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In this work, we investigate the phenomenology of minimal four-family MSSM supergravity the- 
ories containing an additional generation (t’, b’, T’, ~‘1 of heavy fermions along with their superpart- 
uers. We constrain the models by demanding gauge coupling constant unification at high energy 
scales, perturbative values for all Yukawa couplings for energy scales up to the grand-unification 
scale, radiative electroweak (EW) symmetry breaking via renormalization group evolution down 
from the grand-unification scale, a neutral LSP, and consistency with constraints from direct searches 
for new particles and precision electroweak data. The perturbative constraints imply a rather light 
fourth-family quark and lepton spectrum, and tanp < 3. The lightest CP-even Higgs boson mass 
receives fourth-family loop corrections that can result in as much as a 30% increase over the corre- 
sponding three-family ~BSS value. Significant fourth-family Yukawa coupling contributions to the 
evolution of scalar masses,lead to unexpected mass hierarchies among the sparticles. For example, 
the il is generally the lightest slepton and the lightest squark is the g,. A significant lower bound 
is placed on the gluino mass by the simple requirement that the i; uat be the LSP. Sleptons of the 
first two families are much more massive compared to the LSP and other neutralinos and charginos 
than in the three-family models; in particular, all sleptons belonging to the first three families could 
easily lie beyond the reach of a & = 500 GeV e+e- collider. Consistency tests of the RG equa- 
tions via mass sum rules and relations are explored. Relations between slepton masses and gaugino 
masses are shown to be very sensitive to the presence of a fourth generation. The most important 
near-future experimental probes of the four-family models are reviewed. A scenario with mt - mw 
and t + i,g? is shown to be inconsistent with universal soft-SUSY-breaking boundary conditions. 
Full four-family evolution of a, is shown to lead to a significant enhancement in inclusive jet and 
dijet spectra at Fermilab Tevatron energies when all sparticle masses are near their lower bounds. 

PACS number(s): 12.6O.Jv, 04.65.+e, .14.8O.Ly 
I. INTRODUCTION 

Despite the success of the standard model (SM), it is 
almost certainly incomplete; In particular, the full the- 
ory should.include a quantum theory of gravity. However, 
the huge discrepancy between the characteristic Planck 
scale (Mp, N 10 I8 GeV) and the weak scale 0(tiz) is not 
easily bridged without encountering problems related to 
fine-tuning and gauge hierarchy. Supersymmetry iS cur- 
rently the only fully quantitative and consistent resolu- 
tion to these problems. In particular, the minimal super- 
symmetric extension of the standard model (MSSM) is 
an extremely attractive contender for physics beyond the 
SM due to its natural prediction that the gauge couplings 
all unify at a common grand-unified-theory (GUT) scale 
Mu. The precise particle content of the MSSM (compris- 
ing sparticle partners for all SM particles and exactly two 
Higgs doublet fields HI, Hz and their Higgsino partners) 
is crucial to this success. In addition, the MSSM pro- 
vides an attractive explanation for~the long proton decay 
lifetime and an attractive candidate [the lightest super- 
0556~2821/96/53(3)/1616(32)/%06.00 II 
symmetric particle (LSP)] for cold dark matter, easily 
accommodates the absence of significant flavor-changing 
neutral currents (FCNC’s), and is completely consistent 
with current precision electroweak data. Of course, ex- 
periment has yet to reveal a.ny evidence for supersymme- 
try (SUSY), in either the sparticle or the Higgs sector. 

Unfortunately, supersymmetric models in general, and 
the MSSM in particular, provide no explanation for the 
number of families (we denote the number of families or 
generations by Ng) or the patterns of fermion masses. 
Certainly, a supersymmetric extension of the standard 
three-family model is entirely consistent, but the possi- 
bility of incorporating~one or more additional generations 
into the MSSM framework deserves exploration. In a pre- 
vious work [l], we investigated the minimal four-family, 
gauge-unified MSSM, including ,a superpotential Y&w 
interaction &e’i?zck which gives a Dirac mass to the Y’ 

in exact analogy to the superpotential term X,dl?zG~ re- 
sponsible for the Dirac mass of a u-type quark [2]. Here, 

the e and cj denote the two-component left-handed su- 
perfields 
1616 01996 The American Physical Society 
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and 

Dirac masses for the up-type quarks and the u’~+ gener- 
ated when the neutral scalar component of the Hz Higgs 
doublet superfield acquires a vacuum expectation value. 
The above addition to the superpotential is the most 
economical means for generating a mass for~the fourth- 
generation neutrino (as required in order to be consistent 
with constraints [3] at the CERN e!e- collider LEP) 
without introducing any qualitatively new types of au- 
perpotential interactions.’ Certainly, it is fully consistent 
with the spirit of minimal SUSY model building. It could 
be that the neutrinos of the first three families also have 
small masses generated by analogous terms, but the very 
small size of the associated Yukawa,couplings required for 
consistency with current upper bounds on these masses 
implies that these Yukawa couplings would be of negligi- 
ble importance for the investigation presented here. 

In. [l], we explored the ,con$rai@s upon the resulting 
model as obtained by generalizing the usual perturbative 
limit on the top-quark Yukawa cqupling Xt to the require- 
ment that all Yukawa couplings remain perturbative at 
energy scales below Mu. Assuming that the Collider 
Detector at Fermilab (CDF) and DO top-quark events 
arise from a third-generation~top quark with mt 2 155 
GeV,2 we demonstrated that perturbative Yukawa be- 
havior requires a rather light fourth-family spectrum, 
namely ?n$‘M < mt. The fourth-family lepton sector is 
even more Strongly co&rained: rn,,,, < 85 GeV, the 
upper limit occurring when mts, rna, are just beyond the 
reach of LEP. (That is, the upper limits for the fourth- 
family leptons versus quarks have a strong inverse corre- 
l&ion.) Additional results included (i) limits requiring 
tan@ (tanp 3 +J~, Q and z)~ being the vacuum expecta- 
tion v&es of the HI and Hz scalar fields) to have a very 
modest value, roughly 1 5 tanp 5 3, in order tq avoid 
perturbativity problems for the Yuk+wa couplings, (ii) 
the impossibility of imposing the &,(A’&)/&(?&) = 1 
boundary condition in four-family models, and (iii) an 
increase in the, predicted value for ag(mz) by N +3% 
from the pu& gauge coupling contributions to gauge 
coupling running, which could, however, be largely com- 
pensated by two-loop Yukawa contributions to gauge cou- 

‘A superpotential term which yields a Majorana mass for 
the & could also be constructed. However, it would not be 
sufficient by itself since it, would ,leave the uz massless. In- 
vestigation of the lepton number violation and mixing effects 
generated by such a term, though possibly of interest, lies 
beyond the aims of the present paper. 

‘We define the fourth generation by the Cabibbo-Kobayashi- 
Maskawa (CKM) matrix hierarchy /Vt#, I&w 1’ - 1, with 
Ivt%12> Iv,*,l” << 1. 
pling running [l]. 
In this paper we elaborate upon our earlier results and 

extend our four-family study to include the superpart- 
ners of the fourth-family quarks and leptons. We adopt 
the conventional framework in which the MSSM parame- 
ters are determined in the context of minimal supergrav- 
ity by universal (at Mo) soft-SUSY-breaking masses for 
the gauginos (mllz) and for the squark and Higgs boson 
fields (rn,,), and universal soft Yukawa couplings (A); of 
course, these typically evolve to (rather disparate) weak- 
scale values. Additional crucial parameters are tan/3 (de- 

fined above) and p,.the coefficient of the filer, mixing 
term in the superpotential. Aside from having consider- 
able theoretical motivation, this approach has the advan- 
tage that relatively few independent parameters, tan& 
mt, mo, A, rnllz (along with the sign of p), are sufficient 

to completely specify the theory at the weak s~ale.~ 
Specific supergravity (SUGRA) and string models 

make definite predictions for the relative sizes of mo, A, 
and mllz. It is convenient to specify a given model in 
terms of the ratios [a. = Afm,p and (0 = mo/mllz. 
Two models provide particularly useful benchmarks. The 
first is the string-motivated dilaton boundary condition 
scenario specified by & = l/a, fa = -1. This bound- 
ary condition set emerges universally in all string models 
where supersymmetry breaking is dilaton dominated. It 
represents a middle-of-the-road choice in that the gaug- 
ino mass rnllz and the soft scalar xnass mo are both of im- 
portance in the final low-energy values of the squark and 
slepton masses, ,but sleptons are generally significantly 
lighter than squarks, and both are generally lighter than 
the gluino. A. more extreme boundary condition choice 
is the “no-scale” model with (0 = <a = 0, which can also 
arise in certain string and supergravity approaches. In 
this model, supersymmetry breaking arises entirely from 
the gaugino mass rnljz at MV, with all other supersym- 
metry breaking parameters generated by renormalization 
group equation (RGE) evolution as the energy scale de- 
creases. Sleptons are still lighter compared to squarks, 
and the gluino mass is .generally the largest. A brief re- 
view of these two boundary conditions can be found in 
[5]. As a final benchmark possibility we shall also con- 
sider to = -[a = 1. In this case, the slepton and squark 
masses turn out to be large (often larger than the gluino 
mass) and fairly similar in size due to the dominance of 
the mo source term. 

Our study is designed to complement the existing 
MSSM and supergravity (SUGRA) studies, virtually all 
of which have assumed three generations 161, and the 
many earlier studies of a four-family SM [7]. Since the 
LEP experiments rule out the possibility of an addi- 
tional new sequential “light” neutrino [S], the fourth- 
family neutrino must be quite massive, my, > 45 GeV, 
and the, fourth family would seem to not be truly “se- 
quential.” However, there are many indications of small 
nonzero mass for the neutrinos of the first three fami- 

3For a review of this approach, see [4] and references therein. 
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lies, in which ase the much larger mass for the v’ is 
no different than the large value of the top-quark mass 
as compared to the masses of the other quarks. Both 
of these large generational hierarchies must find explana- 
tion in physics beyond the MSSM. A fourth family with a 
heavy neutrino is no more unnatural than a third family 
with a heavy top quark [9]. 

In the minimal supersymmetric model with Ns < 4, 
the gauge couplings unify [lo] perturbatively at a com- 
mon scale Mo N 2-5 x 10 I6 GeV. However, as noted 
earlier, for Ng = 4 we must relax the often-imposed the- 
oretical prejudice that Xb(M”) = X,(A&r) if we are to 
generate an acceptable prediction for ma/m, at low en- 
ergies. We do not regard this as a significant difficulty 
since there are many reasons why the Yukawa couplings 
might not be unified at Mu. In addition to potentially 
large weak and GUT-scale threshold effects [ll], a differ- 
ent field content can drastically modify the GUT-scale 
relations among the Yukawa couplings. For example, if 
a 45 Higgs representation is added to the SU(5) GUT 
theory, then the strict relation &,(Mu)/X,(Mu) = 1 is 
no longer valid [12]. More recently, the authors in [13] 
have shown that if the theory contains additional heavy 
fermions at Mu then Xr,(M”)/X,(M”) < 1 can naturally 
result. 

Thus, it is of considerable interest to study the phe- 
nomenology of a four-family MSSM model. In our study, 
we will delineate how current experiments can either 
eliminate or confirm the existence of a fourth family. We 
shall also discuss a number of theoretical subtleties that 
arise in the implementation of four generations in the 
context of the SUGRA framework. Aside from updating 
the constraints on mt,, rn*,, and tanp, we will particu- 
larly address the following specific i&es. (i) When all 
basic constraints are applied, what are the experimen- 
tally allowed regions of parameter space? (ii) Does the 
electroweak (EW) radiative breaking mechanism work in 
the Ng = 4 case? (iii) What are the additional radia- 
tive corrections to the lightest SUSY Higgs boson mass? 
(iv) How is the general spectrum of the sparticles af- 
fected by the presence of four families? (v) In particular, 
are there new constraints on Msusy arising from fourth- 
family sparticle mass constraints? (vi) More generally, 
how does the fourth-family sparticle spectrum compare 
to the spectra of the first three families? And, (vii) what 
experimental constraints are imposed by the latest DO 
and CDF top-quark searches, as well as a global fit to 
the latest EW precision data? We examine each of these 
issues, although not precisely in the above order. 

Section II is devoted to a study of gauge and Yukawa 
coupling unification. In particular, we refine our earlier 
analysis to include exact (numerical) solution of the cou- 
pled two-loop gauge and Yukawa couplings. The param- 
eter space regions given by demanding perturbatively for 
the Yukawa couplings and consistency with nonobserva- 
tion of sparticles and fourth-family fermions at LEP are 
specified. Section III discusses the radiative electroweak 
symmetry breaking mechanism. Section IV describes 
the physical Higgs boson masses and their phenomenol- 
ogy in the four-generation MSSM. Section V discusses 
a constraint on the SUSY sparticle mass scales that is 
peculiar to the four-generation MSSM model. Section 
VI presents, for a number of typical models, the sparti- 
cle mass spectra that arise from a four-family scenario, 
and delineates allowed regions of soft-supersymmetry- 
breaking parameter space after all direct experimental 
constraints have been imposed. Key model-independent 
features of the sparticle spectra are identified. Section 
VII reviews the latest direct collider limits on a fourth 
family, including the implications of the latest DO and 
CDF data. There, we demonstrate that a scenario [14] 
in which the top is light, mt - mw, but not observed 
because it decays by the mode t + &gy (the CDF or 
DO events coming from t’ + bW in this scenario), is not 
consistent with universal soft-SUSY-breaking boundary 
conditions by virtue of the Sec. V constraint which forces 
the & to be very heavy. In addition, a global fit to the lat- 
est precision LEP data is presented and the ensuing con- 
straints on a fourth family are discussed. We also explore 
implications of a fourth family for the inclusive jet and di- 
jet spectra of the light quarks following from the dramatic 
slowdown in the evolution of ag once energy scales above 
Msusv are reached. Section VIII presents our summary 
and concluding remarks. The renormalization-group for- 
mulas and fl functions that are frequently referenced in 
the text appear in Appendix A. The question of the ac- 
curacy with which ta@ can be determined by squark- 
slepton mass measurements is discussed in Appendix B. 

II. GAUGE AND YUKAWA COUPLING 
UNIFICATION FOR Ns = 4 

Gauge coupling,unification and the low-energy predic- 
tion for ma/m, [assuming Xb(Mu) = X,(Mu)] at the 
two-loop level in a MSSM four-family model were first 
considered in 1151. For complete family representations, 
gauge cou$ing unification implies values for a3(mz) and 
Mu that are independent of the number of families at the 
one-loop level. At two loops, there is a weak dependence 
on Ng. Figure 1 shows t& unification of the couplings 
in both the three- and four-family scenarios including 
two-loop gauge contributions to the fi functions but not 
including the two-loop Yukawa contributions. Assuming 
the published value of a;A(mz) = 127.9 [in the modified 
MS (m) scheme], and adopting sin’&(mz) = 0.2316 
(see the discus+on of the next paragraph), and a sin- 
gle SUSY-breaking scale4 Msusy = mz, we predict 
n;(mz) = (0.1283,0.1326), a; = (0.0432,0.0917), and 
Mg = (2.98,5.73) x 10 I6 GeV for Ng = (3,4), respec- 
tively. Here, the superscript 0 indicates that the two-loop 
Yukawa effects have not been included. We see that there 
is a slight shift in am, a significant shift in Mu, and 
a factor of 2 increase in a: as one moves from Ng = 3 to 
4. For the more recent value [I?‘] of a;,(,(mz) = 129.08 
(= 128.05 in them scheme), and adjusting sin%w(mz) 

“As described in [16], the effective Msus~ is generally not 
far from mz even when some superpartners are heavy. 
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FIG. 1. Gauge coupling unification, including two-loop 
gauge contributions but not two-loop Yukawa contributions; 
dashed (solid) curves correspond to Ng = 3 (4). The illustra- 
tion is foi sin26’w = 0.2316 and a&(mz) = 127.9. 

downwards by -0.0002 1161, to sin28w(mz) = 0.2314, 
the resulting predictions are az(mz) = (0.129,0.133), 
a; = (0.0432,0.092), and &f; = (3.25,6.28) x 1Ol6 GeV 
for Ng = (3,4). In either case, inclusion of a fourth 
family raises as(mz) by about 3% when calculated at 
two-l?o$ order without including Yukawa contributions 
to the, two-loop p functions. We shall shortly return to 
this issue. 

