpI/H)HZ. These are the most important 
possibilities for the effective mass squared but others ex- 
ist, especially during inflation where one might have a 
coupling to the intlaton field, say of the form $“&, (in 
particular, hybrid inflation [25] makes essential use of 
such a coupling). As in this example, the positivity of 
the potential tends to require that such a coupling again 
gives a positive mass squared. 

D. The cosmology of flelds with flat potentials 

In light of what we have done so far there are the fol- 
lowing four possibilities for the cosmology of a field with 
a flat potential. 

(i) The field sits at the origin. If the minimum of the 
potential is at the origin throughout the history of the 
Universe then the field will sit there apart from ther- 
mal and quantum fluctuations. In that case it does not 
undergo homogeneous oscillations in the early Universe, 
and we are not concerned with it here. It will in gen- 
eral have unsuppressed interactions (at least if it is not a 
modulus) and the corresponding particle species will be 
produced through particle collisions and decays involving 
these interactions. 

(ii) The field oscillates about the origin. Now sup- 
pose that although the minimum of the low-energy ef- 
fective potential is at the origin, the minimum in the 
early Universe is displaced because there is a negative 
mass squared of order -Ha. In that case the field will 
start to oscillate about the origin at the epoch H N rn. 
The oscillation is generally short lived, because the parti- 
cles corresponding to it generally have unsuppressed cou- 
plings (except perhaps for moduli). If there is no thermal 
inflation the oscillation can however lead to viable baryo- 
genesis through the Affleck-Dine mechanism [27]. 

(iii) Themal infEation occurs. In the two remaining 
cases the VEV is nonzero, so that we are dealing by def- 
inition with a flaton field. Thermal inflation, which is 
the focus of the present paper, occurs if the flaton field is 
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held at zero in the early Universe by the finite tempera- 
ture. It ends when the temperature falls to some critical 
value Tc N rn (provided that the zero-temperature effec- 
tive potential has no barrier separating the origin from 
the VEV), after which the flaton field starts to oscillate 
about the VEV. The oscillation around the VEV might 
persist for a long time because the coupling of flaton par- 
ticles to other light particles is suppressed (Sec. IIB, and 
Sec. IIF below). 

(iv) Flatons not leading to thermal inflation. In the 
fourth case the flaton field fails to be held at the origin 
by the finite temperature of the early Universe. This will 
occur if the flaton has an effective mass squared - -Ha 
which prevents it from ever being near the origin. It will 
also occur whatever the sign of the mass squared, if the 
interaction of the flaton field is suppressed even near the 
origin. When H falls to a value of order the flaton mass 
rn, the field starts to oscillate about the VEV, with an 
initial amplitude of order M. (The initial amplitude is 
equal to M if the initial field value is at the origin. If 
the field is displaced from the origin by a mass squared 
of order -Hz, its value is typically of order A4 when 
the field starts to oscillate.) As in the previous case the 
oscillation might last for a long time. 

E. The moduli potential 

What we have done so far, including the summary of 
the last subsection, applies in essence to all flaton fields 
including any which are moduli. On the other hand, 
moduli do have some properties which distinguish them 
from other scalar fields (“matter fields”) and as a result 
the general discussion acquires a somewhat different fla- 
vor when applied to them. 

The low energy effective potential of a modulus van- 
ishes exactly if supersymmetry is unbroken. After super- 
symmetry breaking its potential is generally thought to 
be flat, so that its curvature IV”11/2 is everywhere of or- 
der 10’ to lo3 GeV (except near points of inflexion). If a 
modulus has a nonzero VEV, then as we discuss in a mo- 
ment its VEV is generally expected to be of order Mp,. 
To a large extent its properties can then be obtained 
simply by setting M = Mpl in formulas that apply to 
flatons in general, but there are .some special features. 
These arise because one is forced to consider field varia- 
tions of order Mpl, in contrast with matter fields where 
one need only consider much smaller variations (typically 
of order the VEV M < MPL for a flaton field which is 
not a modulus). 

In order to talk about a nonzero VEV for any field 
there has to be a well defined origin, which will be defined 
as a point which is invariant (“fixed”) under the group of 
symmetries under which the field transforms. For matter 
fields this defines a unique origin, such that the symme- 
try group consists of linear operators in field space. For 
moduli the symmetries are more complicated, and there 
are in general an infinite number of fixed points with a 
separation of order Mp, (though only a finite number are 
physically distinct because the symmetry is a discrete 
gauge symmetry). If the VEV of a modulus is at a fixed 
point it is natural to say that it vanishes, and otherwise it 
is natural to define the VEV as the distance to the near- 
est fixed point. These are the conventions that we have 
had in mind, without explicitly stating them. The state- 
ment that the VEV of some modulus is of order Mpl just 
means that it is not close to any particular fixed point. 
As with other fields, a modulus can have unsuppressed 
interactions with other light fields only if it is close to a 
fixed point. 

