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In this paper we derive exact quantum Langevin equations for stochastic dynamics of large-scale 
inflation in de Sitter space. These quantum Langevin equations are the equivalent of the Wigner 
equation and are described by a system of stochastic differential equations. We present a formula 
for the calculation of the expectation value of a quantum operator whose Weyl symbol is a function 
of the large-scale inflation scalar field and its time derivative. The quantum expectation value is 
calculated as a mathematical expectation value over a stochastic process in an extended phase space, 
where the additional coordinate plays the role of a stochastic phase. The unique solution is obtained 
for the Cauchy problem for the Wigner equation for large-scale in0ation. The stationary solution 
for the Wigner equation is found for an arbitrary potential. It is shown that the large-scale inflation 
scalar field in de Sitter space behaves as a quantum one-dimensional dissipative system, which 
supports the earlier results of Graziani and of N&w, Nambu, and Sasaki. But the analogy with a 
one-dimensional model of the quantum linearly damped anharmonic oscillator is not complete: the 
difference arises from the new time-dependent commutation relation for the large-scale field and its 
time derivative. It is found that, for the large-scale inflation scalar field, the large time asymptotics 
is equal to the “classical limit.” For the large time limit the quantum Langevin equations are just 
the classical stochastic Langevin equations (only the stationary state is defined by the quantum field 
theory). 

PACS number(s): 98.8O.Cq, 98.80.Hw 
I. INTRODUCTION 

While the qu&iclassical picture of the inflationary uni- 
verse scenario, based on a Fokker-Planck evolution equa- 
tion for the probability distribution of the inflation field, 

is almost complete (see the basic papers [l-S]), the essen- 
tially quantum-mechanical features of inflation ax now 
a subject of investigation. 

We would like to note recent investigations into this 
problem carried out by Graziani [g-12], Nakao, Nambu, 

and Sasaki [13], Hu, Paz, and Zhang [14], Nambu [15], 
and Habib [16]. (The aim is not to present the full list 
of papers on this subject but to mention those which ax 
closest to our considerations.) 

In Ref. [13] the dynamics of an inflationary scalar field 
in a de Sitter background is investigated on the basis of 
the extended version of the stochastic approach proposed 
by Starobinsky [5]. In this approach, the scalar field op- 
erator is split into the long wavelength mode and the 
short wavelength mode. This split allows the reduction 
of the operator equation for the scalar field to Langevin 
equations of order ~4. 

In the series of papers [9-121 of Graziani, dealing with 
quantum probability distributions and the dynamics of 
the early Universe, the approach is based on the Wigner 

function and its evolution equation, which is the &Vigner 
equation. The author concentrates attention on the 
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large-scale inflation, where the spatial variable of the in- 
flation scalar field is removed by averaging over a causal 
horizon volume. It is established that the quantum de- 
scription of large-scale inflation in de Sitter space is equal 
to the quantum mechanics of a one-dimensional dissi- 

pative system. In Ref. [lo] it is shown how quantum 

Langevin equations can be derived to any order of fi 
when they correspond to the Wigner equation expanded 
in powers of ti and truncated at some power of fi. However 
the Wigner equation for large-scale inflation presented in 
Refs. [g-12] is not accurate and we will return to this 
point in our paper. 

In paper [14] dealing with quantum Brownian motion 
Hu, Paz, and Zhang have derived an exact master equa- 
tion for a quantum open system, which is an extension of 
earlier results obtained by Dekker 1171, and Caldeira and 
Leggett [18]. As was established by Vilenkin [l], Linde 
[3], and Starobinsky [5], the basic stochastic equation 
for the large-scale quantum evolution of inflation is sim- 
ilar to Brownian motion, that is the quantum Langevin 
equations of order ti. So the investigation of quantum 
Brownian motion is closely connected to further inves- 
tigations of statistical and quantum effects at the early 
Universe. 

In Ref. [15] the master equation for the long wavelength 
mode for the scalar field is derived and the Wigner repre- 
sentation is given for the space-homogeneous case of this 

mode. Such a Wigner representation should be equiv- 
alent to the Wigner equation for the large-scale scalar 
field, which is derived in our paper. However, the Wigner 
1763 01996 The American Physical Society 



1764 0. E. BURYAK 12 
equation presented by Nambu [15] differs from ours by a 
term with a second derivative over the space coordinate 
and by a term with mixed derivatives over space and mo- 
mentum coordinates. The origin of the difference is the 
use of different phase space variables. We have found an 
apparent contradiction between the Wigner representa- 
tion in Ref. [15] and the assumption under which it was 
derived. This will be discussed at the end of Sec. IV. 

In paper [16] a quantum-mechanical phase-space pic- 

ture is constructed for the coarse-grained free s,calar field 
in an inflationary universe. The distinction of Habib’s, 
paper is that the evolution picture is considered in a 
conformal time and for the conformal field, related to 
the original scalar field by a time-dependent canonical 
transformation. The evolution,equation for the confor- 
mal field does not contain any damping term. Through 
this approach one can see an elegant analogy between the 
original problem and a quantum-mechanical system with 

a time-dependent mass. An odd thing about the Wigner 
representation in Ref. [16] is that the Wigner distribution 
function, governed by Eq. (55) in [16], is not a determin- 
istic function. It is not clear how the stochastic function 
can be understood as a distribution function. To avoid 
this confusion the author works with an averaged Wigner 
function. 

In this paper we restrict our consideration of the in- 
flation scalar field to investigation of the dynamics of 
the large-scale or coarse-grained (2 causal horizon) scalar 
field in a de Sitter background. Following the main line 
of Graziani (9-121, we describe the evolution of the large- 
scale inflation by the Wigner equation. Then the aim 
of this work is to derive exact quantum Langevin equa- 
tions (to all orders of A), which describe the stochastic 
dynamics of the large-scale inflation. 