In all the calculations that follow, we shall employ 
the published value for the electromagnetic couplings 
flf_a;d(mz) = 127.9 in the m scheme and keep the 
MS value of sin2&(m~) fixed at sin2@w(mz) = 0.2316. 
Holding si&‘w(mz) fixed is an approximation. The ac- 
tual “best-fit” value of si&w(mz) for a given set of 
experimental data depends upon the top-quark mass, 
the masses of the fourth-family fermions, the mass of 
the light SM-like Higgs boson of the model, and the 
masses of the superpartners of all four families (see, for 
example, [16,18]). If exact coupling constant unifica- 
tion is demanded, and definite boundary conditions for 
the soft-supersymmetry-breaking parameters are speci- 
fied at the unification scale, the appropriate best-fit value 
for sh?Bw(mz) value within the four-generation model 
could be obtained by a self-consistent iterative procedure 
such as described in [16,18]. We have chosen to avoid this 
complexity for this first study of the four-generation su- 
persymmetric model. We alsd note that we ignore the 
differences between dimensional reduction with modified 
minimal subtraction (DR) and m couplings and masses. 
In particular, although it is the DR couplings that are 
most naturally required to unify in supersymmetric mod- 
els, the differences between m and m couplings are not 
significant at scale i&usy - mz compared to other un- 
certainties. As described later, we allow a certain level 
of “error” in the unification of the coupling constants in 
order to account for the remaining experimental uncer- 
Excluded Regions: m,(m,)=165 GeV, m,(m,)=4.6 GeV 
Unification to within 2.5% (.Ol%): (. ,+ 00) 

L¶rlB=1.5 tane=2.2 

FIG. 2. We give the allowed v+, mb, parameter space re- 
gions for m,(m,) = 165 GeV in the cases tan0 = 1.5 and 2.2. 
We have taken m,, = m,, = 50 GeV. Full two-loop contribu- 
tions to the gauge coupling p functions are included. Small 
dots itidicate regions of mtt, ntw disallowed by demanding 
perturb&w Yukawas (X; < 3.3) and gauge coupling unifica- 
tion to within 2.5%. Small squares indicate additional points 
excluded if gauge unification is required to better than 0.01%. 

tainty in sin’&(mz), the slight m YS i@ mismatch 
and the (small) variation in sin’&~(mz) that would oc- 
cur as we change fourth-family masses and SUSY pa- 
rameters. We will see that the allowed parameter space 
is only slightly sensitive to a relaxation of exact unifica- 
tion, and certainly the general phenomenological features 
and issues that & discuss would not be significantly al- 
tered by a more precise treatment. 

The vu,,, rnt, parameter space form,, = rn,, = 50 GeV 
(consistent with LEP limits of 45 GeV [3]) and mt = 165 
GeV, equivalent5 to mt(pole) = 175 GeV, that is allowed 
after demanding perturbativity for the Yukawa couplings 
for all energy scales up to Mu, as well as coupling con- 
stant unification at Mu, including two-loop Yukawa con- 
tributions to the gauge coupling evolution equations, is 
illustrated for tanp = 1.5 and 2.2 in Fig. 2. Our precise 
criterion for pertwbativity is that all Yukawa couplings 
obey Xi 5 3.3; this value,ensures that one-loop effects 
dominate over two-loop effects [19]. Two possible levels 
of gauge unification are considered: unification of a~ with 
aI and az to within 2.5% and to within 0.01%. Figure 2 
shows the zillowed parameter space regions for these two 
cases. We observe that some of the excluded points on 
the border become allowed if the precision demanded for 
unification of the couplings is relaxed by even a few per- 
cent. Our procedure and these results will be explained 

sUnless explicitly indicated, up until Sec. VII all masses are 
the running m(m) masses, and not the pole masses. 
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in more detail shortly. 
The allowed parameter space regions illustrated in 

Fig. 2 are even more restricted than those given in our 
earlier work [l], at these same tano values, for two rea- 
sons: (i) the higher value of mt(mt) = 165 GeV [vs 
m,(m,) = 160 GeV] has been chosen so as tc yield 

mt(pole) - 175 GeV, cohsistent with the latest CDF and 
DO experimental results 1201 (the precise pole mass value 
depends on the sparticle spectrum, but only weakly); (ii) 
the two-loop Yukawa effects in the running of the gauge 
couplings feed back into the Yukawa couplings themselves 
so that they violate perturbativity more easily. This lat- 
ter point can be understood by noting that inclusion of 
Yukawa couplings reduces the value of as(Q) when mt,, 
rn,,, have values near the boundary of the perturbatively 
allowed region. The reduction in as(Q) in turn slightly 
reduces the magnitude of the negative gauge contribution 
to the one-loop component of the Yukawa p functions as 
Q runs from mz to MV [see ,Eqs. (Al), (A5), and (A6) 
in Appendix A], constraining the weak-scale value of the 
Yukawas to be somewhat smaller than before in order tc 
remain perturbative at Mu. 

This reduction in LYQ for points at the parameter space 
edge is illustrated in Fig. 3 which ,shcws how much the 
values of MV and o(x(mz) can be affected by including 
the large Yukawa contributions to’ the two-loop gauge 
coupling p functions in the four-family scenario. The 
values of Mu and clg(mz) are presented 2s contours in 
the mt,, mg, ~lane.~ The shifts in cx3(mz), Mu from 
ag(mz), M: agree, well with our approximate solutions 
from [I]. For rn t,, mb, near their maximal allowed values, 
az(mz), Mu can, be lowered by as much as 5 and 16 %, 
respectively. We see that the Ng = 4 values of aa 
are essentially the same as the Ng = 3 value when large 
Yukawa effects are included at two loop. 

The precise boundary of the perturbatively allowed re- 
gion depends upon the precision demanded for coupling 
constant unification. In Fig. 2 we showed the allowed re- 
gions obtained by demanding unification of the coupling 
constants to within 2.5% or 0.01% (the latter being es- 
sentially equivalent to exact unification). The allowed 
region in the 0.01% case is, slightly reduced compared 
to the 2.5% case. This sensitivity is implicitly present 
even before the two-loop Yukawa terms are included in 
gauge coupling evolution. As noted above, by increas- 
ing (~3 the Yukawa blowup is delayed. So if as(iw,) ,is 
allowed to be slightly larger than the common value of 
al(Mu) and adz [denoted at,z(Mu)], then slightly 
larger values of mt,, mu,, will be allowed by the require- 
ment of perturbativity for Yukawa couplings up to Mu, 
When two-loop Yukawa couplings are included in the 
gauge evolution equations, an iterative procedure must 
be employed for finding a fully consistent solution. Fork 
a given mt,, rna, choice and a given possible starting 

‘Not shown is au; the shift in cw due to inclusion of two 
loop Yukawa contributions is comparable to the w(mz) shift, 
i.e., < 4%. 
Contours: Z-Loop Yukawa Terms Included 
).Ql(p GeV ta”@== %(Mz) 

IZ’I 

FIG. 3. Contours in my and mt, (running mass) parame- 
ter suace of constant MU and ax(mz1 after the inclusion of 
Yuk&va terms in the two-loop gauge coupling beta functions, 
assuming m,(m,) = 165 GeV and tanP = 1.5. We have taken 
rn,, = rn+ = 50 GeV. 

value cf as(mz), full two-loop evolution cf all three cou- 
plings may be performed (which requires evolving also 
the. Yukawas at the same time). The value cf MU at 
which al and 01~ unify can then be determined. The 
common value, LYQ(MU), can then be compared tc the 
evolved as(Mu) value. This process is iterated until the 
evolved as(M”) value is as close to al,z(Mu) as possi- 
ble without the Yukawas becoming too large (Xi < 3.3 is 
required); ~The precision of unification is then specified 
by the requirement that oig(A4~) = al,z(Mu) tc within 
a definite percentage deviation: for example, unification 
to within 2.5% means that az(Mu) is allowed tc be ‘no 
more than 2.5% larger than al,z(Mu). Given experimen- 
tal errors in si&w(mz) and variations in its best-fit 
value as fourth-generation fermion masses and sparticle 
masses for all the generations are varied, we regard the 
region allowed by.unification tc within 2.5% as fully,ac- 
ceptable. However, to go much beyond the 2.5% allowed 
region cf Fig. 2 would almost certainly require accepting 
the fact.that one cf the Yukawa couplings becomes non- 
perturbative at a scale below Mu or that LYQ(MU) truly 
exceeds qz(Mu), e.g., due tc nonrenormalizable oper- 
ators, string threshold effects, and/or evolution between 

Mu and Mstins. 
Of course, as at ,one loop, the value of a3(mz) con- 

sistent with unification is sensitive to the effective scale 
Msusy implied by the sparticle masses. As the value 
for Msusy is raised, am is reduced; for,Ng = 3 and 
MSUSY = 1 TeV, the shift can be as large as N -10%. 
Similar results hold for Ns = 4 as well. Given the present 
measurement bf az(mz) = 0.12 f 0.01, it would S&m 
that both the Ng = 3 and 4 scenarios predict an ag(mz) 
which is somewhat high unless Msusy is significantly 
above mz. However, a large value of the effective Msusy 
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is not easy to achieve [16] when the slepton, neutralino, 
and chargino mass scales are significantly lower than the 
squark and gluino mass scales. Nonetheless, it is fair to 
say that as(mz) per se does not discriminate between 
the Ng = 3 and 4 cases, since the increase in LYE for 
Ng = 4 vs 3 from pure, gauge effects can be compensated 
in the Ng = 4 case by the large Yukawa effects in the 
gauge running, as just discussed. In addition, we shall 
find that Ng = 4 scenarios characteristically force all the 
sleptons and squarks to higher masses’ (including those 
of the first three families), implying that the effective 
Msusy could be larger for Ng = 4 than for NP = 3. 
Given this and the additional uncertainties associated 
with weak and GUT-scale threshold effects, we believe 
that the Ng 3 3 and 4 scenarios are equally admissible. 
Attempts to address the moderately high prediction for 
as(mz) (that emerges in both cases) have recently been 
considered in [16,18]. 

In general, it is important to note that two-loop con- 
tributions to the running of a.(Q) will be much more 
significant in the case of Ng = 4 than for Ng = 3. This 
is simply due to the fact that the one-loop p function 
for a. is proportional to (9 - 2N,) (once Q > MSUSY) 
and therefore is rather small for Ng = 4. This meant 
that two-loop contributions can represent a much larger 
percentage of the total p function than in the Ns = 3 
case. ,The importance of two-loop contributions will be 
especially apparent when considering the running of the 
squark masses, where some terms involve the running 
value of a:. The cumulative effect of two-loop contri- 
butions can be large in such cases when evolving all the 
way down from Q = Mu to Q = mz. The situation for 
(~1 and 012 is quite the opposite. Indeed, the one-loop p 
function for 0~2 increases by a factor of 3 in going from 
Ns = 3 to Ns = 4, implying that az increases much more 
rapidly as the energy scale is varied from rnz up to Mu. 

What about Yukawa coupling constant unification? 
In Fig. 4, contours of constant Xb, (Mu), &,(A&), and 
X,, (Mu) within the allowed parameter space region are 
shown. From these contours we discover a number of 
important facts. First, Xg, (Mu) and X,8 (Mu) are gener- 
ally quite different; Yukawa unification does not generally 
occur, although we see that in the rn*,, rna, - 100 GeV 
corner of the tano = 1.5 plot we do have Xt. N X,,, - X,, 
Second, we see that most of the nonperturbative borders 
are defined by one of the fourth-family Yukawa couplings 
becoming nonperturbative. At tano = 1.5 the right-hand 
border results from nonperturbative behavior for X6, (at 
the upper boundary, Xt becomes nonperturbative) while 
at tan@ = 2.2 the right-hand border results when X,2 be- 
comes large and the upper boundary arises from nonper- 
turbative behavior of Xt,. However, it is also clear that, 
in general, not all of the fourth-family Yukawas (or X,) 
are simultaneously large. This means that one is unlikely 
to be particularly close to a Yukawa fixed-point solution 
[21] such that the low-energy values of the X’s are rather 
independent of their Mu-scale values. The nearest ap- 
proach to a fixed point occurs in the rntz - mb, - 100 
GeV corner of the tanp = 1.5 figure; the actual fixed- 
point location is indicated by an X. In our earlier work 
[l), with mt(mt) = 160 GeV and two-loop Yukawa con- 
Yukawas at M,: m,(q)=,165 GeV, m,(m,)=4.6 GeV 
solid: hr. dashes: Au, dotdash: A,. 

tm@=,.5 ta”p2.2 

FIG. 4. We display contours of constant X&s, X,,, and X,, 
at Mu in the region of rn,,, mb’ parameter choices allowed 
for 2.5% unification accuracy with m,(m,) = 165 GeV and 
tanfl = 1.5 or 2.2. We have taken rn,, = rn,, = 50 GeV. 

Two-loop contributions to the gauge coupling p functions are 
included. 

tributions to gauge running not included in determining 
the parameter space, the large mt,, mb, corner of the 
allowed region was nearer to this fixed point. 

III. EW SYMMETRY BREAKING 

One of the many nice features of the MSSM ex- 
tended by minimal SUGRA is that, for a very large 
region of soft-SUSY-breaking parameter space, radia- 
tive EW symmetry breaking is automatically induced by 
renormalization-group evolution. Thus, the hierarchy be- 
tween Mu [where scalar masses are universal and (there- 
fore) EW symmetry is initially unbroken] and rnz re- 
ceives a natural explanation. In the three-family model, 
this EW symmetry breaking is mainly a result of the 
quantum corrections arising from the large Xt Yukawa 
coupling which drives the Hz Higgs field squared mass 
to ever smaller values as the energy scale is decreased; 
EWSB occurs when the Higgs boson mass-squared term 
in the scalar Higgs potential is finally driven to a neg- 
ative value. Of course, to obtain the precise value of 
mz as given by rn: = i(g” + g’2)(vf + vi), there must 
be a relation among the supersymmetric model parame- 
ters. Mathematically, these relations result from requir- 
ing that the first derivatives of the scalar field potential 
with respect to u1 and ZJZ vanish. Normally, one of these 
conditions is used to determine the magnitude (but not 
the ,sign) of fi in terms of the other initial parameters 
of the theory, including the soft-SUSY-breaking parame- 
ters. The other condition is used to determine the magni- 
tude of mg, appearing in the -m~(H~Hz+H.c.) mixing 
term in the scalar field potential. Thus, p and rn: at 
the weak scale become functions of mts, mb’, tax@, mz, 
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mo, mllz, and A. Since this radiative breakmg mecha- 
nism is essential to the viability of the MSSM plus min- 
imal SUGRA, we describe its dynamics for Ng = 4 be- 
fore turning to predictions for the SUSY sparticle spec- 
tra, and experimental constraints from direct particle 
searches and EW precision measurements. Npt surpris- 
ingly, we find that in a four-family scenario the addi- 
tional large Yukava couplings also feed into the running 
of the Higgs field squared masses, and modify the run- 
ning significantly. To indicate the way in which radiative 
breaking occurs in the four-family case, it is convenient 
to present the discussion at tree level. A tree-level dis- 
cussion is adequate for general understanding, and is a 
good approximation so long as the tree-level minima obey 
all of the necessary stability and consistency constraints 
[22]. However, we emphasize that our full numerical cal- 
culations are actually performed by minimizing the full 
scalar potential at one loop. 

Figures 5(a) and 5(b) illustrate how radiative break- 
ing occurs in the tree-level approximation in one specific 
four-family case. We take mt = 165 GeV, tan/3 = 1.5, 
mts = 100 GeV, mb, = 100 GeV, and rn+ = rn,, = 50 
GeV. As outlined in the introduction, we specify our soft- 
SUSY-breaking parameter boundary conditions in terms 
of &, z n~~frn~,~, [a = Afmlp and n~~,~. For this 
illustration we have adopted the string-motivated dila- 
ton boundary condition scenario specified by (0 = I/&, 
[a = -1. In the plots, rn&,, rn&> are the Higgs 
mass-squared parameters appearing in the soft-SUSY- 
breaking potential (at Mu they are equal to rn:), while 

mf,z = , rn& 1 +$ are the parameters multiplying the H,” 

FIG. 5. In (a) we illustrate the evolution of the 
soft-SUSY-breaking scalar mass-squared parameters rn&, and 
rn& as well as the value of ]@I. In (b) we show the evo- 
lution of the coefficients rn?, rn:, and rn; of the H,a, Hz”, 
and 2HlHz scalar field potential terms, as well as that of 
SS mfm; - rn;. We have taken <a = l/&i', (,, = -1, 

T,L,/~ = 400 GeV, tanp = 1.5, rnbr = 100 GeV, rnsr = 100 
GeV, and rn,, = rn,, = 50 GeV. AU masses are given in units 

of m,,a. 
and Hi quadratic scalar field terms in the fill scalar field 
potential; as defined earlier, rn: is the coefficient of the 
HIH, mixing term in the scalar field potential. In Fig. 5, 
we see that the rn&<, start out above zero at Q = Mu, 
and then evolve below Mu so that both eventually take 
on negative values (but with mb being the more nega- 
tive). The fi parameter is determined at the weak scale 
by minimization of the RGE-improved tree-level Higgs 
potential, and is then evolved up to Mu. The fact that 
p2(mz) > ‘0 for the chosen value of tano and the given 
value of rnz indicates that an allowed four-family EW 
symmetry-breaking solution via the radiative breaking 
mechanism e%ts. 