Each of the four possibilities for the cosmology of a 
flaton field listed in the last subsection exists for a mod- 
ulus. If possibility (i) holds for all moduli then there is 
no moduli problem. Assuming that this is not the case, 
let us look at the expected form of the effective poten- 
tial of a modulus Q. For simplicity we will pretend that 
‘J? is real, and take it to be canonically normalized. Be- 
fore supersymmetry breaking is taken into account the 
potential V(@) vanishes. With the breaking taken into 
account the potential in the true vacuum (the low-energy 
potential) is generally thought to be of the form 

Here the supersymmetry breaking scale Ms is related to 
the scale rn N lo2 to lo3 GeV by MS - (WZM~~)‘/~ N 

10” to 1O1’ GeV, and f(z) is a function whose value 
and low-order derivatives are typically of order 1 in the 
regime 1x1 < 1. We have expanded the potential about 
its VEV @I. Note that the pdtential vanishes in the limit 
MS 7‘ 0 of unbroken supersymmetry, in accordance with 
the fact that we are dealing with a modulus. 

In the early Universe there will be additional super- 
symmetry breaking because of the nonzero energy density 
p, leading to an additional contribution to the potential 
of the form [3,4,26,20] 

V 
a 

cosm=PS - 
( > MPI 

= ;Hyz-z#+... (17) 

The function g(s) has value and low-order derivatives of 
order 1 (making a - 1). The minimum of this potential 
is located at a different value &, which is displaced from 
the true VEV a1 by a distance Q. = Qz - a1 - Mp,. 

We have in mind the case where both @I and & are 
nonzero [case (iv) of the last subsection] and of order 
MPI. If @z = 0 but @I # 0 [case (iii)] there is also a 
moduli problem, but it might be rendered insolu& by 
domain walls (though in analyzing this possibility within 
a given model one will have to remember that the discrete 
symmetries under which the moduli transform are gauge 
symmetries). If +I = 0 but +‘z # 0 [case (ii)] there is no 
moduli problem if the relevant moduli have unsuppressed 
couplings near the origin. 

Although Eq. (16) is the simplest possibility for the 
potential of a modulus there are others, which could lead 
to a VEV below the Planck scale. For example, if su- 
persymmetry breaking is due to hidden sector gaugino 
condensation then the moduli potential might include 
terms of the form p”1~/“+4/M&“” where p is related to 
VEV’s arising from gaugino condensation. These terms 
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still vanish when supersymmetry is unbroken, as is re- 
quired for a modulus, but they might generate a VEV 
below the Planck scale. For example the GUT Higgs 
could be a Wilson line modulus, with a VEV of order 
1O’6 GeV generated in this way [36]. In considering the 
moduli problem we assume in this paper that at least 
some moduli have a VEV of order MPL. 

F. The flaton reheat temperature 

Let us quantify the statement that the flaton field os- 
cillations in the early Universe last for a long time. 

The oscillation of a flaton field with VEV M has initial 
amplitude ~$0 - M. The corresponding energy density is 
p+ - $n2& and the number density of the flaton parti- 

cles is n+ N $n&. These particles have no random mo- 
tion because the field is homogeneous, so they constitute 
matter as opposed to radiation. If the flaton is associated 
with thermal inflation, the oscillation commences after 
thermal inflation and immediately dominates the energy 
density. If not, the oscillation commences at the earlier 
epoch H - rn, and may or may not come to dominate 
the energy density. 

If the oscillation amplitude decreased like a-‘/‘, where 
a is the scale factor of the Universe, then the energy per 

comoving volume of the flaton field would be conserved. 
In fact, the energy drains away through the interactions 
of the flaton field so that the oscillation amplitude de- 
creaSes faster. 

If the oscillation amplitude is sufficiently small and the 
interactions are sufficiently weak, each flaton particle de- 
cays independently so that the rate at which the energy 
drains away is simply the particle decay rate l?. It has 
practically all disappeared Soon after the time 

r-l N 3y-‘lOKg ( 10’;21GeV)Z ( 3ooF)3 set (18) 

where we have used Eq. (13). Setting this time equal to 
H-’ and assuming that the decay products thermal@ 
promptly we arrive at an estimate of the “reheat tem- 
perature: 

N 3@ (lo’?) ( 3oo;ev)3’2 GeV (19) 

where g* - lo2 is the effective number of species at’ 