Thus, our approach is opposite in some sense to the 
approach of Hu, Paz, and Zhang [14]. These authors 
move toward the possible observation of macroscopic ef- 
fects from the search for an adequate description for sta- 

tistical and quantum effects, while our way is to start 
from the macrolevel to obtain an equivalent stochastic 
description. 

II. BASIC FORMULATIONS 

The Lagrangian density of the inflation scalar field 
@(z,t) in a de Sitter background is 

c = -fi [ fgM”aM* a,* + Vpq] , (1) 

where the background metric is assumed to have the form 

ds2 = -& + 2(+ix2, (2) 

9 denotes a metric, t is a time, z is a three-dimensional 

spatial coordinate, V(Q) is a potential, and a(t) is a scale 
factor (some positive function). 

Then the equation for the classical inflation scalar field 

*(z, t) is 
where A, is the spatial Laplace operator, the dot over 
a symbol means a time derivative c(t) = dy/&, and 
V’[@] = dV[*]/da. 

The expansion of the Universe is assumed, 

where H(t) is sxne nbn-negative integrable function of 
time. In other words, the scale factor is 

a(ti=o(O)exp{~H(T)d~}, (5) 

where a(O) is the value of the scale factor at t = 0, the 
beginning of inflatipn. In this model the beginning of 
inflation is taken to coincide with the origin of the Uni- 
Yam?. 

Strictly speaking, in our consideration we deal with 
an expanding Friedmann-Robertson-Walker (FRW) uni- 
verse, “approximately” close to a de Sitter universe in 
the sense: H(t) N const. 

From Eq. (1) one obtains the canonical momentum 
conjugate to the field @(CC, t), 

ac ,a@(%4 %?t) = 8(8‘$,&) = 4) 7 I (6) 

and the Hamiltonian density 

H=.E-, at 
= ;a(t)-T + &@)[V,Q]2 + a(tp(q. (7) 

When interested in large-scale (2 causal horizon) 
physics, a coarse-graining procedure is utilized and it 
leads to a coarse-grained or averaged scalar field +x(t): 

%x(t) = ; s,, *k&w% (8) 

where the index X is a label referring to the center of 
a region 0, over which @(z, t) is averaged, and V is its 

volume. The volume of spatial averaging is taken not 
smaller than a causal horizon volume: 

v 2 g7reyt) (9) 

with the causal horizon (or the “coordinate horizon” in 
terms of Ellis and Rothman [19]) given by 

t 
e(t) = J a(T)-%. 

0 
For de Sitter space, 

a(t) = exp{Ht}, H = const; (10) 
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then e(t) = H-‘(1 - eeHt ) and the volume of averaging 
is chosen to be V = (4/3)nHP. 

For “approximately” de Sitter space we will think 
about a volume of averaging as constant for all time. 
This always can be assumed if e(t) < const. The tech- 
niques we use allow considering time-dependent volume 
V(t) along the same lines but we shall not consider this 
case for the sake of brevity. (See remarks in Sec. VIII.) 

Each large-scale region fi (labeled by X) can be consid- 
ered as a separate quantum-mechanical system because 

each lies outside of its neighbors’ light cone: there is no 
exchange of information between large-scale regions. The 
profit of the coarse-graining procedure is that it reduces 
the quantum field problem to a quantum-mechanical 
problem. A$ the same time there are still some peculiar- 
ities, following from the field theory, which do not make 
the analogy with quantum mechanics complete. We will 
point out these peculiarities later in this section. 

After performing the coarse graining (S), the spatial 
varying term in the Euler-Lagrange equation (3) can be 

neglected because of a smaller factor a-2(t)V-2/3 (see 
1201) and the equation for the large-scale inflation field 
G’x (t) becomes 

&x(t) + 3H(t)&(t) + U’[@x(t)] = 0, (11) 

where U(a) is the coarse-grained potential. 
The averaging of the momentum (6) gives 

nx(t) = a(t)%(t). (12) 

The Lagrangian (density) for the coarse-grained field 

@x(t) is 

C[@x] = a(t)3[$m; - U(KY)]. (13) 

This gives the Euler-Lagrange equation (11) and keeps 
the averaged momentum (12) canonically conjugate to 

@x(t): 

aL[~xl 
h(t) = -j-g- 

x 

Now the Hamiltonian (density) for the coarse-grained 
field +x(t) is 

%(~,y,rfx; t) = gz(t,-“n$ + a(t)“U(iPx), (15) 

it can be considered as the classical Hamiltonian for the 
large-scale inflation field, in the sense that the equations 
of motion produced by this Hamiltonian 

amx af XIX 831 

at=-‘-=-- mx at mx 
(1’5) 

are equivalent to the field equation (11). 
To make the step from the classical equation (11) to 

the quantum equation it is necessary to quantize Eq. (11) 
taking into account Eqs. (12) and (15). This leads at the 
end to the quantum mechanics of a one-dilyensional dis- 
sipative system in the description on ax, ax variables. 

One can apply the canonical procedure, which is based 
on quanta1 noise operators and conserves the funda- 
mental commutator for canonical position and momen- 
tum operators in the course of time, or the in&xnce- 
functional method of Feynman and Vernon 1211. Both 
ways give the master equation for the “reduced” den- 
sity operator b (see [17,18] for techniques), describing 
the time evolution for the large-scale inflation: 

%=V-- 
at 

,W,Pl - ~4tP~t)h I~x,~ll. (17) 

Here, ti is an operator form for the classical Hamiltonian 

(15), [, ] stands for a commutator, and the diffusion co- 
efficient D(t) is, in general, some non-negative function. 
In particular, the diffusion coefficient can be assumed to 
be D(t) = 3H(t)x const, where const is determined by 
physical parameters of the system at equilibrium. 