However, some differences in comparison to Ng = 3 are 
apparent. Even for the small tanp = 1.5 value, rn&, has 
significant evolution due to the large Xar and X,8 Yukawa 
couplings. In the standard three-family case, rn& only 
evolves significantly when tanp is so large as to require 
a large value for Xb. In Fig. 5(b), one can see that al- 
though the scalar potential parameters mf, rn;, and rni 
each evolves separately and ends with a value that is > 0, 
in combination they serve to trigger the breaking of the 
EW symmetry, measured by the tree-level stability con- 
dition S = rnfm: - rn:. It is of course possible for the 
mechanism to fail, i.e., if $ < 0. This can happen in the 
case where rn& is too large compared to M&. 

IV. THE NB = 4 HIGGS SECTOR 

We begin’ by reminding the reader that at tree level 
the Higgs sector is determihed by just two parameters, 
tan/3 and Mao (the mass of the CP-odd scalar Higgs 
boson), and that if Mao is large (as we shall see it is 
in all the SUGRA models considered) then the lightest 
CP-even Higgs boson ho is very SM-like and has mass 
bounded from above by mz. However, it is well known 
that one-loop radiative corrections to m~,o can signifi- 
cantly increase the upper limit of mho (denoted mzax) 
for the large mt value found in the CDF and DO exper- 
iments. Exactly how large the upper bound is depends 
upon other SUSY parameters, the most important sensi- 
tivity being to the stop squark mass, rnc In the absence 
of a fourth generation, if the running masses are rni = 1 
TeV and rnt = 165 GeV, then mho can be as large as 
120-125 GeV at large tano. However, in many SUGRA 
models (for example the dilaton scenario) mo and, con- 
sequently, rni are significantly smaller than 1 TeV for mg 
values below 1 TeV. In such models myOnx is typically . 
5 100 GeV. 

The magnitude of Mao determines the observability of 
the A” and H” Higgs bosons, which are more or less de- 
generate when TAO is large. For example, e+e- colliders 

‘An excellent brief overview of Higgs phenomenology and 
discovery techniques is now available in the Hiees suberouo 
summary appear&g in [23]. A longer version of this r&v 
will soon be available [24]. References for statements not ex- 
plicitly referenced below can be found in these reports. 
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can only probe up to mA0 - rn~o - &/2 - 30 GeV 
in the 2’ + H’A” mode (the only viable mode when 
ho is SM-lie). For Ns = 3, SUGRA model predictions 
for rn.,,0 can range from 200 GeV on up, and an e+e- 
collider with fi = 500 GeV would at least have a small 
chance of seeing H” +A0 production. The parameter p is 
also of interest in that its origin in the SUGRA models is 
rather uncertain. For Ns = 3, ~1 tends td take on rather 
moderate values - 500 GeV [16]. We now discuss the 
influence of a fourth generation. 

First, we note that a fourth family will give an addi- 
tional set of r’, i’, Y’, 17, b’, i?, and t’, 2’ loop contributions 
to the radiative corrections for rnTom. (As noted earlier, 
as a consequence of the many loop corrections for Ng = 4 
it is essential that the one-loop effective potential be used 
in the scalar potential minimization as well as in the de- 
termination of the Higgs masses.) A fourth family will 
also typically lead to a rather high mg scale, as discussed 
in the following sections; this will in turn inftuence ATLAS
and p, which will often take on relatively large values. 

Typical results for /I, mA0 , and mho tire illustrated in 
Fig. 6, where we display contours of constant /I, ~ILAO,
and mho in mt,, mb’ parameter space for mt(mt) = 165 
GeV, tanp = 1.5 and m,lz = 600 GeV in the dilaton sce- 

nario: (0 = l/d, [a = -1. We see that p is generally 
above 1 TeV, a substantial increase over the correspond- 
ing Ng = 3 dilaton scenario result; mA” is typically also 
rather large, ranging from N 600 GeV to above 1 TeV-a 
fi = 500 GeV e+e- collider would not allow detection 
of the 2’ -+ HoA pair production process. The large 
v&es of rnA0 - mA imply that one must also be cau- 
tious to account for supersymmetric decays of the A” and 
Ho. These decays can deplete the more easily observed 

FIG. 6. Contours of p, mAoI and nzho in the mesr mb’ 
parameter plane for tanp = 1.5, m&n,) = 165 GeV, and 
rn112 = 600 GeV. We give results for the Mu-scale dila- 
ton boundary conditions: to = if& (A = -1. The dia- 
monds indicate regions of parameter space disallowed because 
rn,; < rnax{45 GeV, min} at energy scale mz. 
 

 

bg’decay channel, especially given that tanP cannot be 
large for Ng = 4, implying that the Ho, A0 + bi; cm- 
pling cannot be greatly enhanced relative to the SM-like 
result. We will not attempt a detailed study of the Ho 
and A” decays here. 

The above results are not greatly altered by changing 
the Mu boundary conditions, keeping rn,,2 fixed at 600 
GeV. In the high-mo ((0 = 1) scenario, both nz,,o and 
p become somewhat (- 100 GeV) larger over most of 
the mt,, rnbr parameter space. The only exception is the 
corner where my is big and rnt, is small; in this corner 
nz~o is slightly smaller (564 GeV compared to 610 GeV) 
in the high-mo scenario than in the dilaton scenario. In 
the case of the no-scale boundary conditions, co = ca = 
0, both p and rn~o move to lower values (shifts are of 
order 50-100 GeV). For example, in the small mt,, large 
my corner one finds rnA0 N 450 GeV. 

Fortunately as regards the prospects for ho detection, 
the extra loops from the fourth family do not yield over- 
whelmingly large radiative corrections to rn$-. They 
increase mzax by 10 to 25 GeV relative to correspond- 
ing Ns = 3 predictions. As illustrated by the contours 
in Fig. 6, at worst rnroa - 130 GeV at the perturbative 
boundary in the mb,, mt, parameter space. For all the 
three Mu scenarios, m~,o remains very much in the 115- 
122 GeV range for most of allowed nz~, mt, parameter 
space, for this relatively large ml,2 = 600 GeV value. 
(Lower rnho values are predicted at lower ml/z.) The 
phenomenology of ho depends upon whether or not it 
is SM-like. For the bulk of parameter space, and cer- 
tainly for the preferred scenarios and portions of param- 
eter space, mA0 is large and the h” will be very SM-like. 
We discuss its phenomenology assuming that this is the 
case. 

Because mho is predicted to be 2 100 GeV for many 
Ng = 4 scenarios, LEP II would be less likely to find the 
h” if there is a fourth familv. However. a .fi = 500 GeV 
e+e- collider would have no difficulty ‘in c&g so in the 
2’ -i Zh” production mode. At the TeV* upgrade of the 
Fermilab Tevatron, detection of a SM-like ho is probably 
only possible in the Who + lvb6 mode, and then only if 
mho 5 95 GeV. (Although it is not impossible that the 
Who --t ~VT+T- mode could be used for 11O.c mho 5 
120 GeV 1251.) For the many four-family scen&s that 
lead to rn,+ above 100 GeV, searches for the ho at the 
Tevatron would be, at best, problematical. 

At the CERN Large Hadron Collider (LHC), a SM- 
like Higgs boson (for which we use the generic notation 
h below-the h” might or might not be perfectly SM- 
like) in the mass region being discussed would typically 
be found through production via gg + h and decay to 
either yr or ZZ’ (with ZZ’ + 41). The gg + h produc- 
tion rate, proportional to r(h --t gg) would be greatly 
enhanced by the additional t’ and b’ loop contributions 
to the one-loop gg --t h coupling. This is illustrated 
in Fig. 7 where we plot for a SM-like h the ratio of 
Ns’= 4 to 3 values for r(h + gg), r(h -i ry), and 
r(h + gg) x B(h + yr), taking tano = 1.5, mt = 165 
GeV, rnt, = ms, = 100 GeV, rn,, = rn,, = 50 GeV, and 
assuming that superpartners are sufficiently heavy that 
their contributions to these one-loop quantities are small. 
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Higgs Detection at the LHC: N,=4 vs. 3 

00 80 100 120 140 

FIG. 7. We plot the ratio of Ng = 4 to 3. values for 
r(h + gg), IYh + -r/h and r(h --t w) x B@ + r-/h 
We adopt the scenario of tanp = 1.5, mt = 165 GeV,, 
ruts = mb, = 100 GeV, rn,< = n,s = 50 GeV, and assume 
superpartners are sufficiently heavy that their contributions 
to these one-loop quantities are small. ,,j 

(As discussed in Sec. VIIA,, experimental limits tend,to 
prefer this type of scenario.) For r(h + gg), and hence 
the gg -+ h production rate, we see an enhancement by 
a factor of 10. Thus, the 41 channel, which for Ng = 3 is 
only viable for rn,, > 130 GeV, would yield a detectable 
signal down to somewhat lower masses, perhaps as low 
as rn,, = 120 GeV. [B(h + ZZ’) falls very rapidly with 
decreasing rnh so very few events would result for mh 
values much below this.] 

The h + dy decay also arises, at one loop. For Ns = 
3, the main contribution is from the W-loop diagram. 
Fermion loops (for massive fermions) cancel against the 
W-loop~contribution and decrease the h + yy width. 
For Ns = 4 this cancellation can be quite substantial, as 
illustrated in Fig. 7 [26]. Combining the resulting reduc- 
tion in B(h + 77) with the enhanced gg --t h production 
rate, the resulting yy channel event rate tends to be sub- 
stantially suppressed relative to ,the Ng = 3 rate in the 
loo-130 GeV mass range of interest. In fact, the pre- 
ferred mtr, mb,, rn+ mass choices delineated above are 
about the worst that can be made in this regard. Thus, 
detection of the ho in the yy channel at the LHC be- 
comes problematical, even when rn~o is large and the ho 
is SM-like. 

Not investigated to date is whether the enhanced pro- 
duction rate from gg + h might make detection of a 
SM-like ho in the inclusive bi; channel possible (assuming 
high b-tagging efficiency and purity). Finally, we note 
that the extra family has essentially no impact on the 
pp + tEh” + lbbbbX LHC detection mode, which would 
continue to be viable for rn,,” 5 120 GeV, when the h” is 
SM-like [23]. 
Regarding the heavier A” and Ho; for our typical sce- 
nario they are, so massive that perhaps the only acceler- 
ator with adequate energy for th&production and pas: 
sible detection will be the LHC. At the LHC, for Ng = 3 
the ,detection of a massive ,A” or Ho is possible only if 
tanp is so large (e.g., > lo), that the gg + b6H” and, 
gg + b6A” production rates significantly exceed the in- 
clusive gg + Ho,, A0 rates [23,24]1 However, for Ng F 4 
the b’ and t’ loop contributions togg + A” and gg -vH’ 
will greatly increase these inclusive ~production rates, re- 
gardless of the tano +alue. The possibility of observing 
the Ho and A0 at the LHC in the inclusive b6 final state 
assuming such highly enhanced r&s should be carefully 
examined. 

.As a final aside, we note that the standard relation [27] 

valid for tano < 20 if Ng = 3, is not .necessarily main-’ 
tained for Ns = 4 since there will be corrections involving 
the Xa,, X,, , Xb Yukawas (where Xb can essentially be ne- 
glected). In Fig. 6, for rn&,, ms, large, e.g., mt, = mb! = 
100 GeV, the relation is satisfied to within 3%; how&r, : 
for my N 114 GeV, rnt, = 55 GeV, the relation is se- 
riously violated: (m~,sin2p)/(m~ + $) N 0.25. This 
latter situation is realized in the region where mg, > mt,, 
a region that is experimentally disfavored. unless an un- 
natural quark mixing pattern exists (see [l] and Sec. VII 
for a more detailed discussion of this point). 

V. A FOURTH-GENERATION SPARTICLE 
CONSTRAINT ON THE SUSY SCALE 

We turn now to an important additional constraint on 
soft-SUSY-breaking parameters that can arise from con- 
sistency of the sparticle mass spectrum with LEP lim- 
its and a neutral LSP (lightest supersymmetric particle). 
(A charged LSP is excluded experimentally.) A glance 
at Eqs. (All)-(A19) in Appendix A shows that dtif/dt 
(where t = (l/z?r)ln[Q(GeV)]) for squarks and sleptons 
receives positive contributions from Yukawa terms and 
negative contributions from gauge terms. Thus, start- 
ing from a universal rni and evolving downwards in t to 
mz, the lightest squark or slepton will be the one with 
the largest Yukawa contributions relative to gauge con- 
tributions. This turns out to always be the i& or the i&. 
After including ik-i; mixing, the lightest i’ eigenstate is 
denoted ?;, and similarly fi’: is the lightest fi’ eigenstate. 

The fi{ can be even lighter than the ii in scenarios 
with small (0, such as the dilaton and no-scale models. 
However, we see no general phenomenological reason for 
not allowing the fi{ to be the LSP. Indeed, it is even quite 
likely that the 2: decays invisibly when rna; > rn;; via 
2: --f 0;, assuming at least a small nonzero value for 
the required 3-4 generation mixing angle. Thus; we will 
only impose a phenomenological limit on the charged ii, 

Equation (A15). shows that the Yukawa contributions 
to dmz;/dt (in Appendix. A we use 4he notation ik = E’) 
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are controlled by D+ = mg1 + rn;; + rn?; + A?.,. For 

moderate initial values, rnii = rni; + mo, the rnore 

negative rn& ,is (see Fig. 5) the larger will be m$k; rn&; 

in turn becomes more negative for larger rna,. Thus, 
for some choices of soft-SUSY-breaking tiarameters it is 
possible that rn+; will fall ‘below the 45 ‘GeV LEP limit 
and/or below the mass of the lightest +xsymmetric 
particle (the lightest neutralino, gy, in the models we 
coqsider)‘for 1oW values of mb, (but not for higher values). 

To illustrate this, we return to Fig. 6, where we have 
chosen ta@ = 1.5, mt(mt) = 165 GeV, and dilaton 
boundary conditions for the soft-SUSY-breaking param- 
eters with rnliz = 600 GeV. The diamonds indicate the 
portion of parameter space at low rna, that is ruled out 
because one predicts rni: < 45 GeV or rni; < rnty. (For 
this particular choice of mllz, rn*: N 108 GeV and it is 
the rn+; > md requir&ent that fixes the diamond re- 
gion.) By raising ml/z, tli& problem region is moved to 

lower rna! values since the starting value of rn; o( rn:,, 

for m$ is increased more rapidly than the off-diagonal 

mixing term A cc ml/z. Conversely, by lowering rnllz we 
eventually reach a~value for which no portion of param- 
eter space remains allowed. 

The,type of boundary condition applied is also impor- 
tant. For instance, for the same m,lz = 600 GeV but 
to = 1, [A = -1 (the high-mo scenario) no points with 
mr,r, rnt, > 50 GeV are eliminated by virtue of the ii con- 
straint, whereas for the no-scale choice of to = ta = 0, 
the portion of parameter space removed expands to in- 
clude slightly higher values of rnar than in the dilaton 
scenario. 

Let us further expand upon this point. From the above 
discussion we see that in the generic one-loop formula, 
mf = rni + C&,, + D;m$zos2fl, the evolution param- 

eter & for i = ik is strongly affected by indirect effects 

from X6,, due to the absence of an ae contribution to cd. 
In general, larger rna, tends to raise e~h. As we have 
discussed above, this can be traced to an increasingly 
negative contribution in the RGE for rn:& from the in- 

creasingly negative value of rn&, as rnas increases. Figure 
8 demonstrates this sensitivity of the mz-scale value of 
rn& to mg, in the case of mt, = 100 GeV, tanp = 1.5, 

rn1lz = 600 GeV with dilaton boundary conditions: as 
nu,, is lowered from rn&, = 110 GeV to rn,,, = 90 GeV, 
the mz-scale value of rngi is lowered by - 40%, with 

the lowest i’ physical eigenstate mass decreasing dra- 
matically, i?om rni; = 311 tb 189 GeV. In contrast, the 

evolution and mz-scale values of rn& and rnak are little 

affected. Note the subtlety of the In(Q) behavior of rn:;. 

III the region of small (and decreasing) In(Q) m:k rises 

due to the increasingly more negative value for m&Z as 
In(Q) decreases (see Fig. 5). Since this rise is less for 
smaller me’, for small enough rna< one can even obtain 
mik < 0, and EM will no longer be unbroken. However, 
as rnbr is. decreased one first arrives at a point where ei: 
ther, rni; < rnry and the LSP is no longer neutral, or 
rn+; < 45 GeV, violating LEP limits. We reemphasize 
that these requirements result in the strongest additional 
FIG. 8. Evolution of mGk, n&, and rn:& (in units of 

n$). We have chosen tanfl = 1.5, co = l/ti, .$a = -1, and 
rn+ = 600 GeV. Results for rn,, = 100 GeV and rn*, = 90 
GeV awcompared to those for rn<, = 100 GeV and rn*, = 110 
GeV. The corresponding mz-scale rni; values are 189 and 311 
GeV, respectively. 