‘The following results will be used without comment in the 
text. The entropy density of radiation at temperature T is 
s = $p/T = (27?/45)9.T’ = 1.01g:‘4p3’4, where g.(T) is 
the effective number of particle species in thermal equilib- 
rium, and p = (?ra/30)g.T4 is the energy density. As the 
Universe expands the scale factor a increases. The energy 
density in relativistic particles (radiation) is proportional to 
a-’ and that in nonrelativistic particles is proportional to 
a?. In thermal equilibrium the entropy a’s in a comoving 
volume is constant and so is g:lSaT. According to the stan- 
dard model, g!‘* is in the range 1 to 2 for T < 100 MeV, and 
then rises sharply to become N 3, finally rising to N 4 when 
T 2 IO3 GeV in supersymmetric extensions of the standard 
model. We use the appropriate value in our estimates. 
T = Tn. 
As has been discussed recently in connection with or- 

dinary in&ion, the assumption that each flaton particle 
decays independently need not be correct 137-411 (see 
also [42,8]). Instead, parametric resonance effects can 
drain away much of the oscillation energy as soon as the 
oscillation starts, leaving behind only some fraction to de- 
cay at the single particle decay rate. The energy drained 
away goes initially into the creation of marginally rela- 
tivistic scalar particles. All species that have sufficient 
coupling to the flaton are produced, including the flaton 
itself. (We are not aware of any discussion of the possi- 
bility of the production of bosom with spin 1 or higher 
through parametric resonance and it may be that this 
also occurs. Fermions are not produced in significant 
number because of Pauli blocking.) If nothing happens 
to the produced scalar particles they will become nonrel- 
ativistic after a few Hubble times, and are expected to 
decay at their one-particle decay rate.’ If, on the other 
hand, they thermaliae then they turn into highly rela- 
tivistic radiation. 

At the present time it is not clear whether paramet- 
ric resonance can really create particles which therm&x 
successfully. However, it is clear that the flaton corn- 
ponent of the produced particles cannot thermalize be- 
cause here one knows that the interaction is too weak. 
Furthermore, one expects that the energy density of the 
produced flatons will be a significant fraction of the to- 
tal energy density 1431. Thus, even if the other produced 
particles thermalize promptly one expects that a signifi- 
cant fraction of nonthermalized energy will remain, and 
that a significant fraction of that energy will be in flaton 
particles. 

Any thermalized radiation produced by parametric res- 
onance will redshift away, so independently of the de- 
tails one expects that a few Hubble times after the end 
of thermal inflation the energy density is dominated by 
nonrelativistic scalar particles, including the Batons and 
perhaps other species. Each species will decay at the 
single-particle decay rate, so we expect eventually to find 
only the longest-lived species, which dominates the en- 
ergy density until it decays. 

For simplicity we shall assume in what follows that 
this species is the flaton itself, and we shall also ignore 
the effect of any radiation produced by particle decay. 

*When the particles have become nonrelativistic one might 
think that parametric resonance will recommence, since the 
wave number of the corresponding scalar field is negligible 
compared with its frequency. However, the collection of non- 
relativistic particles corresponds to a quantum state which is 
a superposition of almost-classical states, not to any one such 
state, so it is not clear that the parametric resonance formal- 
ism applies. More importantly, the amplitude of the would-be 
classical oscillation will typically be too small for parametric 
resonance to occur. We are indebted to A. D. Linde for helpful 
correspondence about this issue. 
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Thus we are in effect assuming that soon after thermal 
inflation has ended, some &action e of the energy is in 
nonrelativistic flaton particles which decay according to 
the one-particle decay rate, with the remainder in ther- 
malized radiation. This should describe the real situation 
at least approximately, provided that any non-flaton par- 
ticles produced decay at least as rapidly as the &tons. 
The important special mx E = 1 is considered, and the 
possibility that e may be very small is not discounted. 
However, as discussed above, this latter case seems un- 
likely because one expects that parametric resonance will 
convert a significant fraction of the energy density into 
flaton particles which interact too weakly to thermalize. 

The upshot of this discussion is that despite the possi- 
ble occurrence of parametric resonance, one expects that 
the eventual reheat temperature after thermal inflation 
is still the temperature TD calculated from the single- 
particle decay rate, as given by Eq. (19). If !Z’D is indeed 
the reheat temperature, the requirement that it be not 
too low places strong restrictions on M. In order not 
to upset nucleosynthesis one must have TD > 10 MeV, 
which requires M < 1Ol4 GeV (taking rn < lo3 GeV).Q 
However, if R parity is respected as is usually supposed, 
there is a stable lightest symmetry particle (LSP) which 
imposes a much stronger constraint. Indeed, to bring 
the LSP into thermal equilibrium so that it is not over- 
produced (and can naturally have the correct abundance 
to be the dark matter), one needs TD substantially in 
excess of the LSP decoupling temperature which is of or- 
der 1 GeV. Thus one needs M < lOI GeV. Finally, one 
might wish to generate baryon number through the elec- 
troweak transition which would require 2’~ 2 100GeV 
corresponding to M 5 10’OGeV. In view of the fact 
that these limits are perhaps rather conservative (since 
one expects y to be significantly less than 1, and does not 
anticipate rn as high as lo3 GeV) this last requirement is 
hardly likely to be satisfied, but other baryogenesis mech- 
anisms exist as discussed in [13]. 