Someone who would follow, formally, the quantization 
procedure in quantum mechanics would notice immedi- 
ately two points by which the master equation (17) differs 
from the formally obtained one: first, the new constant 
li/V instead of Planck’s constant fi, and second, the fac- 

tor a(t)’ in the diffusion term, which reflects the explicit 
time dependence of the Hamiltonian (15). It is time to 
discuss how these peculiarities come from the quantum 
field theory. 

The origin of the scaling 

ti+fi/V (18) 

in Eq. (17), where V is a volume of averaging (9), is that 

the fundamental commutator for canonical position and 
momentum operators in the relativistic quantum field 
theory 

[&(I, t), I&l, t)] = iiiqz - y) 

is transformed by coarse-graining procedure (8) to 

I&&), fix(t)1 = WV> (19) 

[~x(t),fL+)l = 0, x # Y. 

Another way &derive the master equation (17) would 

be to use the momentum and Hamiltonian 

n*(t) = VKY@), (20) 

31n = V?l(*x,nx;t). 

For momentum IIn, the fundamental commutator is 

[&(&fin(t)] = ir%. (21) 

The description in terms of Eqs. (20) and (21) is natu- 
ral for the large-scale region a. Returning back to the 
spatially dependent field a(~, t), the Hamiltonian for 0 

is found to be 

X*= J H(% t)d5 (22) 
n 

or, in view of the Hamiltonian (density) (15), 



1766 0. E. BURYAK 3 
7l.n = vq*,y,nx; t) (23) 

[in (23) the spatially varying term of the original field 
(V’,+)’ was neglected 1. 

Now let us discuss the diffusion term in the master 

equation (17). It should be mentioned that the general 
form of the diffusion term in the master equation is 

where C(t) is some time-dependent coefficient. This co- 
efficient is defined with respect to a suitably chosen xx- 
uum state in the field theory. For de Sitter space it is 
the so-called Bunch-Davies vacuum [22,23]. In terms of 

Eq. (17) this means that it is determined by the physical 
parameters of the system at equilibrium. 

If in accordance with the field theory (of inflation) we 
assume that the energy density of the equilibrium state 
is an invariant in de Sitter space, then 

(‘&(t))/a(t)3V = (‘ti(&x,fix; t))/a(t)3 = const, (24) 

where, to obtain the energy density, the Hamiltonian Xn 
is divided by the proper volume a(t)3V. The expectation 

values, ( ), of the operators are taken on the stationary 
solution of the +&er equation. For “approximately” 
de Sitter space, H(t) is neglected so the condition (24) 
can be assumed. 

To fulfill Eq. (24) we have obtained the factor a(t)6 
in the diffusion term of (17). Taking into account that 
the constant in Eq. (24) is proportional to (h/V), in Eq. 
(17) we can show explicitly the dependence 

C(t) = ;a(t)6D(t), 

which is valid for large-scale inflation. We will use master 

equation (17) as a starting point for investigation of the 
stochastic dynamics of the large-scale inflation. 

From this point onwards in the paper the large-scale 
scalar field is referred to as a(t), omitting the index X. 

III. THE WIGNER EQUATION FOR 
LARGE-SCALE INFLATION 

The Wigner function W(q,p; t) [24,25] is a function on 
the classical phase space and describes the distribution 
of position and momentum. The Wigner function is not 
a probability distribution since it can assume negative 
values; W(q,p; t) is a real function. 

As a density matrix the Wigner function contains all 

of the information corresponding to the quantum state. 

The expectation value for an arbitrary operator A(&, &) 
can be calculated by the formula 

(a, = J &&A(q,dWq,p;% (25) 

where A(q,p) is a Weyl symbol for the operator a(&, 4). 
Let us derive the time-evolution equation for the 
Wigner function for large-scale inflation, that is equiv- 

alent to the master equation (17). 

For the Wigner operator ti the equation has the same 
form as for the density operator j (17) [because coeffi- 
cients a(t) and D(t) depend only on t], 

z = ;[3i,@] - ; a(t)6D(t)[$,[4^,@]], (26) 

where Weyl symbols for w and ?? are 

ti c) 31(q, rI) = $(t)-sII2 + a(+v(q). (27) 

Here, we assume the following correspondence between 
phase-space variables (q, II) or (q,p) and variables of the 

large-scale inflation scalar field (@, 4): 

* = Q, 6 =p, +)% = n. (28) 

To obtain an equation for the Wigner function 
W(q, II; t) from its operator form (26) we will use the 
formula for the composition of operators in the Weyl for- 
malism. Because of this formula [26] and the commutator 

relation (19), a Weyl symbol A(q, II) for the composition 

of two operators A = &C? is defined via the correspon- 
dence 

A(q,II) =B 
( 

‘b+ $&,fi- $‘$ C(q,II) 
> 

= c Y- $I&,;+ $I; B(q,II) , 
( > 

(29) 

where B[q, II) and C(q, II) are Weyl symbols for the op- 

erators B and C, and the numbers I,11 over operators 
show the order in which the operators act. 