RGE-related phenomenolggical constraint deriving from 
the SUGRA extension of the four-family model. 

To gain some additional insight regarding the strin- 
gency of this bqund as a function of Mu-scale boundary 
conditions, we present the right-hand boundaries, anal- 
ogous to that of the diamond region shown in Fig. 6, 
for a selection of different possibilities in Fig. 9. The 
right-hand window shows results for the dilaton case of 
(&, ta) = (l/A, -1) for ml/z = 900,600,300, 250 GeV. 
Very little of the Yukawa-allowed parameter space sur- 
vives for the lowest choice. In the left-hand window we 

FIG. 9. We display the ii constraint boundaries for a 
variety of Mu-scale scenarios. Regions to the left of the 
boundaries are disallowed. We have taken mt = 165 GeV, 
rn,, = rn,, = 50 GeV, and tan/3 = 1.5. 
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fix mllz = 400 GeV and vary (to,&). For the no-scale 
choice of (0,O) very little of parameter space yields an 
acceptable i;. 

Of course, the rni; > rnax{ GeV,rn*~} constraint 

is significant even if we adopt a large (but allowed) 
value of mb’ and do not employ a specific scenario for 
.$o and <a. This is illustrated in Fig. 10. There, we 
take [m(m) masses] mt = 165 GeV, rnt, = mb* = 100 

GeV, n+ = rn,, = 50 GeV, and tanp = 1.5 (for these 
mass choices, solutions are only allowed for ta@ val- 
ues very near 1.5) and plot the smallest possible value 
for &, = mofmllz that is allowed as a function of 
mllz after scanning over ,$a in the range l-3,+3]. A 
very important generic feature emerges from the steep 
rise of the minimum & value as mllz decreases: for 

we* mr, rn*, , rn,, , TlI” , there is a definite lower bound 
on mllz (for reasonable values of co) arising from the 
rn+; > ma{45 GeV, mn:} constraint. For the t’ and 

b’ masses considered, this bound is ,m,lz 2 140 GeV. 
If we recall that mg N [cr~(mz)/cl&n+, and that 
as(mz)/au N 1.4, we see that this mg bound translates 
into a significant lower bound of mg 2 200 GeV deriving 
purely from limits on the fourth-generation i; mass. This 
type of constraint does not arise in the iVg = 3 MSSM. 

The ultimate lower bound on rnllz (along with the cor- 
responding lower bound on me) is actually quite indepen- 
dent of my. For instance, if rna, is lowered to 50 GeV, 
keeping mt and mt* fixed, at &, = 5 the lowest allowed 

value of mllz decreases by only about 5 GeV compared 
to the ms* = 100 GeV value of - 140 GeV illustrated in 
Fig. 10. This is because, at the ultimate lower bound, 

mo is very large and the mg1 term in D+ (see above) is 

swamped by the m:k and m$ terms which start off of 

order rni and remain large. 

Minimum co for Allowed Solution 
5 
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FIG. 10. We plot the minimum value of & that is allowed 
by the constraint rn+; > rnax{ GeV, rn*;} for a given value 
of mllz after scanning over alI possible values of A, assum- 
ing running masses mt = 165 GeV, rn,, = rn,, = 50 GeV, 
mb, = mt, = 100 GeV, and tanp = 1.5. 
We reemphasize the fact that in a specific SUGRA 
scenario with a fixed value of Fe (and of ta) the lower 
bound on mllz (and rna) can be much larger than the 
high-& ultimate lower bound if &J is small, as is illus- 

trated in Fig. 10. (Of course, whatever the lower bound 
on m,j(ma), mg(pole) will be roughly 5-6 % higher.) We 
also note that at fixed (0 there is some dependence of the 
lower bound on m1,2 upon the value of [a. This depen- 
dence is extremely weak at high to, where [a values in 
the entire [-3, +3] range generally give an allowed solu- 
tion for the lowest acceptable rnllz value. But for lower 
& values, the lower bound on mllz is generally achieved 
only for [a values near 0. (In fact, the appropriate & 
range more or less scales with the magnitude of &,.) 

Perhaps one other plot is useful in fully understanding 
the i: constraint. In Fig. 11 we consider various quan- 
tities as a function of [a (ranging from ‘-3 to f3) for 
fixed values of &, in the range from 0 to 5. In all cases 

we take rna, (ma,) = rnt, (mt,) = 100 GeV (corresponding 
to pole masses of approximately 105 GeV). For each to, 
.$a choice, we determine the minimum value of mllz (the 
scan being confined to the region rnllz < 10 TeV) that 
is consistent with the ii constraint. We plot the (mini- 
mum) value of rna corresponding to this minimum 
value of mllz. [For later phenomenological use, we also 
plot the corresponding rnho and mb.(pole) - rnho - rna 
values.] For curves of limited extent in ta, the termi- 
nation point(s) define the range beyond which consistent 

solutions are not found with mtjz 5 10 TeV. The in- 
consistencies that arise at large [a are of two types: (i) 
that the EWSB solution requires mf < 0; and/or (ii) 

FIG. 11. We plot the minimum possible value of 

TA%)> and the corresponding values of n+,o and 
m*,(pole) - mh0 - ms, as a function of .$a for a series 
of .$ values: to = 0 (solid), co = 0.5 (long dashes), 
&, = 1 (dots), .$o = 2 (dot-dash), to = 3 (short dashes), 
ca = 5 (dash-dot-dot). We have taken m,(w) = 165 GeV, 
mb,(mb,) = m,z(m,,) 4 100 GeV (corresponding to pole 
masses of approximately 175 and 105 GeV). The minimum 
rna is that allowed by the ii constraint for a given to, &a 
choice. The corresponding tanp value is either 1.5 or 1.6 in 
all cases. At each to and ta value, all values of nl,z < 10 TeV 
were scanned. Curves terminate when no consistent solution 
is found. 
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that a fourth-family sparticle with color or charge must 
have rn’ < 0, thereby breaking the color and/or U(1) 
electromagnetic symmetries. 

This plot defines precisely the minimum mg value that 
one can have for a given to, [a boundary condition 
choice. Once again we see an absolute lower limit of 
order mu 2 200 GeV for our choice of rnas, mts; the 
value of tan@ for which the minimum my value is reached 
is always in the range 1.5-1.6. Note that for low to, the 
allowed solution range for <A is limited, and that the 
minimum ms achievable increases substantially when ta 
is not near 0. 

VI. THE SPARTICLE SPECTRUM 

We shall find in Sec. VII that the first evidence for 
a fourth family is very likely to be discovery of the b’, 
t’, T’, and/or u’ at LEP-II and/or the Tevatron. If one 
or more of these fourth-family members are found, the 
immediate question will be how this impacts the super- 
symmetric particle sp&rum, especially in the standard 
renormalization-group-equation (RGE) context. It is this 
latter issue that we address in this section. First, we 
highlight the main features of the sparticle spectrum in a 
four-family scenario, and compare the results to those ob- 
tained in the three-family case. As previewed in Sec. IV, 
we find that it is more than likely that some of the fourth- 
generation squarks and/or sleptons will be lighter than 
their counterparts iri the first three generations, with 
the ii most probably being the lightest. However, test- 
ing consistency of their masses with unification and the 
RGE’s is likely to be challenging given the possibly large 
A-term induced mixing, and the probability that they 
will have strange decay patterns and be tricky to ob- 
serve. Thus, we will focus primarily on gaugino masses 
and on the masses of the sleptons and squarks of the first 
two generations, focusing on when and how correlations 
among these masses will be indirectly sensitive to the 
presence of a fourth generation through the RGE’s. Cer- 
tain relationships between masses are rather insensitive 
to whether Ng = 4 or 3, and thus provide a test of the 
general RGE context and universality of boundary con- 
ditions, while other mass correlations are very different 
depending upon the value of Ng. These latter relation- 
ships with strong Ns dependence would provide indirect 
evidence for the presence of a fourth generation, even if 
no particle or sparticle belonging to the fourth generation 
is directly observed. 

We first present some sample mass spectra, then dis- 
cuss maas sum rules and relations, and finally focus on 
a specific correlation between the first-family slepton 
masses and the LSP mass that could reveal the presence 
of a fourth generation. 

A. Sample mass spectra 

For our illustrations we shall adopt /I > 0, mt, = ma, = 
100 GeV, and rn,, = rn,, = 50 GeV. We scan over the 
allowed tan@ values at any given choice for mG(mc) and 
Lightest 7’ Spectra: N,=4 

0.5 7 

(L-1) (l/a-l) (0.0) (FoA) 

0.1 ’ ’ ’ 1 ’ 1 
200 400 mo 800 1 

rn,-(GeV) 

0, 

FIG. 12. Mass spectra for the i; for the three standard 
(.$,Ea) choices. At the lower values of rn6 the spectrum ter- 
minates either because rni; falls below 45 GeV (high-mo sce- 
nario), or because rn+; < mn! (dilaton and no-scale scenar- 
ios). We have scanned in tan& fixing m,(m,) = 165 GeV, 
rn,, = rn,, = 50 GeV, and rn,, = m6, = 100 GeV. 

plot mass spectra in units of mg(me). Three Mu bound- 
ary conditions will be considered: (1) the dilaton sce- 
nario, with [a = A/q,2 = -1, &, = mofmllz = l/&; 
(2) the no-scale scenario, with <a = &, = 0; and (3) 
the high-mo scenario, with [a = -1, to = 1. We begin 
by focusing on the spectrum for the ii for these three 
models. 

In Fig. 12, we.plot the rn+ spectra obtained by scan- 
ning over allowed tano values at various rn5 values. The 
lower limit on rn+; is fixed by rni; > 45 GeV in the case of 
the high-mo scenario, and by rni; > rn%! in the no-scale 
and dilaton models. The dramatic decrease of rni; as 
mg decreases, discussed in Sec. V, is evident. Of course, 
at high my values, the value of rni; is given roughly by 

rn& - rn; + CF{ m$, rn (to + C+;)m$ which is larger for 

larger values of .$o. 
Let us now turn to the typical mass spectra for all the 

other supersymmetric particles. We begin with results 
for dilaton boundary conditions: Figure 13 shows our 
results. These can be compared to the Ng = 3 results 
from [5] for this same boundary condition choice.” 

‘In making comparisons, it is necessary to note that for 
No = 3 the value of o(a = 0.12 was employed in [5], as com- 
pared to a3 - 0.128 or so for our full two-loop four-generation 
treatment here. Since MI : Ms : MS - al : aa : aa (all at 
mz), mip, rn.+ mi: masses at a given me in [5] for Ns = 3 

are approximately 0.94 N 0.12/0.128 times those appearing 
in Fig. 13. 
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rn,-(GeV) 

FIG. 13. Mass spectra for dilaton boundary condi- 
tions. Masses are given in units of rn,+. We have taken 
rn,, = rn,, = 50 GeV, rn,, = mb, = 100 GeV, p > 0, and 
scanned in tan& 

The first big difference between the Ng = 4 and 3 
cases is the much larger lower bound on rni in the former 
case. As discussed previously, this reflects the rni; > 
rnax{ GeV, mn:} requirement that is violated for low 
mg values. A less dramatic difference is that the allowed 
range of tanp is smaller for Ng = 4, and thus the value of 
rna almost completely fixes the chargino and neutralino 
masses, whereas for Ng = 3 there is some scatter. The 
limitation of tanp to low values for Ns = 4 also means 
that (unlike for Ng = 3) the il remains almost degenerate 

with the ix’s of the first two families; thus, a separate 
plot for the 71 is not given in our figures. At a given rna, 
the most significant Ns = 4 vs Ns = 3 difference is the 
much larger masses for the sqwks and sleptons of the 
fist three generations. Finally, there is the simple fact 
that fourth-generation squawks and sleptons are present 
for NB = 4. We have already noted that i; and fi; tend 
to be the lightest of the sleptons. From Fig. 13 we see 
that the lightest squawk is very likely to be the 2%. This 
is a rather general result. 

As already hinted and more directly demonstrated in 
the next subsection, the large squawk and slepton masses 
for the first three generation members can be directly 
traced to the much larger value of a(&) for Ng = 4. 

The basic idea is that mf = rn; + &im$, + D&.cosZ@, 

where i indicates the squawk or slepton i? question and 
mllz = m+r(M~)/a~(m~). Since the Ci are not ter- 
ribly different in the three: and four-generation cases, 
the much larger a(Mu) in the Ng = 4 case greatly in- 
creases the squark or slepton mass at given mi. Com- 
bining this effect with the higher lower bound for mg in 
the Ng = 4 vs Ns = 3 case results in a large increase in 
the lower bounds on squarks and slepton masses in going 
to Ng = 4. For example, mi‘, ms, mi, > 250, 240, 200 
GeV compared to mi‘, mo? miR 2 110, 52, 45 GeV in 
the Ng = 4 and 3 cases, respectively. The high lower 
bound values in the Ng = 4 case place these sleptons 
from the first two families beyond ‘the reach of LEP-II 
and almost beyond the reach of a fi = 500 GeV Next 
Linear Collider (NLC). We shall see that the large squark 
and slepton masses relative to gaugino masses might well 
provide the most compelling indirect indication for the 

presence of four generations that one can obtain using 
only particles and sparticles belonging to the first three 
generations. 

In Fig. 14 we give the corresponding results assuming 
no-scale boundary conditions: Ea = (0 = 0. The first 
noteworthy point is the much higher lower bound on mg 
that arises in the no-scale case, as compared to dilaton 
boundary conditions, when Ng = 4. Because of the zero 
value of rn,, at Mu, the slepton masses are smaller than 
for dilaton boundary conditions, and, in particular, rn+; 
is more easily driven to too low a value. In addition, 
for the lower mg values allowed by the rni; > rna! con- 

straint, the fi: can be the LSP; it is bften very substan- 

tially lighter than the 2:. However, the in and ~7 masses 
for the first two families are still much bigger than fcund 
in the comparison results for Ns = 3, see [5]. The 1~ is 

significantly lighter than the LL in the no-scale scenario 
(whatever Ns) because the associated soft-mass-squared 
evolution is fed only by the U(1) gaugino mass terms, 
and moves to positive values (starting at Mu from 0 for 
(0 = 0) much more slowly than the soft-mass-squared 

that contributes to the [L and ij masses, which is fed by 
SU(2) as well as U(1) gaugino mass terms (see Sec. VIB). 
Squark masses remain very similar to the dilaton scenario 

No-Scale Mass Spectra: NE=4 

FIG. 14. Mass spectra for no-scale boundary conditions. 
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FIG. 15. Mass spectra for the large mo boundary condition 
case. 

results due to the fact that the & terms dominate the mo 
terms for strongly interacting sparticles. As in the dila- 
ton case, the large squark and slepton masses relative to 
mg provide a signal for Ns = 4. Again there is z+ large 
difference between Ng = 4 and 3 in the lower bounds so 
crucial for LEP and NLC phenomenology. For example, 
mli, ~~53 rni,, 2 265, 260, 150 GeV compared to mi‘, 
TTIC, min > 110, 60, 70 GeV fOr Ng = 4 and 3, JXspK- 

tively. Thus, for Ns = 4 only the ?B would be within the 
kinematical reach of a ,/Z = 500 GeV NLC. 

In Fig. 15 we give results assuming the high-m,, bound- 
ary condition case: & = -<A = 1. Here, the ii con- 
straint is more easily satisfied and mg can take on lower 
values. Even at the lowest allowed mg values, the fi; is 
heavier than the ii (see Fig. IZ), which in turn is required 
to be he&er than the LSP; in fact, even at low mg the 
fi: (but not the ii) is heavier than the 2:. Squarks and 
sleptons receive a significant fraction of their mass from 
the large mo value, and are thus more similar in mass. 
However, the & contributions are still very important, 
and squark and slepton masses for members of the first 
two families continue to be much larger for Ng = 4 than 
for Ng = 3. To repeat our previous sample comparisons, 
rni‘, rn:, rnin > 245, 240,220 GeV for Ns = 4 compared 
to rni,, rn;, rnin 2 120, 89, 107 GeV for Ng = 3. 

B. Sum rule and spartick spectrum tests for No = 3 

vs Ns = 4 

In the models considered here, having universal soft- 
SUSY-breaking scalar mass rn,,, there are many sum rules 
relating the gaugino, squark, and slepton masses. Here, 
we survey the impact of a fourth family on the masses 
and mass sum rules for the gauginos and for the squarks 
.~~.~~.~~. 
,,,,,,,, 111111111111(1111(1111111111 111111111111llll 
!!i::::::::::::::::::::::::::::::::::::::::.. 