III. COSMOLOGY WITH THERMAL INFLATION 

We now give a systematic account of the history of the 
early Universe in the case where there is thermal infla- 
tion. We assume that there is a moduli problem because 
this provides the strongest motivation for thermal infla- 
tion, and assume that at least some of the moduli have 
a VEV of order Mpl. We also assume that any radia- 
tion produced by parametric resonance promptly ther- 

‘In [II] we estimated M < 10”GeV. The extra factor 100 
came from three different sources. First we used the very 
naive estimate r N m3jMzv corresponding to yl” = 10. Sec- 
ond, we set 9. “’ = 1 where as the true value is more like 10’la. 
Third, we rounded up our estimate of TD to the nearest power 
of ten which meant multiplying it by of order 10”‘. It so hap- 
pened that each of these approximations went the same way 
to give the factor 100. 
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alizes. With these assumptions there are the following 
ras which we shall consider in turn. 

(1) Ordinary inflation. 
(2) Matter domination by the homogeneous oscillation 

f the in&ton (unless full reheating occurs promptly). 
(3) Full reheating, which leads to radiation domination 

f it occws before the moduli start to oscillate. 
(4) Homogeneous oscillation of the moduli, starting at 

he epoch H - rn*. If reheating has previously occurred 
here is now matter domination by the mod& If it has 
ot occurred the moduli and in&ton matter densities are 
oughly comparable, and remain so until full reheating 
of the in&ton matter). We assume that full reheating 
akes place before the beginning of thermal inflation. 

(5) Thermal inflation. 
(6) Matter domination by the homogeneous oscillation 

f the flaton field which caused thermal inflation (unless 
eheating occurs promptly). 

(7) Full reheating of the flaton matter, leading to radi- 
tion domination before nucleosynthesis after which the 
istory of the Universe is the standard one. 

A. Before thermal inflation 

One expects the Universe to start with an era of or- 
inary inflation [22,23], whether or not there is a later 
poch of thermal inflation. During this era, the energy 
ensity p is dominated by the potential V of the scalar 
ields, with all except the in&ton field (or fields) fixed. 
he inflaton field slowly rolls down the potential, because 

n its direction the flatness conditions IA&qV’/VI < 1 
nd IV”! < Hz are satisfied [22,23]. We noted earlier 
hat in the context of supergravity the second of these 
onditions requires cancellations. Although these might 
e accidental it is attractive to suppose that they oc- 
ur by virtue of some symmetry. One suitable symmetry 
most easily implemented in the context of hybrid infla- 
ion [25]) was suggested in [26,44,45] and another has 
een proposed in [46]. A third possibility is to invoke a 
lobal U(1) symmetry as in [47], but this is problemat- 
cal because the inflaton potential vanishes in the limit 
here the symmetry is exact so that the magnitude of 
” is difficult to control.‘O 
To avoid generating too much large scale cmb 

nisotropy the potential at the end of ordinary inflation 
ust satisfy [24] 

“An alternative idea [48] is to suppose that the potential is 
xactly flat (or at least much flatter than that of the inflaton 
ield) in the direction of at least one field, say a modulus, 
hich couples to the inflaton. The inflaton potential then 
epends on the value of this field, which will vary from place 
o place in the Universe allowing the possibility that we live in 
 region where the in&ton potential happens to be sufficiently 
lat. But this just pushes back to another level the problem 
f finding cancellations which keep the potential flat in some 
irection. 
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V- < 10” GeV. (20) 

At some epoch after ordinary inflation “reheating” oc- 
curs, which by definition means that practically all of the 
energy density therm&es (except for the contribution of 
mod&). If reheating is prompt the reheat temperature 
is TR - (V/ge)*/4. A naive estimate of the time taken 
for reheat would be that it is the decay time of ,a single 
in&ton particle, which typically leads to a much lower re- 
heat temperature. However prompt conversion of a large 
fraction of the energy density into marginally relativistic 
particles is likely. In the commonly discussed ce.% where 
inflation ends with the oscillation of a homogeneous inSa- 
ton field this is expected to occur through the parametric 
resonance effect that we considered already for the case 
of thermal inflation. It is also expected to occur in the 
case of hybrid inflation though a quantitative account 
of this case has not yet been given, and will be more 
complicated because spatial gradients are probably im- 
portant from the beginning [26]. As we discussed earlier 
these marginally relativistic particles may then thermal- 
ize promptly leading to full or partial reheating.” 

Moduli (more precisely, those moduli if any which are 
flatons with M - Mpl) are produced both before and 
after thermal inflation, and we shall call the moduli from 
these sources respectively big bang moduli and thermal 
inflation moduli. 

When H >> rn* the modulus’ potential is given by 
Eq. (17), so that + is shifted from its true vacuum value 
by @o = & - $ N Mpl. @z will depend on the corn- 
position of the Universe and so +o will change at any 
phase transitions, such as the end of inflation, but 0 will 
rapidly settle down to its new minimum as it is critically 
damped. However, at the epoch H - rn* it starts to 
oscillate about the minimum of its low-energy effective 
potential, and after H has fallen significantly below ms, 
the oscillations will no longer be critically damped and 
so are much more dangkrous. 