Using Eqs. (27) and (29), one can obtain the following 
correspondence between operators and their Weyl sym- 
bols: 

[-F&IQ +t -$z(t)-%&w(q,II;t) 

+a(t,fu(q+~&) -u(q-$gJ] 

xw, m th (39) 

k[~,~ll 4-b -$&qq,II;t). (31) 

Combining relations (30) and (31) in accordance with 
Eq. (26), one has the time-evolution equation for the 
Wigner function W(q, II; t): 

awq, n; 4 
6% 

= -a(t)-%% + ;a(t)‘D(t)g 

+$jqq+ $A) 

-+- &&)]W(q,n;t). (32) 
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Equation (32) is called the Wigner equation. [Note 

that the commonly used way to derive the Wigner equa- 
tion is to apply the coordinate representation for the 

Wigner function, 

w(q,n;t)=~Jl.““.(s-~~~P~q+~z)d~, 

-rn 

(33) 

to the master equation (17). Actually it is a longer way 
because it deals with multiple integrations and integra- 
tions by parts while the Weyl formalism gives an answer 

in a plain algebraic way.] 
Because we are interested in the distribution of Q, and 

& let us make the transition from W(q, fI; t) to W(q,p; t) 
by relations (28) and the equality 

W(q, Pi tl = =(t)Wq, n; t) , (34) 

which follows from Eq. (25). For the Wigner function 
W(q,p; t), one has the time-evolution equation 
aw(q,~; t) 
at =-pF +3H(t)g(pW) + ;D(t)$$ 

+;aw u q+ $a(t)F$ -u q- $a(t)-3; 
cc > ( >I W(q,p;t), (35) 

where H(t) is defined by Eq. (4). 
The Wigner equation (35) can be rewritten in the equivalent form 

aw(%P; 4 
at = -pg + SH(t)&W) + $I@)~ + $a@), 

J 
w du W(q,p - u; V(q,~; t), (36) 

-rn 

where 
Equation (35), or Eq. (36), is the complete Wigner 
equation (to all orders of fi) for the large-scale inflation 

in de Sitter space. It describes the time evolution for 
the distribution of @ and Q in a sense of equality (25). 
The expansion of the Universe, which is described by 
the scale factor a(t) and equality (4), gives the origin 
for a dissipation term, with the dissipation coefficient 
3H(t), in the Wigncr equation. In this sense, large-scale 
inflation can be considered as a quantum one-dimensional 
dissipative system, which supports Graziani’s statement 
191. At the same time, the expansion of the Universe 

influences the potential terms of Eq. (35) [or (36)], which 
was missed in Refs. [g-12]. 

In Refs. 117,141, the Wigner equation for a quantum 
dissipative system was derived for a harmonic oscilla- 
tor’s potential U(q) = w2q2/2. For an arbitrary potential 
U(q), a truncated Wigner equation, or a Kramers-Maya1 
equation, is commonly used in the literature instead of 

the complete Wigner equation (see for example [18]). In 
our case (35), it would be 

aw(q,P; t) aw a fL @W 

at = -pF +3Wdp(pW + #‘@)-8l;;i. 

(38) 

where O(V) is a value of order li’. 

The potential term in Eq. (35) can be expanded in 
powers of tL by Taylor’s series, which leads to the equation 
awk,P; t) 
at = -pF +sX(t);(pW) + ;D(t)$$ 

(39) 

In the series of papers [g-12], the expansion in powers 
of ti of the Wigner equation was used to show how to 
improve the accuracy of Eq. (38). 

The potential term in Wigner equation (35) [or in 
the equivalent representations (36), (37), and (39)] on 
a macrolevel contains information about quantum noise 

on the microlevel, when 

q!+ for k > 3. (40) 

This quantum noise is non-GaGssian noise. Condition 
(40) is always satisfied when a potential deviates from 
a harmonic oscillator’s potential. The diffusion term, 
containing a2Wfap2, in the Wigner equation also repre- 
sents quantum noise (Gaussian noise) on a macrolevel. 
Some authors consider a possibility that the Wigner 
equation may contain second order derivatives a2W/aq2, 
@W/aqap, which are also of quantum origin [14-171. 
(These terms would correspond to additional terms 

[ir, $I, 611, [&, [ir, a]], $I, [&, G]] in the master equation 
(17).) If one works with the phase-space variables (28), 
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these terms have no physical sense because they lead to 
wrong Langevin equations: dq&/dt #pt or d@/dt # a. 

In this paper we will work with the complete Wigner 
equations (36) and (37) for large-scale inflation to derive 
equations for the corresponding stochastic dynamics. Let 
us supply the evolution equation (36) with the initial 

condition 

w(P,P;o) = W(%P)> (41) 

where the initial Wigner function is chosen to satisfy the 

properties 

;I; 

Wo(q,p) is a real function, (42) 

.I-Wbw)Wp = 1, (43) 

Cc) .f-P’o(w)12~qdp I &,4’3”> (44) 

which follow from general properties for the Wigner func- 
tion (see [25]). 

IV. QUANTUM LANGEVIN EQUATIONS 

In this section we deduce quantum Langevin equations 
which are equal to the complete Wigner equations (36) 
and (37), but we start with some assumption about the 

potential V(q): 

u(q) = $? + 1 w-iqpl /ddp)> (45) 

where p(p) is a bounded measure such that 
1. cl(&) I co*% 

I p’p(dp) 5 const. (46) 

The first term in the right-hand side of Eq. (45) is just 
the harmonic oscillator’s potential while the second term 
can be considered as a deviation from it. The potential 
is assumed to be real. 

To include more model potentials used in the theory 
of inflation, wz is allowed to be either positive or nega- 

tive, or to be zero. A parabolic potential connected with 
“chaotic inflation” is included in Eq. (45) with p(dp) z 0. 
A double-well potential, representable in the form (45) is, 
for example, 

W = wzq2/2 + K cos(kq)I[-(3s/zk),(3s/zk)l (q), (47) 

where w,K,k are some parameters (real values) and I*(q) 
is the identificator of a set A: 

La(4) = 
1 ifq E A, 
0 ifq @ A. 

Form (45) rules out model potentials which are poly- 
nomials higher than second order in q. Remember here 
that model potentials of polynomial type have appeared 

in the theory of inflation through expansion of U(q) in 
powers of q near q = 0 (see, for example, [5]). Thus, 
almost all physical potentials for the inflation field a(t) 
can be represented as Eq. (45). 