,,,,,,,~~~~~~~~~~~~~~~~ . 

and sleptons belonging to the first two families 1281; we 
also point out several differences between the sum rules 
that relate only fourth-family masses and those that in- 
.volve only the third-family masses. Generally speaking, 
because of the large mixing5 that can be present in both 
third- and fourth-generation squark and slepton mass 
matrices, the most precise tests of the consistency of RGE 
evolution and grand unification with sparticle mass spec- 
tra may be those employing first- and second-generation 
members, for which the mass matrices are very nearly 
diagonal. 

To proceed, we must first discuss gaugino masses in 
more detail. We employ the notation k = 1, 2, 3 for the 
U(l), SU(2), and SU(3) groups; g&(t) are the associated 
running coupling constants; and Mk(t) are the associated 
running gaugino masses, where t = (1/2?r)ln[Q(GeV)]- 
tu denotes t at Q = Mu, tz denotes t Bt Q = mz, and so 
forth. If the gaugino masses do indeed take a universal 
value mllz at Mu then at one loop we have the standard 
relations 

see Eqs. (A28)-(A31) in Appendix A. For an approxi- 
mate idea of the numerics for Ns = 4 as compared to 
Ng = 3, we take a;,(mz) = 128, sinz8w = 0.2316, and 
a&nz) = 0.132 at t = tz and a(tv) = 0.0917 (0.043) 
for Ns = 4 (Ng = 3). This gives 

These results are slightly modified when two-loop 
Yukawa contributions to the running of the gauge cou- 
plings are incorporated. One finds coefficients for Ns = 4 
of roughly 0.194, 0.386, and 1.47 for k = 1, 2, and 3, re- 
spectively. The main effect derives from the simple fact 
that cx(tu) decreases so that the ai(tz)/a(tu) ratios in- 
crease. For example, for mt, = mb* = 100 GeV, a(tu) is 
shifted down by about 5% to about 0.0874. This results 
in an increase of the Ns = 4, k = 1, 2 coefficients in 
Eq. (2) by about 5%; for k = 3, a&) also decreases (to 
about 0.1288) and the net Eq. (2) coefficient increase is 
only about 2%. 

We also recall that simple asymptotic results for the 
low-energy masses of the gauginos 22 and j$ arise if 
rnw < 11~1 Z’C Mzl (but not if mw - 11~1 i&l). These 
results are summarized in the chargino mass fortiulas and 
neutralino masti formulas given in Eqs. (36) and (37) (for 
charginos) and (40)-(43) (for neutralinos) of [29]. (See 
also Eqs. (5.3) and (6.8) of [28].) An example of such 
asymptotic results are the large p relations rni: - M1 
and mx: - rna; N Mz, where Ml,2 are evaluated at 

energy scales of order rnz. As seen from Figs. 13-15, the 
above approximate mass formulas work reasonably well, 
but not perfectly, at large rn~. For instance, at high ms 
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one finds mip/m.j e+ 0.135 compared to Ml/M3 N 0.131 

(with rntv = mg, = 100 GeV two-loop effects included in 
the gauge running). 

One of the first priorities of a next linear e+e- col- 
lider (NLC) and the LHC will be to test the Mu-scale 
universality assumption for the Mi’s. At the NLC it is 
estimated that mx:, mn:, and mn2 can be measured to 

within a few GeV [30]. This will allow a pretty good 
determination of M~(t”)/Mz(tu). The optimal situa- 
tion arises if p is large, as is essentially always the case 
in three-generation models, and very often the case in 
the four-generation models. Then, as summarized above 
(and making the approximation that mg! and mn: are 

of order mz) mrP N MI&) and mi: - rna; - M&z) 
and we have the more general result 

_ 4tz) %P Ml(b) = a&z) Ml(b) 
K(b) m(tz) M&z) “l(b) mg 

(3) 

(For greater accuracy, one will wish to include the two- 
loop corrections to this relation when actually performing 
this test.) Our ability to test the universality for i = 3 
will piobably be much more limited. At the LHC, my 
is unlikely to be measured to better than 50-100 GeV. 
Further, due to the small fl function at one loop for i = 3 
in the case of four generations, two-loop corrections to 
the running of ag can be significant, and these depend at 
least somewhat upon other model parameters. Nonethe- 
less, it should be possible to extract a &(20-30) % value 
for Mz(Mu)/Mz(Mu). The determination of the Mg(tu) 
is crucial, not only as a test of universality, but also in 
making predictions for the squawk and slepton masses and 
testing mo universality. 

But before turning to squarks and sleptons we must 
make a few more comments on the gaugino sector. First, 
the universality test will not have any significant sensitiv- 
ity to Ns = 4 vs Ng = 3. Second, although the absolute 
mass scales are sensitive to the limits on mllz discussed 
earlier that keep mllz from being as small for Ng = 4 as 
it can be for Ng = 3, it is difficult to use the absolute 
mass scale for a reliable probe of the value of Ns since 
Ng = 3 models with Nb = 4, type mg values are certainly 
entirely viable. Sum rules such as 

ma:m2: = IMzp - m&sX!flI, (4) 

following from the determinant of the mass matrix, are 
sensitive to the Ns = 4 restriction 1 5 tanp < 3 if M,p N 
rn&. But such small values are not the norm, and to use 
this particular sum rule we must detect both 2: and 2;. 
Thus, we must include squark and slepton masses in our 
considerations in order to gain sensitivity to Ng. 

We shall see below that the squark and slepton masses 
at one loop are determined by the mo soft scalar mass 
(or masses should the mo values not be universal), by p 
and by the functions 

tu 
h&W:(t) (5) 
If one-loop evolution is used, then the integrals can be 
analytically carried out to give 

with bk = with bk = (6) 

where the bk are the one-loop p function coefficients for where the bk are the one-loop p function coefficients for 
the gauge couplings: dak/dt = -bka:. If we input the the gauge couplings: dak/dt = -bka:. If we input the 
relations of Eq. (l), then (at one loop) we find relations of Eq. (l), then (at one loop) we find 

(7) 

However, for four generations, one-loop evolution for LYQ 
is generally not an adequate approximation when cal- 
culating C,; the evolution of 013 is sensitive to two-loop 
terms, due to the small value of bs, and 013 appears to the 
third power in the expression for Cs in Eq. (5). The val- 
ues of Ck for Ns = 4, computed numerically with full two- 
loop evolution for the couplings, are compared to those 
for Ng = 3 in Table I at scales mz and 1 TeV. For the 
Ng = 4 computations we adopted rn*, = mb, = 90 GeV, 
rn,, = rn,, = 50 GeV, and tan@ = 1.5. Results are fairly 
insensitive to these choices. In the case of Ng = 4, the re- 
sults for Ck would have been roughly 20% bigger had we 
neglected two-loop Yukawa terms in as, which keep a3 
somewhat smaller (as described earlier) than otherwise. 

We see a useful feature of the Ng = 4 results in Ta- 
ble I: the Ck(t) are much more independent of the low- 
energy scale choice than in the Ns = 3 case. This can, be 
understood from Eq. (7). If we make a change in ak(t), 
then one can easily compute that 

AG(t) 2Aa&)w$)cWo) 
rn- b3t)P(tv) - 11 (8) 

First, consider k = 1,2. Referring back to Fig. 1, we 
see that to a reasonable approximation Acu~,~ for Ng = 3 

TABLE I. We tabulate the Ck values for Ng = 4 and 3 at 
the mz and 1 TeV energy scales. For Ns = 4, we employ 
rn,, = ms, = 90 GeV, rn+ = rn,, = 50 GeV, and tanp = 1.5. 

Ck(tz) Ck(tl TC) ck(tz) c!4t1 TCV) 
k Np = 4 Ng = 4 Ng = 3 Ng = 3 

1 0.131 0.130 0.151 0.148 
2 0.376 0.371 0.484 0.459 
3 4.59 4.06 7.30 5.40 
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and 4 are very similar in magnitude in going from rnz to 
1 TeV. Also from Fig. 1, we see that for k = 1,2 the de- 
nominator of Eq. (8) is very substantially smaller, while 
ak(mz)/a(tu) is much larger, for Ng = 3 compared to 
Ng = 4. In combination, these two effects lead to neg- 
ligible change in Cl,2 in going from mz to 1 TeV when 
Ng = 4, compared to a modest change for Ns = 3. For 
k = 3, the denominator is somewhat larger for Ns = 3 
than Ng = 4, but the numerator is very much smaller 
for Ns = 4, due not only to the decrease of a(~,-~ by a 
factor of - 4, but also because Aas (in going from rnz to 
1 TeV) is very much smaller for Ns = 4 than for Ng = 3 
(see Fig. 1). A substantial change in C’s for Ns = 3 is 
turned into a small change in the Ns = 4 case. This is 
amusing in its own right, but is particularly important 
for squawk masses in that the small scale sensitivity of 
Cs means the exact low-energy scale down to which we 
evolve will have a weak impact upon the squark masses. 
In the case of Ng = 3, when determining the running 
mass of a heavy squawk, it is crucial to evaluate Cs at 
the squark mass scale; for a heavy squark C&) can 
be very substantially SI+&X than the mz-scale value as 
seen in Table I. In contrast, even for Ng = 3, C,,, are 
much less sensitive to a change in scale. 

Let us now return to the squark and slepton masses. 
The primary sensitivity of these masses to Ng is through 
the Ck and the Ng = 4 constraints on mo and rn+. To 
see this let us recall that, in terms of the Ck, one finds 

rn; = rn; + C,mf,, + Dgn-&os2~, 

where 

The f;~ and DiAare tabulated in Table II, as are tz-scale 
values for the Cc, for both Ng = 3 and 4; in evaluating 

the 64’s we have employed full two-loop evolution for all 
of the ak’s in determining the Ck’s, as noted earlier. Also 
noted above is the fact that, for Ng = 4, employing the 

mz-scale values for the & should be a reasonably good 
approximation, even in the case of heavy squarks, due 

TABLE II. We tabulate the f;r and Di values for squarks 
and sleptons. Also given are the ns-scale & values for both 
Ns = 3 and 4. For Ng = 4, we employ rn,, = mb, = 100 GeV, 
rn,, = rn,, = 50 GeV, and tanp = 1.5. We use the notation 
5w E sin’8w. 

fik Di 6i (Np = 4) & (N, = 3) 
i\k 1 2 3 

fi ‘10 ?. 2 0.41 0.52 

ill i 00 -WV 0.13 0.15 

lr. 1 0 0.41 0.52 

JR 
a -;+XW 
1 
% 

0 1 +w 4.43 7.32 

CR 
i 

01 &v 4.48 7.37 

2‘ 1 1 -; + $xw 4.80 7.79 
+iL $ 1 1 $ - $z, 4.80 7.79 
to the modest sensitivity of the Cb coefficients to the 
energy scale. Of course, we must keep in mind that the 
numbers given above have presumed the universal value 
M; = mlp at Mu. Clearly, if the MC do not have a 
common Mu-scale value, one would have to redo all the 
computations. 

What about the value of fl= tan-‘vz/vl? Whether or 
not the slepton and squark Massey are measurably sen- 
sitive to p depends upon the relative size of the rn; and 

&fp terms compared to m’$s2P. Certainly it would 

be nice to have sensitivity, since then it could be deter- 
mined if tan/3 falls in the 1 < tano 5 3 domain required if 
Ng = 4. There are two mass-squared differences that, in 
principle, allow a direct determination of cos2fi indepen- 
dent of whether the mo’s are universal and indep:ndent 
of any knowledge of the numerical values of the Ci: 

mfL-,;=m2- dc -rn;, = -cos2pm;(l-zw), (10) 

where we employ the notation zw q si&‘w. (Note that 
since tanp 2 1, cosaP is always negative and these mass 
differences are positive.) For such differences to be sen- 
sitive to cos2p at just the lu level, one must be able to 
measure a typical ?iz to accuracy AljL/ljL < m&y/2riz2. 
For masses of 100, 250, 500, 1000 GeV, this means 
Alill& < 32, 5, 1.3, 0.32 %; clearly the last two accura- 
cies are at a very difficult level even for an e+e- or p+p- 
collider of adequate energy. Determination of cos2p at 
the 3u level of accuracy would require factor of 3 smaller 
errors than those listed above. To be more precise regard- 
ing the possibilities for measuring the mass differences in 
Eq. (lo), we outline some relevant issues and possible 
techniques in Appendix B. 

The conclusion from Appendix B is that it will be dif- 
ficult to measure mI= and mu to much better than about 
5% accuracy. [Since the mass scales for rn~‘ and rn<‘ 
are even larger than for the sleptons, and errors in the 
determination of their mawes will be larger also (see Ap 
pendix B), it seems clear that it is the slepton sector 
upon which we should focus.] Given the 5% accuracy es- 
timate for mI and nz~ determination and comparing to 
the criteria &the previous paragraph, we conclude that 
a direct determination of cos2p will be problematical, 
especially if the slepton mass scales are as large as pre- 
dicted for Ng = 4. The ability to determine tanp could 
be even worse if tanp is large, since cos2p varies slowly 
with 0 once p approaches lr/2. Of course, for Ng = 4 
it is true that tanp is in the 1 5 tanp 5 3 range where 
our ability to extract tan@ from a cosap measurement 
would be maximal. Nonetheless, for the moment we must 
conclude that experimental determination of cosap and 
thence tan@ will be difficult unless the slepton masses 
are well below 200 GeV, as is possible only if Ng = 3. Of 
course, further study is undoubtedly warranted and could 
reverse this conclusion. Fortunately, the uncertainty in 
cos2p is not the limiting factor in our ability to test the 
other crucial mass sum rules and relations discussed be- 
low. Other experimental and theoretical uncertainties 
are much more important In determining the limitations. 
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I. Sum mdes that do not miz slepton OT squark and 
gaugino masse* 

We can imagine two basic outcomes for our experimen- 
tal attempts to determine cos2p: (i) we are successful in 
getting at least a rough determination of,m;co&@; or 
(ii) our errors are too large to be sensitive to this kind of 
term. In either case, one would proceed next to a series 
of additional sum rules and mass relations that would 
provide tests of universality and the general unification 
or RGE framework and/or tests for Ng = 4 vs Ng = 3. 
For the moment, let us assume that both squarks and 
sleptons are observable, if not at an e+e- collider then 
perhaps at a /1+@- collider of very high energy [31]. If 
not, one must proceed quite differently; we will return to 
this alternate case in Sec. VIC. 

To check mo universality independently of Ng, one 
must consider mass combinations that are independent 
of the Ci. The only simple example is 

= +zwm;cos2~ = J&(1 - sw)-l(Tr$ - ?7$). 

(11) 

This relation would be violated if all the mo’s appear- 
ing in Eq. (9) are not the same. Because of the large 
number of mass differences appearing above, to detect a 
violation of universality in just one of these differences 
at the Amolmo = f level could require that the squark 
and slepton masses be measured with an accuracy that 
is 5 j/4. From the discussion of Appendix B, we con- 
clude that it will be difficult to obtain accuracy f that is 
much better than 15-20 %. However, this level of accu- 
racy is acceptable in the sense that we will find that tests 
of all other sum rules are more or less restricted to this 
same rough level of accuracy even if the mo were uni- 
versal. This means that the limited accuracy of the test 
of mo universality will not dominate our ability to check 
various mass relations. Let us presume that universality 
is shown to be satisfied within the accuracy of measure- 
ment achievable. Then we can proceed to extract mo and 
test for Ng = 3 vs Ng = 4 to about this same level of 
accuracy. 

There are various mass combinations that can be used 
to extract a universal mo. However, we should note that 
the four quantities mo, C,, C,, and m:cosZfl cannot be 
extracted using just the three sleptowmasses-we must 
have some squark-sector measurements. One simple com- 
bination is 

77%; = rn& - 3(m& - m$J 

+4sw(1- Xw)-‘(m; -rn?=). (12) 

Note that the C, terms that cancel between rnin and 
rn& will be evaluated at very similar mass scales, so that 

the cancellation should be quite precise. The C1 terms 
that cancel between rnFE ?nd -3(n& - m2n) could in 

principle be evaluatedat somewhat different mass scales. 
As discussed previously, this would, not matter in the 
Ng = 4,case, but would lead to a small uncertainty for 
Ng = 3; however, this uncertainty is much less than that 
from simple experimental errors in determining rn:, - 
rn&. Indeed, if mo is small, then experimental errors 

in evaluating the right-hand side above could become a 
severe problem. We will not dwell further on this issue 
here. 