During thermal inflation H < rn*, so the effective po- 
tential is dominated by V,,,, but V,,,, still gives a small 
contribution, so the position of the minimum is shifted 
slightly from the true vacuum value. Oversimplifying a 
bit, we can estimate the shift by adding together V,,,. 
and V,,,, which gives 

“Note, though, th& an extremely low fraction of the en- 
ergy density cannot thermalize because thermalization re- 
quires that the interaction rate per particle exceeds X. If 
the decay products are charged under some gauge symmetry, 
this requires ag,T > H where a is the gauge coupling. Set- 

ting 0L -g;“’ - lo-‘, one finds that it is satisfied only if the 
fraction is bigger than V/(lO”GeV)‘. This constraint does 
not seem to have been noted before in the literature. 
(23) 

where 6@ = @ - *I is the displacement of @ from its 
VEV. In the last line a is of order 1, so the minimum of 
the modulus’ potential is shifted during~thermal inflation 
by an amount of order (H/m*)‘Mpl [Ill. 

To estimate roughly the abundance of big bang moduli, 
we can assume that the modulus field starts to oscillate 
about its VEV when H - rn* with amplitude of order 

Qo - Mm. The energy density p* N rn:@:/2 is of or- 
der the total energy density. If reheating has already 
occurred one can crudely set, the radiation energy den- 
sity equal to the total energy density which leads to the 
estimate 

[In this expression s is the entropy density, and we are 
using the standard results summarized in the footnote af- 
ter Eq. (19).] If reheating occurs later the moduli energy 
density is a fixed fraction of the total until reheating, 
and again setting the radiation density equal to the total 
density after reheating one finds 

(25) 

It is described in the Appendix how a more sophisticated 
calculation leads to the same results. 

We shall assume that full reheating occurs before the 
onset of thermal inflation (except for the contribution of 
moduli). The opposite case will be discussed in [13]. 

These estimates for the moduli apply to any flaton not 
giving rise to thermal inflation [option (iv) of Sec. IID], 
if a0 is replaced by M. 

B. Thermal inflation 

Thermal inflation will occur if one or more of the flaton 
fields is trapped at the origin in the early Universe. For 
the moment we suppose that only one is trapped. 

The trapping may initially be due to a nonthermal con- 
tribution to the mass squared such as that of order Hz. 
However if full reheating occurs before the beginning of 
thermal inflation then well within a Hubble time of the 
end of inflation enough entropy to trap the flaton at zero 
will have been released even by the single particle decay 
of the in&&on. 

If full reheating is indeed delayed to the epoch when 
thermal inflation begins, the temperature at that epoch 

is of order ge -1/4V~/4 - (rn~#4)‘/~ corresponding to 

(10&V) - (10&V) 1’2. C2Q
At the other extreme where reheating occurs before 
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the moduli start to oscillate, the temperature at the 
beginning of thermal inflation is reduced by a factor 
(M/Mp#/6. During thermal inflation T cx exp(-Rt) 
and it ends at T = TC N rn, so there are at most of 
order $ ln(M/m) N 10 e-folds of thermal inflation. This 
will not much affect the cosmological density perturba- 
tion generated about 50 e-folds before the beginning of 
ordinary Mation, though there might be a slight change 
in the spectral index. 

C. Entropy production after thermal inflation 

After thermal inflation ends, relic radiation from the 
first hot big bang plays no further role. The flaton field 
now starts to oscillate around its VEV with initial ampli- 
tude M, corresponding to nonrelativistic flatons (matter) 
which dominate the energy density. 

The decay of the flaton field generates entropy. If there 
is no parametric resmance the entropy per comoving vol- 
ume increases linearly from the end of thermal inflation 
until the flaton decays, leading to an increase in the en- 
tropy by a factor 

Now suppose instead that there is parametric reso- 
nance which promptly thermalizes a substantial fraction 
of the energy density, leaving a fraction e in the flatons. 
This will increase the entropy by a factor 

ApR N g~(T~~)‘/4(1 - E)~/~v,~‘~ 

G@/45)g*(Tc)T~ 

N (1-,)3/v;‘* 

25T; 
(28) 

(29) 

The radiation energy density may initially dominate, but 
we assume that it falls below that of the residual flatons 
before the epoch T,,. The entropy release from the decay 
of these flatons is significant only during the era TD 2 

T < (T&J II5 [23], so it is a good approximation to 
regard this entropy release as suddenly occurring at the 
epoch ‘2’ N TD. It increases the entropy by a further 
factor 

*I?- 
4&/3T~ 

g.(TpR)‘i4( 1 - ,)W’03’4 

“lqlOl&ev)~ (F) (30anGJ 

The total entropy increase is 
Equation (31) is only supposed to apply if it gives a 
value AD bigger than 1, which fails to be true in the small 

e regime E ,$ TD/V~‘“. This is the rkgime in which the 
flaton oscillation fails to dominate the energy density be- 
fore it disappears at the epoch T = TD. In it A, is prac- 
tically equal to 1, and A = APR has the e-independent 
value given by Eq. (28). 