For potential (45) the Wigner equation becomes 
I 

bW(q,p; t) 
at = -pF + w’qg + SX(t)$(pW) + ;D(t)$$ - ;a(t)3 / d@(p’)exp{-iqp’} 

q,p+ $a(t)-3Pr;t q,p - $z(t)-3p”t 
>I 

, (48) 

q,p,p’ E R’, t E [O,T], supplied by the initial condition 

w?,P;o) = WO(Q,P), (4% 
such that properties (42)-(44) are satisfied. 

In, order to solve this equation and to deduce stochastic equations, which describe a path in a phase space (q,p) c 

(a, Q), we should reduce it to the form of a forward Kolmogorov equation (271 (p. 102). Such an approach was first 
proposed by Maslov and Chebotarev [28] and developed much further by Comber, et al. [29]. 

To reduce Eq. (48) to a forward Kolmogorov equation we need to transform the last term in the right-hand side of 
it to a standard form. It can be done by introduction of a new function 

f(s>p,&t) = W(w;t)ew -$W) +ie 
1 > 

> 0 E R’/mod2w, (50) 

where 6’ is a new viable, and function A(t) will be defined later. 

Inserting Eq. (50) into Eq. (48), one has 

afk,p,e;t) 
at = -P$ +“‘q$ + 3%)-$pf) + ;D(t)$ + ;a(t)“/-Id+(dp’) 

x f I( ii q,p+ 2V”(t)-3P’“,e+ +qp’;t 
> 

- f(q,p,O;t) [6(u+ 1) +L+- I)] 
I 

+~a(t)3f(q,P,e;t)J~(dp’) - ~~f(,,,:O;t), (51) 
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where S(u) is a Dirac delta function. 
Let us put 

(52) 

Note that, for the scale factor (lo), 

Let mh(dpdu; t) be the measure 

A(t) = 
I 

p(dp)(e? - 1)/3H. (53) 

mn(dpdzL; t) = ;a(t)3ddp)[c5(r + 1) + S(u - l)]du. (54) 

The measure mh(dpdu;t) is a bounded, measure on R’ @ (-1) @ (+l) multiplied by time-dependent function a(t)3. 
For an arbitrary function $(p, u), an integral over this measure is 

/d4p>+n@pW) = ;4t)3/[f@>+1) +~~(P,-~)IP(~P). (55) 

Now, with Eqs. (52) and (54), Eq. (51) becomes 

afbmw 
at = -p 2 + w’q $ + SH(t)$pf) + ;D(t) $ 

+ q,p+~a(t)-3p’u,B-~zL-qpp’;t -f(q,p,8;t)]mn(dp’d~;t), 
> 

(56) 
which is the forward Kolmogorov equation. 
If Eq. (56) is formally supplied by the initial condition 

f k,p,w = 6k2 - po) J(P -poI w - eo), (57) 

then, according to the theory of stochastic differen- 
tial equations (SDE’s), there exists a three-dimensional 
stochastic process 

t-t q (%> +t, @t), (53) 

for which the function f (q,p, 6’; t) ,is a probability dis- 
tribution. This means that for an arbitrary function 
h(q,p, 6’), which is continuous and periodic with the pe- 
riod 2n on variable 6 and for fixed 0 belongs to the class 
C;“(Rl 18 R’), 

J h(q,p,e)f(q,p,e;t)dqdpde = Eh&), (59) 

where the symbol E denotes mathematical expectation 
and 

ttzo = ko,Po, 0,) 63”) 

[see equality (57)]. 

Using the generalized Ito formula for stochastic differ- 
entials [see [27], p. 270, formula (13)], one deduces an 
SDE for the stochastic process & (58): 

d@Pt = b,dt, (61) 

d&t = +H(t)& + w2+t]dt + $D(t) [ 1 
l/2 

dwt 

2;4v -- J PW.(~P du; dt), (62) 
’ d@t =/[;u+Qtp]vfi(dpdu;dt). (63) 

Here, ‘ft is a one-dimensional Wiener process (or Brow- 
nian motion) and z+,(dpdu; dt) is a Poisson measure on 
R’ @ (-1) @ (+l) @ [O,T] nonhomogeneous with respect 
to translation on [O,T] such that 

E[vfi(dpdu; dt)] = mt(dpdu;t)dt. (64) 

Ot is an additional stochastic variable, which can be in- 
terpreted as a stochastic phase [see Eq. (50)]. It appears 
only due to deviation of the potential (45) from the har- 
monic oscillator’s potential. 

In order for the stochastic process (61)-(63) to have a 
unique solution on a time interval [0, T], right continuous 
with probability 1, it is enough to have conditions (46), 
and to assume that functions a(t), H(t), a(t)-3, D(t), 
and their first de+atives are continuous functions. 

Let us denote the stochastic process (61)-(63) with 
initial condition (57) by 

mo,Po,eo) = (~t(40,po,eo)r~t(qo,po,eo), 

~wo,Pom). (65) 

If the initial condition for Eq. (56), 

fkmm =fobh~) , (66) 

belongs to the class of generalized functions, then instead 

of (59), one has 

J 
h (w,@f (w,@;Wqdpd~ 

= Eh(~Pt(q,p,e),~,(q,p,e),Ot(q,p,e)) J 
xfoGm'Mdpd6'. (67) 
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Now one can readily find the correspondence between 
an integral over the Wigner function W(q,p; t), governed 

by Eq. (48), and the stochastic process (61)-(63). Let 
us assume that 

fO(Q>P,@ = W&P) 
and let the function h(q,p, 6’) in Eq. (67) be of the form 

h(%P,@) = WLP) w-w. 