The primary sensitivity to Ng = 4 vs Ng = 3 de- 
rives from the fact that the gauge coupling at unification, 
a(tv), is approximately twice as large when Ng = 4 as it 
is when Ns = 3. This leads to the possibly large differ- 
ence between the Ng = 4 and 3 valties of C,, depending 
upon the energy scale of evaluation, illustrated in Ta- 
ble I. However, it is not straightforward to exploit this 
sensitivity through rnas relations involving squarks and 
sleptons alone, that is relations designed to eliminate di- 
rect reference to n~,,~. This ii already apparent from the 

modest changes in the CA and 6; (see Tables I and II) in 
going from three to four generatiqns. The very best that 
one can do is to consider ratios such as Cs/&. As seen 
from Table I, if squarks are at. a low maas scale (of order 
mz) then this ratio takes the values 33.5 for Ng = 4 as 
compared to 48.3 for Ng = 3; but if squarks have masses 
of order 1 TeV, then we compute C& = 36.5, not very 
different fr&n the 33.5 value for Ng = 4. Experimental 
extraction of C’~ and Cs can be done in a number of ways. 
An example is 

-3zw(l- zw)-‘(Tr$ - m;L), 

C3mf,, = (rn& - ma, + $?& -rn;,, ) 
(13) 

where the Qnf,, result was already used in Eq. (12). 

Accuracy of about 10% or better would be very desir- 
able for the experimental determination of G~m$, and 

Gmf,, if we are to have a good chance of distinguishing 

Ns = 4 from Ns = 3, but would require determination 
of the mc, - mi, and rncR - rn~~ mass differences to 

roughly 3%, a challenging task even at an e+e- collider, 
as we have already discussed. 

Some mass sum rules are quite insensitive to NB = 3 
vs NB = 4. Such mass relations can be used to test 
the general RGE approach, somewhat independently of 
the generation issue. To illustrate, consider the sample 
relation’ (3.19) in [28]: 

‘We have corrected a sign error in this equation. 
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We note that ~0~2.0 < 0 (for tan/3 > 1)‘so that the. sign 
of the second tezn is opposite to the sign of the factor~in 
brackets. Adopting our results from Table I for the&, 
we find, at the scale mz, 

rn;, -rn;, = (0.052 or Ci.O62)(m& -rn&) 

-[(lg.3 GeV)’ or (19.6 GeV)2]cos2/3,; (li) 

fir Ng = 3 or 4, resp&tively. Since this r&ion assumes 
universality among’the mo, the relatively minor changes 
in the coefficients for Ng = 4 compared to Ns = 3 im- 
ply greater sensitivity tp possible universality violation 
among the rn,, than to Ns. We note that for accurate 
examination of thls Sum rule; an accurate value for C, is 
absolutely necessary. ‘As, noted above, in computing C, 
it is critical wl@n Ns = 4 to include the two-loop con- 
tributions to the running of cyJ g&n that the one-loop 
/3 function is’&~~malously~ small, being proportional to 
9-2N,. 

Third-generation, mass sum rules (4.5) and (4.10) of 
[ZS], which awindependent of the mo universality as- 
sumption, are unaffected by a fourth family. However, 
since they require that the b mass matrix is diagonal.to a 
good approximation (which is generally true for the third 
family since mb is small), the analogous sum rules do not 
apply for the fourth family due to the large value of~ma,. 

A generalization of the sum rule (4.6) of [28] for ,the 
splitting w$, - rni> can be found in the,four-fa,mily case. 

It is not espe&lly useful, however, since it’relates rn;, - 

rn? to rni, -rn;, via Atc and Ab, dependent terms; thus, 
t: 

we do not’displa> it here. 

So far, we discussed dnly mass relations and sum rules 
that referred either to squark or slepton mass& ‘only, or 
to gaugino masse$ only. Hbwever, it should be clear from 
all our previous discussions that the real sensitivity to 
Ng = 4 vs Ng = ‘3 li& in the dramatic shift of slepton or 
@ark masses at given rn~. This was already di$x&d 
in Sec. VIA, and is further evident from the r&&ions of 
Eq. (13), once the substitution m1,z =,m&tv)/as(nz;) 
is made and it is reCalled that a(t(~)l~~=~ = 0.092’com 
pared to a(tu)I~~=~ = ,0.0431 However, because of in- 
herent inaccuracies in experimentally measuring mg it is 
better to reference M1(tz) or i&(tz), see Eq: (2), which 
can be quite well determined onde the experimentally 
more accessible rnas% rnrf and mli: are measured.’ A 

partitiularly simple example ,is. provided by “in - -fR. 

From Table II we find that (using ma-scale Cd values- 
for 1 TeV sc&values the difference in coefficients is even~ 
greater) and the relations of Eq. (2), 

yl& - T?$ = sm~ + (4.3 or 7.1,7)mf,, + $wn;,cos2P 

= h$ + (31.5 or’lL8)M;(tz) 

+$zwm;cos2p, (16) 

for Ng = 4 or 3, .respectively. Here, we have included a 
possible violation of mo universality, &ni 2 rn~(~~) - 

rng(i~). Experimental uncertainties in determining the 
coefficient, CA<,, of M,2(t~) will be dominated by exper- 
imentak errors in determining rn& - rnfx and 6mz. The 
latter error, as~discussed with regard to Eq. (ll), is ex- 
pected to be several times as large as the former. Very 
crudely, for experimental uncertainties in the squark or 
slepton mass measurements of size Ar%/fi - f, one ex- 
pects an experimental uncertainty in the Mt coefficient 
of order AC,, - 3-5x fr?/Mz”. We have already seen 
that f is very unlikely to be better than f - 0.1. Taking 
liL - 1 TeV and Mz - 200 GeV implies a ACM, - 7.5- 
12.5. This is smaller than the predicted Ng = 4 vs Ns = 3 
difference, suggesting we would, in fact, be sensitive to 
Ns by measuring masses of the gauginos and the squarks 
and sleptons of just the first two generations. 

C. Nonsquark spectrum tests for universality and 
four generations 

As repeatedly noted, mass determinations will be most 
easily performed at an e+e- collider of appropriate en- 
ergy. Regardless of the value of Ng, chargino pair pro- 
duction is very likely to be within reach of a ,,& = 500 
GeV NLC. In the case of Ns = 3, slepton pair produc- 
tion is also very likely to be possible for fi = 500 GeV 
if boundary conditions of the no-scale or dilaton type are 
appropriate. For Ng E 4, however, these same bound- 
ary conditiqns predict much larger slepton masses, and a 
higher energy machine would probably be required. How- 
ever, for either Ng = 3 or 4, the squarks are much heavier 
still, and it is quite possible that an e’e- or P+/I- col- 
lider would be built that could product the neutralinos, 
chargina, and sleptons, but not the gluino and squarks. 
Thus, it is desirable to consider what kinds of tests of uni- 
versality, the, RGE framework, and Ns can be performed 
without reference to either the gluino or the squarks. In 
particular, we wish to determine if there is a test for 
Ng = 3 vs Ns = 4 that can be performed using only the 
g:, 2: masses and the masses of the first or second fam- 
ily sleptons, which are those most likely to be both easily 
accessible and most precisely predictable (i.e., without 
reference to A parameters and L-R mixing). So, l&us 
imagine that the Mi for i = 1,2 have been determined 
with reasonable accuracy from the observed values of map 
and mn:, following the procedure described earlier. If we 

then assume a value of Ns, rn,,2 will also be computable 
from Eq. (2). Finally, the Ci can also be computed for 
the assumed value of Ng. 

As mentioned earlier, the [L and in Massey are very 
sensitive to Ng when expressed in terms of the parameter 
to. In what follows, we keep track of a possible difference 
between the & values in the L and R sectors, i.e., of 
possible universality violation. We have, from Table II, 

mfL - [&%nflz + (0.41 or 0.52)m$, 

+(-i + zw)m;cos2P, 

(17) 

rnfR - [#]%nf12 -I- (0.13 or O.l5)m$, 

-xwm;cos2P, 
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for Ng = 4 or 3, respectively. We note that the e; for rni,. 
and min are quite different, but not terribly, sensitive to 
Ng = 3 vs Ns = 4. However, by converting to the value 
of, for example, M,(tZ) using Eq. (Z), a large difference 
between the Ng = 4 and 3 phenomenology emerges. In 
the approximation that mn! N Mu we have 

for Ng = 4 or 3, respectively. 
We plot OUI precise numerical results for riL and Tin 

as a function of (0 in Fig. 16. We have taken mt = 165 
GeV and tano = 1.5. In the case of Ns = 4, we choose 
VQ = mg, = 100 GeV and m+ = rn,, = 50 GeV. (All 
masses are running masses in this discussion.) The graph 
is given for the specific value of mry = 117 GeV. For 
Ns = 4 (3) this corresponds to ml,, - 600 GeV (- 300 
GeV), respectively. This kind of plot has a number of 
important advantages. First, there is no sensitivity to the 
A parameter for the first- and second-generation masses 
being considered. Second, ta& enters into the location 
of the (0 = 0 intercepts, but only weakly if ma! - mz. 

Third, by measuring the in and in masses in units of 
mg!, the plot is quite independent of the actual value of 

mb=4.6. rn,=165. m,=m,=100, m,=m,,=50 GeV 

tanp=1.5. tA=o. rn,,2=600 Ge” 

=- 

” ‘,,,1,,‘,111(I/IIII 

FIG. 16. A plot of pil. and ri, (see text) as a function of 
.$o for the typical case of rn~ = 117 GeV. We have taken 
tanp = 1.5, mt = 165 Geti, and, in the Ng = 4 case, 
rn<, = rnsn = 100 GeV, rn,, = nx,f = 50 GeV. 
rnllz (or, equivalently, mz;), as seen in the approximate 

relations, Eq. (18). 
Figure 16 exhibits a rather big difference for the func- 

tional dependence of Til. and Ti on &J, depending ~II NB. 
Suppose that experiment yield TiB = 4.5. For Ns = 3 

this implies @ N 1.7 and, if [,” = Et, i.e., the &, are 
universal, rf N 4.7; for Ns = 4 vx find r,” N 0.8 and 
*ir. - 5.3. cf mx rni? - 117 GeV in this case, this car- 

responds to mi,(Ng = 4) - miL(Ng = 3) N 70 GeV 

compared to perhaps lo-20 GeV uncertainty in the iL 
UI~SS measurement. Of COUIS~, to measure miL and rniR 
in the mass range above 400 GeV, required in this exam- 
ple, demands a very high-energy e+e- or /I+P- collider. 

As one moves to lower &, values, the discriminating 
power of this procedure slowly increases. Suppose the 
experimentally measured value is ~~~ = 3. If Ng = 3 this 

would imply # = 1.1, and $’ = @ would then imply 
Ti5 = 3.4. In COntrSt, if Ng = 4, TiR = 3 corresponds 

to [,R = 0.45, yielding TiL = 4.1, or miL(Ng = 4) - 
mil. (Ns = 3) N 82 GeV, a bit larger than our previous 
result. 

How sensitive are we to a breaking of universality and 
the uncertainty in tar@? Consider first the possibility 
that <,” and [,” are not the same. Returning to our first 
example, and neglecting effects of the Tr(Ym’) evolu- 
tion terms, a measuwnent Of l‘iL = 5.3 in agreement 
with the Ng = 4 prediction without universality viola- 
tion could,be reinterpreted as a prediction of Ng = 3 
provided .$ - 1.9, as compared to the value t,R = 1.7 
required for Ti, = 4.5 for Ng = 3. This translates to a 
breaking of universality in the amount 

Thus, N 10% universality violation could correct for the 
Ns = 4 vs N9 = 3 difference. This is an intrinsic ambigu- 
ity when only slepton, chargino, and neutralino masses 
are available. 

In the above; we have purposely chosen situations 
where consistent solutions for both Ns = 3 and 4 are 
possible. It could easily happen that consistent choices 
for @ and’[t are simply not possible for the observed 
values of rf, and/or cf=. In particular, if ?f 5 2.0 or 
bi, 5 3.5 then Ns = 4 is excluded, whereas $=3mod- 
els would be possible. In fact, if Ns = 3 and &, is in 
the preferred co s 1 range, then Ti < 3 and Ns = 4 
would be immediately excluded. Tke lower bounds on 
ri,,and riB for Ng = 4 are, of COWSB, equivalent to loser 
bounds on mi,. , min of 410, 234 GeV for this particular 
m%p value. And, these lower bounds can only be reached 
if one is willing to accept the no-scale mo = 0 bound- 
ary conditions. In another extreme, it could happen that 
OIE TCSSUR~ Ti, N TF,, 2 7-8. Such lage slepton IXLSS~S 
relative to mip require very large to values if Ns = 3, 
well beyond any acceptable model range. In contrast, if 
Ng = 4 the required &, values are perfectly reasonable. 

We note that sensitivity of these results to co,@ is 
really quite limited. For rn*: 2 mz, and taking both 

rw and -a + zw to be of magnitude N 0.25, the 
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full range of cos2p between 0 and -1 corresponds to 
AT - 0.12517 x mz/m~p 5 0.125/r. Since the P val- 
ues are typically at least of order 1, most probably much 
lager, we see that the cos2p uncertainty is, at worst, 
roughly the same as the experimental error, and is not 
significant compared to the predicted T differences or pos- 
sible universality questions. 

Finally, we note that even if we have an ambiguity in 
the decision between nonuniversality and Ns = 3 YS Ng t 
4, in general we will have a very rough determination of 
the general size of co. In the above example, we would 
at least know that the 50 values were 2 0.8 if Ng = 4 or 
2 1.7 if Ns = 3. This would allow us to set the overall 
boundary condition picture. 

VII. EXPERIMENT AND A FOURTH FAMILY 

In this section, unless otherwise indicated, all masses 
are pole masses. Where appropriate, running masses 
will be explicitly written in the m(m) notation. Very 
roughly, pole masses are higher than running m(m) 
masses by about 5 or 6 %, based on the dominant correc- 
tion m(pole) = m(m)[l + (4/3?r)a.(m)]. 

In all our discussions up to this point, we have adopted 
the conventional interpretation that the CDF and DO 
events derive from t + bW decays, with mt(pole) - 175 
GeV. Alternative possibilities in which the events at CDF 
and DO are reinterpreted as mt, > 175 GeV events with 
t’ + bW, while the t is not currently observed, are not 
consistent within the perturb&w MSSM GUT frame- 
work. In the first such option, the t is not observed 
because it is too heavy, mt(mt) >> 165 GeV. The dif- 
ficulty with this option is that for such large values of mt 
the maximum value of rnt, (mt,) allowed by perturbativ- 
ity is much below 165 GeV and the t’? events would not 
have the same characteristics (e.g., reconstructed mass 
and cross section) as observed by CDF and DO. In the 
second such option (emphasized in [14]), the t is much 
lighter than the t’, mt - mw, but is not detected be- 
cause Its decays are dominated by t + i&. However, in 
the MSSM GUT context, the latter decay does not occur 
if the soft-SUSY-breaking parameters are approximately 
universal, since (as we have seen) the & is always much 
heavier than the t. Further discussion of this latter case 
will appear in Sec. VIIA. Certainly, the phenomenology 
of the t’ and b’ at the Tevatron that we present depends 
crucially on the mt N 175 GeV> ma’, rnt, hierarchy, not 
to mention the relative size of mt, YS mb,, and on the 
mixing pattern between the generations. 

In Sec. VIIA we will discuss direct limits on the fourth- 
family fermions coming from collider experiments, espe- 
cially the CDF and DO experiments at the Tevatron, as- 
suming that m*(pole) N 175 GeV. We find that a rel- 
atively small portion of mb,, mt, parameter space sur- 
vives all such constraints for the more natural choices of 
CKM mixing between the fourth generation and lower 
generations. We also describe in more detail why the 
mt - mw scenario is not viable for universal soft-SUSY- 
breaking boundary conditions. In Sec. VIIB we give the 
constraints on mt,, ma< arising from consistency with pre- 
cision electroweak data. Not surprisingly, these tend to 
rule out large rntz compared to mb,. Finally, in Sec. VII C 
we speculate on deviations in single-jet inclusive and di- 
jet spectra that could arise as a result of a full four-family 
content at relatively low mass scales. 

A. Direct collider searches 

As we have demonstrated, the requirement that all 
Yukawa couplings remain perturb&w places rather 
strict upper bounds on the t’, b’, v’, and 7’ masses, and 
the possibility of an MSSM fourth generation may well 
be settled within the next few years by searches (i) at the 
Tevatron, for an appropriate set of new signatures (i.e., 
besides t + b + W), and (ii) at LEP-II, via detection of 
direct r’ + 7’ and/of Y’ + fi’ production. 

LEP has set the firmest direct limit, namely rnf 2 
mz/2 for f = b’, t’, T’, v’. We have also seen that the 
value of mt - 175 GeV, as determined by the recent CDF 
and DO results 1201, is such as to imply mt > ma,, mt, 
for perturb&w consistency. 