D. Solving the moduli problem 
with single thermal inflation 

In order not to upset nucleosynthesis, the moduli abun- 
dance na/s must be less than lo-l2 to lo-l5 when nu- 
cleosynthesis begins [49]. Let us see what is required to 
satisfy this bound, first for the big bang moduli and then 
for the moduli produced after thermal inflation. 

We can assume that the flaton oscillation comes to 
dominate the energy density, because the assumption 
can be shown to be valid in the regime of parameter 
space satisfying the nucleosynthesis bound on the moduli 
abundance and to lead to an overestimate of the moduli 
abundance outside this regime. As a result we can use 
Eq. (32), and combining it with Eq. (25) one finds that 
the abundance of big bang moduli after thermal inflation 
is 

(34) 

In these formulas HR is to be considered as being in the 
range m*(M/Mpl) 5 HR 5 rn*. The lower limit comes 
from our assumption that full reheating after ordinary 
in&ion occurs before the beginning of thermal inflation, 
and if HR actually exceeds the upper limit the above 
formulas give the correct result when it is set equal to 
this limit. 

To analyze these constraints, assume first that TD 2 
1 GeV as is required if the LSP is stable, and recall that 



3 THERMAL INFLATION AND THE MODULI PROBLEM 1795 
this implies M 5 10” GeV, from Eq. (19). In Eq. (35), 
the round brackets in the second line are all of order 
unity, so we see that the big bang moduli may be suf- 
ficiently diluted for M as low as lO’GeV, though this 
requires all parameters to be pushed to the limit and 
a more reasonable estimate of the lower limit might be 
10” GeV. Now assume only that TD 2 lOMeV, as re- 
quired by nucleosynthesis, which implies M < 1014 GeV. 
Then we see that unless e is very small it should be pos- 
sible to solve the moduli problem, with no significant 
additional constraint on M. 

Now consider the moduli produced after thermal infla- 
tion. From Eq. (23), the minimum ofthe potential during 
thermal inflation is displaced from its true vacuum mini- 
mum by an amount 6+ N (~/rn$$,)+‘o. The dynamics 
at the end of thermal inflation will be complicated but 
one would expect to generate a moduli number density 
n* N rn+. &P/2 - @$V: /2&M& at the end of thermal 
inflation. Therefore the abundance of thermal inflation 
moduli is expected to be 

-lo-~~~~(101~ev)2(:) (&) 
x (gy(30~) (&). (37) 

Bearing in mind the relation between Tr, and M, we see 
that the abundance of thermal moduli does not impose 
a significant additional constraint. 

Moduli will be produced in the flaton’s decay with 
abundance 

3 N r+e q 
.s 7-T’ 

Since the flaton energy density is rnnb and we are as- 
suming that it all thermalizes, nd/s is of order T~/rn 
and therefore 

: - lo-‘B (gy) ( m$$J ( 3o&J (39
which is probably sufilciently small. 

Finally we consider the possible thermal creation of 
gravitinos, moduli and modulinos after thermal inflation. 
Gravitinos, for which the most detailed calculations exist, 
appear to be created in a cosmologically safe abundance 
provided that the maximum temperature is less than [50] 
10’ GeV, and a similar result presumably holds for mod- 
uli and modulini since in all cases the interaction with 
other particles is of gravitational strength. This bound 
is satisfied after thermal inflation even in the extreme 
case where most of the energy density thermalixes imme- 
diately. 

E. Double thermal inflation 

So far we assumed that only one flaton field gives ther- 
mal inflation, or in other words that only one flaton field 
) 

has a thermal mass squared which traps it at the origin 
in the early Universe. If two or more flaton fields are 
trapped the situation is in general much more compli- 
cated, but it simplifies considerably if the fields do not 
interact significantly. We treat this simple situation now, 
leaving the case of interacting fields to future publications 
[12,13]. Thus we consider two flaton fields 41 and &, and 
assume that each of their potentials is of the form Eq. (2): 

V(h4b) = v, + v, - ~f14112 - &b21*. (40) 

The higher-order terms stabilize the fields at +i = Md, 
and the constants V, and V, are the values of the separate 
potentials at the origin, with Vi N rn~&f~. The critical 
temperatures at which the fields roll away from zero are 
Tci, and we take TCI > To. When the temperature 
drops below TCI, 41 will roll away from zero. 