Then from Eq. (67) and (50), one finds 

J 
h (w)W(w;t)&& 

=..p(~A(t)} J EIh(~:(q,p,O),~~(q,p,O)) 

x exP[-iet(q,P,O)l}~o(q,P)dqdP, 633) 

where J dB = 2n was used and the function A(t) is de- 
fined by Eq. (52). 

Formula (68) gives one the expectation value of a quan- 

tum operator A(&, 6) with its Weyl symbol h(q,p) [com- 
pare Eq. (68) with Eq. (25)]. 
Equations (61)-(63) are exact quantum Langevin 
equations for the large-scale inflation in de Sitter space 
associated with the master equation (17). 

In Ref. [lo] an attempt was made to derive the quan- 
tum Langevin equations for potentials with a polynomial 
growth higher than second order in q. As was mentioned, 
such potentials are excluded in our consideration, which 

is restricted by Eq. (45). In Ref. [lo] the deduction of 
the quantum Langevin equations is based on a general 
expansion in powers of ti of the Wigner equation, as in 
our representation (39). From Ref. [lo] it follows that for 
polynomial potentials, of order higher than second, the 
quantum Lm win equations can be derived exactly only 
to order sg lifV (corresponding to the truncated Wigner 
equation of order ii/V). Already, the first correction of 
order h/V to the quantum Langevin equations cannot be 
calculated precisely (there is, no explicit representation 
for the noise terms in the quantum Langevin equations). 
The origin of this problem is related to the term a3W/8p3 
in the truncated Wigner equation of order (fi/V)‘. 

Let us rewrite the quantum Langevin equations (61)- 

(63) in an integral form to show explicitly dependence on 
initial data (q,p, 0): 
I 

I 

t 

%(%P, 0) = 4 + ~4%P,W> 
0 

(69) 

&(q,p,O) = p - Jt[3H(r)~,(q,P,0) + W2%(9>P>0)ld~ + 
2fi 112 t t 

0 [I J 7 a(r)-3p’uv&lp’du; dr), 
0 

D(~-)“~dw, - $ 
s 0 

(70) 

W,P,O) = ;u + @,,(q,p, 0)p’ vfi(dp’du; dr) 1 > /mod 2?r. (71) 
Equations (69)-(71) describe a stochastic path +t,&t 

in phase space (Q, 6) starting at a point (q,p) when t = 0. 
The stochastic phase Ot plays role in the final formula 

(68) for the expectation value of a quantum operator and 
can be in@rpreted as a contribution of the stochastic path 

w?>P),W%P). 
Equation (68) together with Eqs. (61)-(63) can be 

used for numerical simulations to calculate the expecta- 

tion value for quantum operator a(&, i), which is much 
simpler than solving the Wigner equation because SDE’s 
(61)-(63) are of first order. 

Now it is clear how to derive the quantum Langevin 

equations that are equivalent to the Wigner equation. In 
particular, we can discuss the contradiction inherent to 
the Wigner representation given by Nambu [15], men- 
tioned earlier in the introduction. 

The Wigner representation in Ref. [15] [Eq. (26) or 
(27)] is given for the space-homogeneous long wavelength 
mode of the scalar field &. The result is obtained as a 
limit when some small parameter E goes to zero. The 
stating point was the equations of motion. In the first 

equation of motion the small parameter can be extracted 
through 
d4t = vtdt + cy(dt), 

where y is some function [Eqs. (3) and (4) in [15]]. Thus, 
the Wigner equation in Ref. [15], derived for E + 03, 
should correspond to the equation of motion 

d& = vtdt. (72) 
On the other hand, the Wigner function W(&v; t) is 

governed by an equation containing second derivatives 
a2W/&bz and @W/&#& [Eq. (27) in 11511. Because 
of these derivatives, the Langevin equations which are 

equivalent to Nambu’s Wigner representation, give the 
following correspondence between the phase-space vari- 
ables C$ and u: 

d& = vtdt +oljdwi,j = 1,2, (73) 
where (wj, wg) is a two-dimensional Wiener process and 
{Q} is a 2 x 2 matrix with constant coefficients. {uij} 
does not depend on E. 

Equation (73) by itself would mean that Nambu’s 
Wigner representation and ours are given for different 
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phase spaces, ignoring the contradiction in the frame of 
Ref. [15]. Equality (73) contradicts Eq. (72). 

V. SOLUTION OF THE WIGNER EQUATION 

The aim of this section is to show how the Wigner 

function itself can be expressed by the expectation value 
with respect to a stochastic process in the extended phase 
space (q,p, 0). In Ref. [29] such an expression is found 
for the case 

ati 
~PMI, 

at = ir5 
H(w) = & + $Lwzq2 + U(q,p), 

(74) 

while in the case under consideration (26) and (15), the 
diffusion term and the expansion of the Universe play an 
essential role. 

To find a solution for the Wigner equation (48) one 
should transform it to a backward Kolmogorov equation 
[27] (p. 300). This can be done by introduction of the 
function 

,~ 
f(q,P,e;t) = W(q,p;t)ev -3 t J 
t 

H(T)dT 
0 

-TA(t) + i0 
> 

, (75) 

where B E R’/mod2?r, and A(t) is the same function 

(52) as in Sec. IV. 
The time evolution off is governed now by the equa- 

tion 

af b&P> e; t) 
at = -P$ + [w’q + 3H(t)p]g + ;D(t)$ 

+ J[ ( f q,p + $l(t)-3p’u,e - ;u 

-qp’; t 
> 

- f (q>p, e; t) m&p’d~; t), 1 (76) 

which would be a backward Kolmogorov equation for the 
backward time t’, by setting t = T-t’, where 0 5 t 5 T. 
The measure mn(dpdu; t) is defined by Eq. (54). 