Let us begin by noting the critical difference between 
the rnt, < w+,, and rnt, > m&r cases, assuming that 
mt > mtr, ma’. If rntr < nu,,, then the t’ + Wb decay 
proceeds at tree level at a rate determined by the CKM 
entry I&. One-loop processes, such as t’ + cg, t’ + cy, 
t’ + cZ(*) and so forth occur at rates determined by 
V,,,V,, and V&V,, times a loop integration factor. It 
would be extremely unnatural for the product of a loop 
integration factor times a two-generation-skipping CKM 
matrix element to exceed the one-generation-skipping 
CKM Vtv,. Thus, it is almost certain that t’ + Wb de- 
cays would be completely dominant if rnt, < mb,. This 
situation should be contrasted with the reverse case of 
rnt, > mv, for which the interesting issue is how the b’ 
decays. The decay b’ + WC occurs at tree level with 
rate determined by V&. The one-loop rates for b’ + bg, 
b’ + by, b’ + bZ(*) ax&So forth are determined by 
&yVt~ and Vtq,,Vt,b times loop integration factors. It 
is actually rather likely that the two-generation-skipping 
CKM element Vcv is smaller than the one-generation- 
skipping V& or Vty, times the loop integration factor. In 
this case, the flavor-changing decays b’ --t bX would dom- 
inate over the two-generation-skipping b’ + WC decay. 
The different decay structure for mt, < my as compared 
to rnt, > mv has crucial phenomenological implications. 

To repeat, if ma < nab, it is almost certain that the 
t’ will decay in a top-quark-like manner to Wb (or W’b, 
depending on mt,). Events of this type are clearly ruled 
out by early CDF and DO top-quark limits for all mt, < 
ma, regions allowed by the four-generation perturbativity 
constraints, see Fig. 2. Thus, we immediately eliminate 
roughly half of the perturbatively allowed regions. We 
now focus on experimental restrictions that arise if mt, > 
7nM. 

1. b’6’ production at the Tevatron 

If rnt, > ma,, then in b’i9 production at the Tevatron 
we must consider the two more or less competitive b’ de- 
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cay scenarios outlined above. If Vbr, (or, much less likely, 
V&) is sufficiently large that b’ + cW (or b’ + uW) de- 
cays are dominant, the published data [32] already rule 
out nzy < 85 GeV at 95% C.L. (Presumably this old re- 
sult will soon be updated using the full CDF and DO data 
sets.) But, if the b’ is essentially unmixed with light gen- 
erations, it will decay via flavor-changing neutral current 
(FCNC) channels: b’ -+ by, bg or 62’ for rna, < mzr 
with b’ + bk’ becoming dominant for rnes > rnz + mb. 

Present data would appear to rule out a significant rate 
for b’ + bZ decays by virtue of there not being room for 
an excess number of Z’s beyond that predicted on the 
basis of the standard qq annihilation mechanism. Taking 
a b’ mass of 100 GeV (roughly the maximum possible if 
rnt, > ma,), the cross section (without inclusion of any K 
factor) at fi = 1.8 TeV (Fermilab Tevatron) is about 60 
pb. For an integrated luminosity of 67 pb-’ this implies 
roughly 4000 b%’ events. If we imagine looking for Z’s 
from the decay of either (or both) b”s, then this num- 
ber is to be multiplied by 11 - B(b’ -+ non-Z)‘]. Given 
the small phase space, my - rnz - rn,, - 5 GeV and 
the low value of mt, - 100 GeV required by our per- 
turbative constraints (which impacts the one-loop Pen- 
guin diagram calculations), we expect [7] B(b’ + non-Z) 
to be significant but probably < 0.7, implying > 2000 
events in which at least one of the b”s decays to a 2. 
Using B(Z + 1+1-) = 0.067, and an overall two-lepton 
cuts/acceptance/detection efficiency of about e = 0.5, we 
find 2 80 events where at least one Z appears in the b’6’ 
final state and has a clearly detectable leptonic decay. (If 
we take B(b’ + Zb) = 1, and adjust for lumi&sity, this 
number 1s consistent with the pre-p=(Z)-cut numbers of 
Agrawal, Ellis, and Hou 171, for the sum of 1+1- +jj +X 
and 41+ X event numbers at rna, = 100 GeV.) In addi- 
tion, Fig. 2 shows that if mt, is to be larger than rna, and 
rna, N 100 GeV, then rnt, can only be jzlst larger than 
rn*,. In this case, the t’? product&n cross section would 
be more or less the same as the b’6’ cross section, thereby 
almost doubling the 80 events, assuming that t’ + b’W* 
decay is dominant. Although a specific analysis has not 
been presented for the latest CDF or DO data with re- 
gard to this point, we expect that such a large number of 
additional relatively clean Z events can be ruled out. For 
&integrated luminosity of L = 150 pb-‘, it would seem 
that one could virtually eliminate the mb’ > mz+mb case 
down to very near the threshold. However, if b’ + bh” is 
also kinematically allowed, th& number of extra Z events 
would be much smaller and mb, > rnz + ms would not 
be excluded. We shall return to this issue shortly. 

Thus, consistency with experiment probably requires 
that mb, < rnz + mb, and that b’ decays are dominated 
by the FCNC channels outlined above. These ‘?mnstan- 
dard” decays would yield distinctly different signatures 
than the lepton-plus-jet signatures of charged current de- 
cays that are already mostly excluded, and new search 
strategies are required. Perhaps the cleanest discovery 
channel makes use of b’s’ production followed by double 
b’ + by decay. As an example consider mb, = 90 GeV 
(95 GeV). The Tevatron cross section (without including 
any QCD K factor enhancement) for b’6’ production is 
N 100 pb (76 pb), corresponding to - 6700(5100) events 
for L = 67 ,pb-l. Assuming B(b’ -+ by) +- 0.1 (typi- 
cal of the low rntt results given in Hou and Stewart, see 
[7]), we obtain about 67(51) b6yy events. In order for 
these events to be sufficiently free of background, single 
b tagging is probably necessary. If we assume that the 
efficiency for tagging of at least one b (after appropriate 
kinematical cuts) is approximately 50% (as found in the 
most recent CDF top-quark analysis [20]) and that the 
overall cuts/acceptance/detection efficiency (after requir- 
ing minimum transverse momentum, say pb > 15 GeV, 
and central rapidity for the photons and b’s) is about 
35%, we see that a clean sample of ll(8) or so events 
should be present in the CDF data. Of course, t’f’ pro- 
duction will also contribute to the b&X signal assurn- 
ing t’ + b’W* is the dominant decay of the t’. (For rnt, 
near mb, the jets or leptons from the W’ will be quite 
soft, and the signal rather similar to that for direct b’6’ 
production.) Events of the 2y + 2j type with at least 
one tagged b quark are,currently under investigation by 
the CDF collaboration [33], and we expect that CDF 
will shortly be able to severely restrict the allowed four- 
generation scenarios. Since event rates rise rapidly with 
decreasing rn*,, it is hard to imagine that a b’ with mass 
much below SO-90 GeV would escape detection. Refer- 
ring to Fig. 2, this means that the rn,,,(rnb,) < 75-85 
GeV region for tan/3 = 1.5 and the entire tanP = 2.2 
region are on the verge of elimination if no signal is re- 
ported. An integrated Tevatron luminosity of L = 150 
pb-l would surely allow one to use the b6yy final state to 
eliminate all rn~ ,$ rna + mz, extending up to nab, values 
such that the b’ + bZ mode really becomes significant 
enough to suppress the b’ + b branching ratio. At this 
point, as described above, one looks for extra Z’s, which 
also provide an excellent signal. 

Of course, if a reasonable K factor is included in the 
b’6’ cross section (K = ,1.3-1.5), the event rates for the 
b&y and/or extra Z events will increase above those 
given above. This leaves even less room for the four- 
family model to avoid detection. 

The only possible escape from the b’ + by and b’ + bZ 
decay mode constraints would be if b’ -+ bh’ decay is 
kinematically allowed. If allowed, it will certainly domi- 
nate all other modes when b’ + bZ is kinematically for- 
bidden. Even when the b’ --t bZ channel is open, b’ + bh” 
will at the very least be competitive and suppress the 
b’ + bZ branching ratio-indeed, the bh” channel could 
still be the dominant mode [34]. However, as seen in 
Fig. 6 (after converting running masses to pole masses), 
this escape is not available for the rnes > mg, portion of 
parameter space in the case of the dilaton boundary con- 
dition scenario, since there m&z < mho. Only in the ex- 
treme lower right-hand corner where the running masses 
obey mho N mg, N 100 GeV and rnt, N 50 GeV is the 
b’ + bh” decay kinematically allowed, and this corner 
is almost certainly ruled out (as discussed in an earlier 
paragraph) since rnts < mb,. However, for scenarios with 
larger (but not too large) mo, the h” can be light,enough 
to make the bh” channel kinematically accessible. 

In Fig. 11 we plotted as a function of &, for vari- 
ous fixed &I values, the minimum rna value that 
is allowed by the ii constraints, taking mb,(mb,) = 
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mt,(mtr) = 100 GeV (corresponding to pole masses of 
about 105 GeV). We can now use this minimum mj(ma) 
value to fix all other model parameters, thereby deter- 
mining the sparticle spectrum, in particular rn&o. Since 
the rn2 x, z contributions to the rn? = rn& +p2 mass terms 

in the scalar potential will tend to be smallest when rna 
is small (and p also tends to scale with rni), these mini- 
mum mg values give mho values that will be very close to 
the minimum allowed for the fourth-generation fermion 
masses chosen. To determine if b’ + h”b is kinemati- 
tally allowed, we compute ms.(pole) - mho - rn&. Plots 
of mho and this mass difference also appeared in Fig. 11. 
Fhn the rner (pole) - rn h~ - ma curves, we see that for 
middle-of-the-road values of to the b’ + bh’ decay can be 
kinematically allowed. When the b’ + bh’ decay chan- 
nel is present, thereby suppressing the b’ + bZ channel 
branching ratio, a 6’ with pole mass somewhat above 105 
GeV could have escaped observation. 

2. t’t7 production at the Tevatron 

Let us now turn to a more thorough examination of 
t’t’ events. For the mt, > 100 GeV mass region, there 
are two competing decay modes for the t’: t’ + b’W(*) 
and t’ + bW. The b’W decay will certainly dominate 
over the bW mode when the former W is real, since the 
bW channel is suppressed by the intragenerational mixing 
factor l&a. However, when mtr - mb, < mw, the two- 
body bW mode could be competitive with the three-body 
b’W* decay. In Fig. 17 we plot the value of Vt,a for which 
r(t’ + b’W*) = r(t’ + bW) as a function of rnt, for 
several mb, values (we employ pole masses). For ‘vtc6 
larger than the values plotted, the t’ --t bW mode is 
dominant. We see that for b’ (pole) masses larger than 

Maximum V,., for I’(t’+b’W)>r(t’+bW) 

1’ ’ 7 ’ ‘,’ ’ ’ ‘1 

rn,. (GeV) 

FIG. 17. We plot the maximum value of Vtsb for which 
I’(t’ + b’W’) > r(t’ + bW) as a function of rn,, for fixed 
values of mb, = 80 and 100 GeV. All masses are pole masses. 
the rough lower bound of 80 GeV, discussed above, it is 
not at all impossible that Vt,b could be large enough for 
t’ + bW to be the dominant mode. 

For mt, 5 170 GeV (as required by our Yukawa per- 
turbativity bound), such dominance would imply a large 
excess of events relative to those already present by virtue 
of ti production and decay. As discussed in more detail 
below, the CDF and DO experimental results are now 
more or less consistent with the expected tE rates for 
mt - 175-185 GeV. Taken at face value, these results 
then imply that t’ + bW cannot be the dominant t’ de- 
cay mode. 

In fact, we show below that it is only possible to obtain 
sufficiently few CDF and DO events if the t’ decay is to 
b’ plus a highly virtual W’. A typical case that survives 
is rnt, - 115,GeV and mb, - 80 GeV. From Fig. 17 we 
find that v,., 5 0.02 (a value roughly the same as IQ,) 
is required for t’ --t bW to be adequately suppressed for 
these mass choices. Such values for Vtra axe certainly rea- 
sonable; in fact, one might expect considerably smaller 
values based on the fact that v,, < V,,, but we must also 
consider implications for b’ decay. We noted earlier that 
if b’ + cW were the dominant b’ decay mode, then b’6’ 
events would have been detected. Consistency with ex- 
periment thus requires that the one-loop b’ -+ bX neutral 
current decays are dominant. This, in turn, requires (see 
Hou and Stewart [?‘I) that Vtr&,t~, l&/V,., 2 102-10~. 
Combining with the Vtrb restriction above, we find that 
I$, < lo@ is required. As seen from Fig. 17, this limit 
would become stronger for larger values of rn&‘. Sup- 
pressions larger than those suggested by measured V,,b 
and V,,a values would be required for mg, values much 
above 100 GeV and thus become problematical. As dis- 
cussed earlier, rnbr 2 100 GeV is also the range for which 
b’ + h’b decay dominance is probably required to avoid 
too many extra Z events from b’ + 26 decavs in b’6’ 
events. 

In our previous work (11, we performed a rough Monte 
Carlo study of the number of t’? production and decay 
events expected in the dilepton-plus-jets and lepton-plus- 
jets channels, assuming that t’ + b/W(‘) is the primary t’ 
decay. At the time, the number of additional events (be- 
yond the predicted number from tl production) in these 
two channels was not inconsistent with the then-available 
CDF data for any, of the larger rntr,~ rn*, choices within 
the perturbatively allowed region. However, the lumi- 
nosity accumulated by both CDF and DO is now much 
larger (L - 67 pb-’ vs 19 pb-‘). Further, CDF now 
employs new: b-tagging algorithms which roughly double 
their b-tagging efficiency. Consequently, the constraints 
on the model are now much stronger. Exactly how severe 
the constraints are depends on the precise predictions for 
event rates from normal ti production. The CDF collab- 
oration states that their results are in good agreement 
with a top-quark Monte Carlo. As a crosscheck, we have 
also repeated the Monte Carlo study,of our pr&&us work 
[I], after adjusting for the new luminosity and new b- 
tagging procedures. Despite the approximate nature of 
our implementation of the CDF cuts 2nd b-tagging pro- 
cedures, agreement is good. For mt = 175 GeV, the 
uncut tE cross section is about 3.5 pb, and roughly 25 
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TABLE III. For L = 67 pb-‘, we tabulate the number of 
t’? events passing our approximations to the CDF top-quark 
discovery cuts in the single lepton +btag and dilepton modes. 

Lepton + btag mode Dilepton mode 
rn,,, (GeV) mb, (GeV) 

rn*, (GeV) 50 80 110 130 50 80 110 130 

160 20 16 3.6 1.5 2.4 1.8 0.2 0.01 
130 53 20 0.5 4.2 1.1 0.002 
100 58 3.6 2.8 0.01 

events pass the single-lepton plus b-tag plus 2 three-jets 
criteria, while N 3 events pass the dilepton cuts. CDF 
observes 37 events in the W+ 2 3 jet channel in which 
at least one b is tagged, with an estimated background 
of 16, and 6 events in the dilepton channel, with esti- 
mated background lo of 1.3. Thus, their number of signal 
events is 21 and 4.7 in these two respective channels, to 
be compared to 25 and 3. Clearly, there is little room for 
additional events passing their cuts from t’E’ production. 

The rates (after implementing the same cuts, etc.) in 
these two channels deriving from t’f’ production, followed 
by FCNC decays of the type b’ + b+jet(s) (in particu- 
lar, no extra photons or leptons from b’ decay are al- 
lowed) appear in Table III. [In Table III we have in- 
cluded several (mt,, rn*,) pairs that are excluded by the 
boundaries of Fig. 2 just to indicate the effects of differ- 
ent mass choices on the rates.] Restrictions on the per- 
twbatively allowed regions of Fig. 2 are now significant. 
For tan@ = 2.2, for which only values of mb, < 85 GeV 
[i.e., rni, (ma,) 5 80 GeV] are perturbatively allowed, Ta- 
ble III shows t’f’ production will yield sufficiently few 
CDF single-lepton +b-tag events only if mt, < 105-115 
GeV, effectively~eliminating the upper 50% of the allowed 
mt,(mt,) ‘region. For mtr 5 105-115 GeV, Table III also 
shows that mr,, cannot be too light; roughly rn*, > ‘70 
GeV is required. I1 The underlying reason for these re- 
strictions is easily summarized. For mtr 5 mt, the only 
way the t’E’ events can evade being included in the CDF 
event sample is if rn*, - rna, is sufficiently small that the 
W in t’ + Wb’ is virtual and the jets and leptons from 
the two W*‘s are quite soft. For such cases, additional 
t’f’ events could be included in the event sample if CDF 
and DO could soften their cuts. However, backgrounds 
probably increase dramatically. If this is the case, then 
additional luminosity is the only way to improve sensi- 
tivity; for example, L = 150 pb-’ would yield about 8 

“The number of background events, 16, in the W+ 2 three- 
jets channel is estimated by scaling the tag background esti- 
mate of 22 events by the ratio 37150 of events/tags. 
“Note that the t’ + i&ii: decay, that could provide an 

escape from these restrictions, is not kinematically allowed 
for any of the mass spectra scenarios of Figs. 13-15. 
CDF events (for current cuts and b-tagging efficiency) if 
mtz = 100 and rnbr = 80. This would probably constitute 
a detectable signal. 