If parametric resonance does not produce significant 
thermalization, the second field now also rolls away 
promptly and the situation is not substantially different 
from the case of thermal inflation. If on the other hand 
a significant fraction of the energy density is thermalized 
by parametric resonance, the temperature will be raised 
sufficiently to trap the second field before it has a chance 
to roll away, leading to a second epoch of thermal in&x- 
tion driven by the potential 

V=l/i-m;(&]2+‘.~ (41) 

The residual flatons left after parametric resonance 
from the first epoch of thermal inflation may be trouble- 
some if they do not decay before nucleosynthesis. After 
reheating following the second epoch of thermal inflation 
their abundance is 

(43) 

Thus, a second epoch of thermal inflation may signifi- 
cantly dilute the residual &tons from a Srst epoch, which 
could remove the restriction MI 5 1014 GeV which is oth- 
erwise demanded by nucleosynthesis. Conceivably one 
may in this way make thermal inflation viable with a 
GUT Higgs field or even with a modulus, though more 
investigation is needed to see whether this is a real pos- 
sibility. 

Henceforth we will assume that Ml is sufficiently small 
to allow 41 to decay before nucleosynthesis, which allows 
us to take Mz small enough to have a comfortably high 
final reheat temperature. 
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F. Solving the moduli problem 
with double thermal inflation 

For simplicity we take the abundance of big bang 
moduli before thermal inflation to be ne/s - 
0 lQ?ZM-~/~m-‘/~ 

. 0 PI and awnne that parametric reso- 
nance leads t,” effectively complete reheating so that 
c N 0. These assumptions lead to the maximum pos- 
sible moduli abundance. Each epoch of thermal inflation 
then increases the entropy by a factor Ai - Ap~i N 
Vi3’“/25T&. Therefore the abundance of big bang mod- 
uli after double thermal inflation is 

a; 60@T3 T3 m 0 Cl cz -N 
* 10m~2AlAzM;{ . m;3,,3t4V,3f4j,,# (44) 

(45) 

The abundance of thermal inflation moduli produced 
at the end of the first epoch of thermal inflation evaluated 
after the second epoch of thermal inflation is 

(47) 

The abundance of thermal inflation moduli produced 
at the end of the second epoch of thermal inflation is 

n* +$$=/2m;M;, 2 514 
%V2 -N 

s g,(Tp#*V;‘* - 8m3mM:1 
(46) 

~lo-*‘(lo~;ev)i (gg 

x (yyy ($J. (49) 

We see that two independent bouts of thermal in&- 
tion can solve the moduli problem for a wide range of 
the VEV’s, even if parametric resonance is extremely ef- 
ficient. 

G. Topological defects 

We end this paper with a brief discussion of the 50% 
mological production of topological defects, namely walls, 
strings, monopoles, and textures. 

Each type of topological defect is associated with a 
scalar field (in general multicomponent) with nonzero 
VEV. Among several possibilities, we consider here only 
two cases. The first is that the VEV belongs to a GUT 
Higgs potential, and that it has the nonflat form usually 
considered. The second is that the VEV belongs to a flat 
potential. 

For a GUT Higgs boson with the standard nonflat 
potential the temperature after inflation is never high 
enough for the defects to form by the usual Kibble mech- 
anism [32,33). (We are not of course concerned with any 
defects forming before ordinary inflation since they have 
been diluted away.) They can only form near or at the 
end of ordinary inflation, and even that requires that the 
bound Eq. (20) on the inflationary potential is saturated 

PI. 
Consider first monopoles, using the standard results 

[32]. Th e a un b d ance of monopoles, after some initial an- 
nihilation. settles down soon after the GUT transition 
to a value n/s - 10-l’. The strongest bound on their 
present abundance comes from baryon decay catalysis in 
neutron stars, which requires n/s 5 1O-3’. Thus the 
entropy must increase by a factor 10” b&&en the end 
of ordinary inflation and the present. If reheating after 
ordinary inflation is prompt, the factor is the one A aris- 
ing from thermal inflation. We see fxom Eq. (33) that a 
single bout of thermal inflation is probably insufficient, 
but two bouts could be enough. Alternatively, if reheat- 
ing after ordinary inflation ,is lorig delayed this gives an 
additional increase Aord N 10” G~V/TR, which could be 
enough to make just one bout of thermal inflation viable. 

Depending on the GUT symmetry, gauge strings might 
also be produced, which would be cosmologically signifi- 
cant perhaps providing candidates for the origin of large- 
scale structure. On cosmological scales their evolution is 
not affected by thermal inflation because their spacing 
is outside the horizon during that epoch. (This is just 
the statement that there are much less than 50 e-folds 
of thermal inflation.) The same applies to other defect 
networks formed before thermal inflation (global domain 
walls, monopoles, strings or textures). 

Consider now defects associated with a flat potential. 
They form if at all at the end of thermal inflation. Con- 
sider first the case of 2, symmetry (Secs. IIA and IIB). 
A discrete symmetry used to be regarded as problem- 
atical for cosmology, because when it is spontaneously 
broken it seems to lead to cosmologically forbidden do- 
main walls. However, if the symmetry is also explicitly 
broken, as will typically be the case for the flaton po- 
tential, there need be no problem because walls do not 
necessarily form and if they do form they do not neces- 
sarily survive (because the vacua on either side of a wall 
may have different energy density). If, on the other hand, 
it is exact it will probably be a discrete gauge symme- 
try which again avoids the domain wall problem because 
there is only one physical vacuum. 