If Eq. (76) is supplied by an initial condition 

f(q,p,e;o) = fdq,p,e), (77) 

where fo is a continuous function, then the solution for 
Eq. (76) can be represented as 
f(q,P,e;t)=Efo(QT(q,p,e;T-t),PT(q,p,e;T--t),OT(q,p,e;T-t)), O<t<T, (73) 

where the stochastic process can be found by applying the generalized Ito formula for stochastic differentials [27] (p, 

270)~ 

Q.(q,p,O;T-t)=q- I ’ P&,p,B;T - t)dT, 
T--t (79) 

J ’ [3fJ(T)P&,p,fJ;T - t) +dQ,(q,p,B;T - t)]dT+ $ 
l/2 0 

%mftT-t) =P+ 
T-t [I J D(+“dw, 

T-t 

} 
/mod2?r, (81) 

where 0 5 T - t 5 s 5 T and vh(dp’du;dT) is a Poisson measure on R’ t% (-1) @ (+l) @ [O,T] with the intensity 
defined by Eq. (64). 

Returning to the Wigner function, one has 

tH(+7 + ?A@) E{Wo(Qdw>O;T - %Mq,p>O;T - t))expI%(q,p,O;T - t)]}, 
> 
where the stochastic process is defined by Eqs. (79)-(81) 
with 0 = 0. 

Conditions for existence and uniqueness of the solution 
for SDE’s (79)-(81) are the same as for SDE’s (69)-(71). 

Let us assume additionally that 
J 
p”ddp) I co*% k = 3,4, (33) 

and that the initial Wigner function W,,(q,p) is twice 
continuously differentiable in p and once in 2, and that 
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its first.and second order part?& are bounded. Then the 
Wigner function (82) is twice continuously differentiable 
in p and once in I, differentiable in t, and is the unique 

solution for the Cauchy problem (76), (77). 
Let us consider how properties (42)-(44) for the initial 

Wigner function are preserved in the course of time. 
(a) The reality of the Wigner function is preserved. To 

prove this proposition, it is necessary to use the decom- 
position of the Wigner function into a difference of two 
positive functions [see Ref. [29] formula (4.4)]. The group 
of transformation (82) preserves this decomposition. 

(b) The normalization for the Wigner function 
s 
Wq,p;Wdp = 1, t 2 0, 

is satisfied because of the equality 

d 

Ft s 
W(w;Wdp = 0, 

which follows directly from the Wigner equation. 
(c) The presence of the dissipation and diffusion terms 

in the Wigner equation destroys the inequality (44). It 
now becomes 
(84) 

To derive Eq. (84), it is necessary to take a time derivative of the expression on the left-hand side of Eq. (84) and 
to use the Wigner equation. After this, one has 

J 
W%,p;Wqdp= [$$j3(/ W~(a(q,p)dqdp-~~[~]3D(~)[~(aW~~7))zdqdp]drj, (85) 

and Eq. (84) follows from Eq. (85). 
If there is no diffusion, D(t) q 0, for such a system, starting at t = 0 from a pure state 

J 
[W,(q,p)]‘dqdp = &cz(O)~ (< &z(O)~ for a mixed state) , 

it is possible to follow the pure state in the course of time because of equality 

J 
W”(w;Wqdp = &(tJ3 

( 

V 
< Z;;a(t)3 for a mixed state 

> 
(86) 

However, diffusion [D(t) $01 smears the picture and one cannot disinguish pure and mixed states by inequality (84). 
For the Wigner function W(q, Ii; t) [ see Eq. (34)] relations (85), (84) become 

s W’(q,II;t)dqdII = 

J 
W’(q,II;t)dqdII 5 

J %‘(qJWqd~ - 
V 

Gi‘ 

(87) 

(88) 
) 
VI. LARGE-TIME ASYMPTOTICS 

If H(t) a con&, the scale factor a(t) increases expo- 
nentially with time and for large time the Wigner equa- 
tion becomes 

awq,P; 4 au(q) 
at 

= -PT + 3H(t)$(pW) + ~ 
aq 

to order a(t)-3, what follows from Eq. (39). 
^ The expectation value at large time T for an operator 

A with Weyl symbol h(q,p) is 
(2)~ = ~fWW%>p~T)dqdp 

= Eh(~T(q,p,O),~T(q,p,O)) Wo(w)dqdp, J 
(9’4 

where the stochastic process (at, $t) is governed now by 

d$ = &dt, 

d&t = -[3H(t)$ + ti(Qt)]dt + [ 1 $D(t) 
w dw > (91

with the initial condition (a~, &) = (q,p). 
Note that the stochastic differentials (89) are equiv- 

alent to the quantum Langevin equations (61)-(63) for 
the scalar field O(t) in the large-time limit [not for the 
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beginning of the inflation if the potential U(q) &isffies 

the inequality (40)]. 

VII. STATIONARY STATES FOR LARGE-SCALE 
INFLATION 

Stationary or equilibrium states for large-scale infla- 
tion are described by the stationary Wigner function 
W(q,p) = limt,, W(q,p;t) governed by the Wigner 

equation 

0 = -pF + 3H(t)$(pW) 

+ au(q) aw -- 
aq ap 

+ ;D(t)s (92) 

for an arbitrary potential U(q). This equation has time- 
dependent coefficients coming from the time dependence 
of the scale factor. 

For the stationary Wigner function W(q,p), one can 
easily find the following expectation values for the oper- 
ators: 

(6) = 0, (93) 

(r$&)) = 0, (94) 
$2 fw) 

P ) = &h) = v 1 3H(t)’ (95) 

From the last equality, one can see that the diffusion 
coefficient D(t) should be 

D(t) = 3H(t) o (96) 

(at least for large time), where the constant o is defined 
by the choice of stationary state 

$2 
(a ) = ; c7. (97) 

The stationary Wigner function is found to be 

W(~,P)=NexP{-~+U(~))v/(~)), (98) 

where N is the normalization constant. 
For a particular case, with the scale factor given by 

Eq. (10) and potaitial U(q) = w2qz/2, the Bunch-Davies 
vacuum is given by 

(62) = Ag = tiH 
v2nw= ’ 

which yields LT = H/2x and D = 3H2/2vr. 
For this case, the stationary solution is 

(99) 

VW 
w&P) = jg exP -(P2 + w%?fLH 

{ 

VT 

> 
I V=Z?E.. 

3H3 ’ 

(100) 

where one must assume that 
H > W/T (101) 

for the inequality (44) to be satisfied by the Wigner func- 
tion (100). 

VIII. CONCLUSIONS 

(1) The appearance of the dissipation term 

3H(t)(d/ap)(pW(q,p; t)) in the Wigner equation, after 

transition from phase space (@,II) to (@,&), supports 

the earlier result of Graziani [9] and N&o, Nambu, and 
Sasaki [13], that the large-scale inflation scalar field be- 
haves as a quantum one-dimensional dissipative system. 
Nevertheless, this analogy is not complete: it is destroyed 
by a new commutation relation 

^ ? 
p, ‘q = ga,-,, (102) 

where a(t) is the scale factor in de Sitter metric and it 
reflects the expansion of the Universe [see Eq. (4)]. 

Comparing the Wigner equation (48) for the large- 
scale inflation [or more general case (36) and (37)] with 
the Wigner equation for a quantum one-dimensi&al 
linearly damped unharmonic oscillator (see Refs. 
[14,17,18]), one can see that the expansion of the Uni- 
verse amplifies the role of the potential term, which is 
a deviation from the harmonic oscillator potential. Ex- 
plicitly, this amplification appears in formula (68) for the 

expectation value of a quantum operator and in formula 
(82) for the Wigner function, where function A(t) (52) 

has the factor J,” a(7)3d7 (without expansion this factor 
would be 1). At the same time, as t --t 03, the cornmu- 
tation relation (103) leads to degeneration of the jump 
process, in the quantum Langevin equations, into a con- 
tinuous process (see Sec. VI). 

(2) As a consequence of our investigation we have the 
followmg statement: for the large-scale inflation scalar 
field, the asymptotic t + co is equal to the classical limit. 

In the limit ti + 0, the Wigner equations (36) and (37) 
[or Eq. (48)] turns out to be 

wq,p; t) acqq) aw 
at = -pT +3H(t)$(pW) + -- 

a4 ap’ 

(103) 

and the corresponding Langevin equations are 

d-3* = &dt, 

d&, = -[3H(t)$ + U’(@,)]dt. 004) 

Equations (104) are just the classical deterministic equa- 
tions of motion, equivalent to the field equation (11). 

However, Eq. (103) is not the “classical limit” for 
the Wigner equations (36) and (37) (only the truncated 
Wigner equation‘ of order &). In the classical limit, the 
diffusion term in the Wigner equations (36) and (37) is 

not proportional to Ti/V because, instead of Eq. (97) for 
a stationary state, one has 
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The “classical limit” of the Wigner equation for the 
large-scale inflation scalar field is 

aw(P,P; 4 
at =-PT +SH(t)$(pW) 

+ au(q) aw 

a4 ap 
+ Dcldg , (106) 

with D<,(t) = 3H(t)u,l. The classical stochastic 

Langevin equations are 

d@t = +,tdt, 

d&t 7 -[SH(t)&t + U’(G,)]dt + [2D,,(t)]“‘dwt. (107) 

One can see that in the “classical limit”, the Wigner 
equation and Langevin equations [(106) and (107)] are 
the .same as those of the large-time asymptotics [Eqs. 
(89) and (91)]. For complete coincidence, the coefficient 
of the second derivative in the Wigner equations (89) and 

(106) should be presented in the form 31f(t)(&2).t, where 

the expectation value (&2).t is taken on the correspond- 
ing stationary state. 

(3) In this paper, each large-scale region (for the 
coarse-graining procedure) is considered as an indepen- 
dent quantum-mechanical system. If, nevertheless, it is 
necessary to take into account interaction with the envi- 
ronment, then, for linear interaction, the master equation 

for the “reduced” density operator fi is 

-;4t)“DW% Ikfill, 008) 

where A(t) is the dissipation coefficient (originated by in- 

teraction with the environment), 6 is an operator form 
for the Hamiltonian (15) of the system without dissipa- 
tion, and { , } stands for an anticommutator. 

In phase space (a,&), the Wigner equation corre- 
sponding to Eq. (108) is 
aw(q,P;t) 
at 

= -pz + p-f@) + A($oW) 

a2w v 
+;D(t)w 

s 
- + Yga(t)3 duW 

-cc 

x (%P - u; wq, u; 4, (109) 

where Z(q,u; t) is defined by Eq. (37). 
Equation (109) is an equation of the same type as the 

Wigner equation (36). Thus, Eq. (109) can be treated 
as the Wigner equation considered in this paper. 

(4) Since in our consideration on phase space (a, m), 
the scaling lia(t)-3/V depends already on t, it is not 
a problem to take into account a time dependence of 

the coarse-graining volume V(t). The scaling becomes 
ha(t)-3/V(t), where V(0) = const # 0 is assumed. 

Therefore the result can be extended on an expand- 
ing FRW space-time. The principal point in this case 
is the new time dependence of the canonical momentum 
conjugate to +x(t), 

k(t) = v(t)a(t)“G(t) , 

and of the Hamiltonian, 

(110) 

31* = 4V(t)-‘a(t)-%f) + v(t)a(t)TJ(@~) (111) 

[compare with Eqs. (20) and (23)]. Also the condition 
(24), taken for “approximately” de Sitter space, should 
be replaced by a condition corresponding to each concrete 
FRW space-time. 
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