If there is a global U(1) symmetry, strings can form at 
the end of thermal inflation with the strings later joined 
by walls if the symmetry is approximate. An example of 
this might be Pew&Quinn symmetry [12]. Local strings 
forming at the end of thermal inflation would have too 
little energy to be cosmologically significant. Finally, if 
the flaton field giving rise to thermal inflation has two 
or more components as in Sec. IIIE then monopoles or 
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textures might form at the end of thermal inflation but 
we have not considered this case. 

IV. SUMMARY AND CONCLUSION 

F1aton.s are scalar fields with masses rn of order IO2 to 
lo3 GeV and vacuum expectation values M >> rn. They 
arise naturally in supersymmetric theories and indeed it 
is not unreasonable to suppose that they are the only 
source of VEV’s in this range (in the observable sector). 
Flatons with M > 1Ol4 GeV are cosmologically danger- 
ous, and in particular moduli with M - Mp, are overpro- 
duced by 20 orders of magnitude in the standard cosmol- 
ogy, which is the well-known Polonyi or moduli problem. 
In this paper we have explained how the problem may 
be solved by &tons with smaller VEV’s, in the range 
lo9 GeV 5 M 5 1Ol3 GeV that is theoretically very nat- 
ural for Batons other than moduli. 

Such flatons solve the moduli problem by generating 
an era of thermal inflation. Thermal inflation occurs 
when the flaton is held at zero by thermal effects, and 
it typically lasts for about 10 e-folds and occurs at a 
very low-energy scale. These properties are precisely 
what is required to sufficiently dilute the moduli pro- 
duced before thermal inflation without affecting the den- 
sity perturbation produced during ordinary in&ion (10 
e-folds), while not regenerating them again afterwards 
(low-energy scale). Detailed calculations show that a sin- 
gle epoch of thermal inflation driven by a flaton whose 
VEV is within 1 or 2 orders of magnitude of 10”GeV 
can solve the moduli problem, though the constraints are 
quite tight. 

It is easier for thermal Mation to rescue flatons with 
VEV’s M 2 1Ol4 GeV (in particular, moduli with M - 
Mpl) if the latter do not themselves give rise to ther- 
mal inflation. Remarkably, segregation of &tons into a 
class which thermally in&te and have small VEV’s, and 
a class which do not and have large VEV’s is exactly what 
one expects corn a theoretical viewpoint. The larger the 
VEV of a flaton, the less likely it is to be trapped at 
the origin in the early Universe, because the finite tem- 
perature contribution to the effective potential becomes 
ineffective at field values bigger than the temperature. 

There are several aspects of cosmology which we have 
not addressed in the present paper, notably axion cos- 
mology and baryogenesis which will be the subjects of 
respectively [12,13]. Let us close by briefly discussing the 
latter topic. As successful thermal inflation sufficiently 
dilutes any preexisting mod& it will also dilute any pre- 
existing baryon number to negligible amounts. However, 
as will be discussed in [13], there are several possibilities 
for baryogenesis within the context of thermal inflation 
itself. One especially promising mechanism can occur if 
the flaton which gives rise to thermal inflation also gener- 
ates the mass of a right-handed neutrino. A lepton asym- 
metry can then be generated after thermal inflation. The 
partial reheat temperature after thermal inflation can be 
high enough to restore the electroweak symmetry, and so 
this lepton asymmetry can be converted into a baryon 
asymmetry by nonperturbative electroweak effects [51]. 
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APPENDIX 

To arrive at a more sophisticated estimate of the mod- 
uli abundance we solve the equation of motion of the 
modulus in the potential Eq. (22), which is 

where we take H = p/t with p = l/2 for radiatidn dom- 
ination and p = 213 for matter domination. One would 
expect 01 N 1. An estimate of mo can be obtained by 
taking the distance between the self-dual points of the 
target space modular symmetry SL(2,Z) [52] using the 
usual orbifold KHhler metric for the mod& This gives 

% N 0.1. In this case one can easily check that our ap- 
proximation of neglecting the contribution of the moduli 
to the energy density of the Universe before the asymp- 
totic solution is attained is consistent. 6* will rapidly 
settle to 6+ = a0 when H > ma, and so we take 
S@(O) = +o and 6@(O) = 0. With these initial condi- 
tions, Eq. (Al) has the solution 

where Sc,” is a Lommel function, p = -3(1 - p)/2 and 
v2 = -ap2 + (3~ - 1)2/4. At late times 

The coefficient has a weak dependence on a and p, and for 
a - 1 and p = l/2 or 213 we get to a good approximation 

,,_4~~(~)‘~in(m*t+(2-p3P)S). (A4) 

Therefore the moduli abundance is given by 

645) 

Setting p = l/2 gives Eq. (24) and setting p = 2/3 gives 
Eq. (25). 
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