3. Combined restrictions 

Combining the t’ restrictidns with the existing and 
probable b’ CDF data constraints, and accounting for 
the limited range allowed for mb, by perturbativity (espe- 
cially for tanp = 2.2) and the mt, > rna, requirement, we 
are clearly forced into the running mass domain 110 GeV 
> mr(mt,) > mb* (ma,), with 95 GeV 2 mb, (ma,) 2 75 
GeV. For tano = 1.5 this is the region that is as close to 
a fixed-point limit as the perturbativity constraints allow 
and is also the region for which the unification prediction 
for a.(mz) is smallest and, thus, in best agreement with 
data. We have also seen that it is a region for which Vtsb 
and V,,, can both take on values that are reasonable ex- 
trapolations from those already measured in the lighter 
quark sectors, while at the same time being consistent 
with dominance of t’ + b’W* over (probably excluded) 
t’ + bW decays in t’F events and of b’ + Xb neutral 
current decays over (probably excluded) b’ + cW de- 
cays in b’s’ events, provided rn*, (mb,) lies in the upper 
(lower) portion of its allowed region. A tripling of the 
Tevatron’s integrated luminosity to L - 150 pb-’ would 
almost certainly either close the rn*, window above, or 
lead to b’ discovery. 

4. The hidden-top scenario 

To escape from the experimental constraints on t’t’ 
production and decay discussed above would require that 
the top-quark events not come from third-generation tf 
production. As described earlier, in one such scenario 
mt - mw and t + &$ decays are dominanti Typi- 
cal (pole) rna~~e~ required for this scenario to be viable 
are those discussed in [14]: mt N mw, rn+ - 170 GeV, 
ms, - 100 GeV, md ;5 25 GeV, and rni, 5 60 GeV. We 
have explicitly analyzed this sc&ario using our full SUSY 
GUT framework. We find that for rn,, = 50 GeV (the 
choice of [14]) and my, 5 78 GeV, the above mt, mt,, 
and rn*, mas~es are consistent with gauge coupling unifi- 
cation and with perturbative evolution for the Y&was 
up to the scale Mu. (Our criteria do not quite allow con- 
sistency with Yukawa perturbativity for the my, = 80 
GeV choice of [14].) 

However, we find th@, it is not possible to obtain 
mr! fm;, < mt (where tl is the lighter stop mass eigen- 

state) in the context of SUSY GUT scenarios with uni- 
versal mo and A parameters at Mu. Since both “xp and 
rni, scale with rna, the minimum value for the mass sum 
will occur at the smallest possible value of rna. As de- 
scribed earlier, the minimum mc (or equivalently mllz) 
value is set by the ii constraint. We find that the ii con- 
straint (for the mass scenario just outlined) implies an ab- 
solute lower bound on the Mu-scale parameter m,,z that 
is similar in nature to that illustrated in Fig. 10, except 



3 MINIMAL FOUR-FAMILY SUPERGRAVITY MODEL 1639 
that lower values of m1,z (close to 100 GeV) are allowed 
at high &,. This translates into mg 2 150 GeV. Analo- 
gously to Fig. 11, much higher values are required when 
co c molml,z 5 1. Also as in Fig. 11, the minimum 
value of rnllz is achieved for a range of ta c A/mllZ 
values centered about 0 which is broad for large &,, but 
increasingly narrow for to 5 1. However, even at large 
co, arbitrarily large values of I& do not yield consistent 
solutions for any rn,,,, as illustrated by the termination 
of the low& curves in Fig. 11. Too large a value for 
I&+.[ (typically lEaI/& > 4-5 at large 50) results in either 
rni0 < 0 at the EWSB minimum, and/or rn2 < 0 for one 
of the colored and/or charged fourth-family sparticles. 

We describe two typical cases: &, N 1 and 5. For 
& N 1, md 2 400 GeV is required, with md - 0.125- 
0.13mg implying may 2 50 GeV. For &, 2 5, we find 
mg 2 150 GeV and rn2y N O.l4mi, implying mx: > 
21 GeV. (Both of these minimum values only apply for 
small &/to. As {a/& increases, the minimum &wed 
value of mg increases, but very slowly in the case of &, = 
5.) Although the latter rn%: value is in an acceptable 
range for the scenario, rni, 1s always quite large for &., 
values that do not imply rni, < 0 and/or color/U(l) 
breaking. This is because rni, is always well above mt = 
80 GeV at small & (typically by 300 GeV or~more for 
co = 5). Thus, even though in - fm mixing increases so 
that rni1 decreases as one moves to higher j.$al hi the .$ < 
0 direction, rni, only declines by some 50 GeV before Ital 

is large enough that rni, < 0 and/or color/U(l) breaking 
arises. 

For allowed Ca values, what prevents a &fficiently 
small mass for the & is the fact that the ?; cannot be 
too light. The simplest way to avoid this l&k-step ar- 
rangement is to break the universality assumption for 
the mo parameters at Mu, allowing much smaller mo in 
the t sector than in the i’ sector of the theory. We have 
not explored this option. 

B. Four-family precision EW tests 

In addition to direct collider searches for the pres- 
ence of a possible fourth family, indirect, effects arising 
from virtual quantum effects can bd probed through pre- 
cision measurements of many observables and can lead 
to indirect limits or bounds on the parameters of the 
theory. I2 For example, the well-known pparameter lim- 
its the magnitude of isospin breaking, and thus bounds 
the rn: -rn;, and mf, -rn:, splittings of a possible fourth 
family. On the other hand, although the LEP measure- 
ment of 2 + bg is a particularly sensitive probe to any 
new physics involving possible coupling to the top quark, 
the vertex contribution to Z + b6 arising from a fourth 
family is expected to be small due to CKM mixing sup- 

‘“In this subsection we will exclusively employ running 
nlasses. 
pression. We therefore neglect all vertex contributions 
in our analysis, focusing instead on vacuuxn polarization 
effects. 

Overall, it is desirable to perform a global fit to the 
present experimental data using several different observ- 
ables. The most comprehensive approach would be to 
perform the complete, one-loop calculation for each ob- 
servable in ,question, and do a best fit of the new phys- 
ical parameters of the model (i.e., mt,, rna,, rn,,, rn”,, 
ta@, CL,. .,.). This rather ambitious approach has only 
recently been attempted for the MSSM, and will not be 
attempted here. A more modest approach inevitably in- 
volves making certain assumptions and approximations. 
(i) As previously explained, a fourth family added to the 
MSSM contributes dominantly via “oblique,” or vacuum 
polarization effects. (ii) We assume that the contribu- 
tions from the spwticles are small enough to be neglected. 
This is likely to be a good approximation for Ns = 4 god- 
els. Indeed, we have seen that for Ns = 4 the supergrav- 
ity boundary conditions and evolution equations imply a 
fairly large lower bound on mg (especially for the dilaton 
and no-scale boundary condition choices) which, in turn, 
implies that most of the sparticle masses are large. Ac- 
cording to the decoupling theorem, loops involving mas- 
sive SUSY particles contribute negligibly to vacuum po- 
larization amplitudes. The particles most likely to violate 
this approximatiori are the sometimes-light ii and fii, 
and even these are heavy for larger mg values, indepen- 
dent of model. Finally, (iii) we assume that the h” of the 
Higgs sector is SM-like, implying that the SUSY Higgs 
sector is equivalent to a SM Higgs sector with a light 
Higgs boson. Given the four-family constraint tan@ 5 3, 
this is true for mAo 2 200 GeV, as is essentially always 
the case for the models considered. 

In the following analysis, we perform a global fit to 
the latest LEP + SLAC Large Detector (SLD) data [35] 
and we employ an extension of the Peskin-Takeuchi S, 
T, U formalism [36] in order to find the 90 and 95 % al- 
lowed regions of parameter space. In this approach, for a 
given “reference” SM (i.e., with chosen, mt, rn~ values), 
S,T,U q 0, and the (nonzero) best-fit values to exper- 
imental data are a measure of the oblique, or vacuum 
polarization, contributions that should be explained by 
“new physics.” For our reference SM we adopt Ng = 3 
with mt(mt) = 165 GeV and Higgs mass mx = 100 GeV 
(typical of the m,,o values found in our computations). 
We then treat the contributions from t’, b’, v’, 7’ as new 
physics. 

At this point, there are several parameter choices and 
assumptions that affect our results. (i) What values of 
aY.,(mz), a,(mz) are chosen for the reference SM? As 
was recently shown, new estimates of a,,(mz) can shift 
the best fit for the experimental value of the S para- 
&er relative to S = 0 for the reference SM by +lO%. 
Similarly, the choice of aa is quite important. Sec- 
ond, (ii) one should be careful when using the S, ‘7, U 
formalism in the presence of new light physics, since in 
this case it has recently been shown that the standard S, 
T, U formalism is simply not an adequate parametriza- 
tion [37,38]. In the original work of Peskin and Takeuchi, 
the S, T, U parameters were explicitly defined using the 
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linear approximation in an expansion in q’/Mg [36]. Al- 
though perfectly valid when considering new physics with 
scales much higher than mz, such as technicolor, this ex- 
pansion is not accurate for new physics near or below mz. 
It is possible to define a set of parameters which does not 
rely on a q’/Mg expansion. In a complete comparison 
to all available experimental observables, this results in 
a proliferation of new parameters that must be simul- 
taneously fit.13 However,~ if one restricts the “global” 
fit to Z-pole plus m&,/m; measurements, then one can 
show that a redefinition of S + S’, T + T’, U + U’ 
is possible, where the primed variables can be computed 
in the presence of additional light physics without ap- 
proximation. Further all the observables in question are 
linear functions of S’, T’, U’. Thus, the procedure is 
to restrict the fit to measurable which are defined at 
the Z peak (along with the mw/mz measurement), em- 
ploy the standard three-parameter S, T, U global fit to 
the experimental data (relative to a reference SM with 
S = T = U = 0 by definition), and finally reinterpret the 
best-fit S, T, U values as S’, T’, U’. 

In order to compare to predictions of a four-generation 
model, we calculate the exact (no expansion is per- 
formed) contributions to S’, T’, U’ from loops involving 
fourth-generation particles for a given set of mt, mt,, mb,, 
my,, rn,, values; denote these contributions as Si, Ti, Vi. 
Since the observables 0 are linear functions of S’, T’; 
U’, we can then compute &(A$ = 4) q Q(S;,T;,U;). 
The predicted values of Ui(iV, = 4) are then compared 
to the best-fit experimental ‘mlues as obtained using 
ZFITTER (relative to the reference SM assumed) and an 
overall Ax2 computed. This computation is performed 
for each point of interest in the fourth-generation pa- 
rameter space. As noted earlier, we use a reference SM 
with rni = 165 GeV and mx = 100 GeV and take 
a&(mz) = 129.08 [17]. We employ the latest values for 
the following measurements: mw/mz; rz, uz, RI, Rb, 

R,, AX, A;;, AZ, A,, A, from LEP and AiR from 
SLD [35]. Finally, because of sensitivity of the reference 
SM prediction from ZFITTER for these observables to cy., 
we give results for the two values, aQ(mz) = (0.12,0.13). 

The solid and dashed lines in Fig. 18 summarize the 
final results of this global fit. There, we have adopted 
rn,, = rn”, = 50 GeV, tan@ = 1.5 and have allowed 
rn*, (mt,) and mb, (mb,) to vary. The region in the rnr, 
mb* parameter space above the lower (upper) solid Kline 
is excluded at 90% (95%) C.L. if the reference SM has 
as(mz) = 0.13. The two dashed lines give the same 
C.L. boundaries in the case as(mz) = 0.12; in this latter 
case, Fig. 18 shows that there is a region at small mt, that 
is also excluded. As one might have naively anticipated, 
the region of large mt, compared to my has a poor C.L.; 
however, we also see that if both my and mt, are small, 
then predictions of the fourth-generation model for S’, 

131n a quadratic expansion, in general 7 independent param- 
eters arise [37,38], and in a fully exact treatment, ,ll param- 
eters must be specified [39]. 
,‘, Excluded by Precision EW at 90% and 95% CL 
160~! I, I I., (I I. ‘f ‘~:,-‘Y,y’A 

m,.=m,~=50 GeV 
Reference SM: 
m,(m,)=165 GeV 

a,=0.13 ~ 
__ 

,I.___ -_*., I, 

50 60 70 60 ‘90, 100 
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FIG. 18.~~ We ‘show the 95% CL: ‘and SO%, CL. con- 
straints on the mb, (mb,), mtr (rn*,) para&&r space (assuming 
rn,, = rn;, = 50 GeV and tanp = 1.5) from Z-pole precision 
electroweak meastirements (coupled with mwlmz). We con- 
sider two reference SM’s specified by mt(mt) = 165 GeV, 
rn,, = lOO,GeV, and the two values, a,(mz) = 0.12 (dashed 
lines) and 0.13 (solid lines), see text., 

., 

T’, U’ can again deviate significantly, from the experi- 
mentally preferred values, depending upon a.(mz). The 
region of mgdest mt,(mt,) - nzb,(mb,) N 100 GeV, pre- 
ferred on the basis of current, and anticipated Tevatron 
results, lies well within even the 90% C.L. limits., 

” C. Influepee on jet and dijet spectra of a slowly 
running four-family a. 

One other indirect effect of the presence of a fourth 
family, along with its.full complement of supersymmetric 
partners, all at relatively low-energy scales, has recurred 
throughout ,our discussion:, .a, (Q) decreases much more 
slowly with. +-e&g Q than in a standard tl&e-family 
model, espe&lly if the comparison is with the case where 
the masses of the superp+rtners of the three-family model 
are taken, ,&bk large. Thus, it is important to not for-. 
get that a.(Q) ‘is; in fact, directly measurable -through 
the single-jet and dijet spectra of light quark jets. Of 
course, the exact sc.+ Q at x&&cr. is,evaluated will 
be an important issue. In the MS scheme, higher or- 
der c.+lations suggest that an appropriate Q value for 
single-jet inclusive spectra and dijet mass spectra-is ,the 
subprocess cent&-of-&ass energy, roughly given .by 2E* 
and mzj, respectively. How, large can the deviations be? 
To illustrate, we consider as a function of Q the fractional 
enhancement ratio 

where afM is the a, predicted in the three-family case 
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Fractional a: Deviation: [(Ng=4)-(N,=3)sM]/(N,=3)9M 

FIG. 19. We plot the percentage enhancement R,, (see 

text) as a function of Q for Ng = 4 choices of M,4,“,“, = 200 
GeV and Ms4,“,“y = 400 GeV. 

with no superpartner effects, (i.e., with all superparticle 
masses taken to be large); results for a,(N, = 4) will 
be illustrated for rna, (pole) = mt, (pole) = 105 GeV (our 

preferred mass range) and i@Q,” values of 200 and 490 
GeV. Such values are quite typical of the overall mass 
scales for the strongly interacting sparticles (that con- 
tribute to a. evolution) in the model scenarios we have 
studied.14 We employ a: in Eq. (20) because this is what 
appears in the QCD subprocess cross sections. 

The results appear in Fig. 19. We see that for 
M,4,“,“, = 200 GeV, percentage deviations are, for ex- 
ample, about 25% at Q = 1 TeV. This would correspond 
to subprocess energies of 1 TeV for the standard m scale 
choice mentioned above. The corresponding value for the 

(probably more reasonable) choice of M$zsF = 400 GeV 
is 12%. If there are only three families with superpartners 
at a light maas scale, the values of Raa, Eq. (20) [with 
a,(N, = 3) in place of a.(N, = 4)] are very much smaller 
in all cases. Thus, it is not entirely impossible that pre- 
liminary observations of this type of deviation by CDF 
and DO [40] could be a hint that four generations with 
relatively light superpartners are present. 

VIII. CONCLUSIONS 

We have shown that a four-generation MSSM model 
is an attractive extension of the usual three-generation 
MSSM in th t a gauge umfication and automatic elec- 
troweak symmetry breaking via RGE renormalization 

14Note that Ms9,“,“, is not generally the same as the effective 
Msusv appropriate in discussing gauge coupling unification, 
which is sensitive to the entire particle content of the theory 
and not just the strongly interacting particles. 
both occur naturally for typical soft-SUSY-parameter 
boundary conditions at Mu. A significant, but restricted 
range oft’ and 6’ masses is allowed (see below) even after 
requiring that all Yukawa couplings remain in the per- 
turbative domain throughout mz’ to Mu evolution; how- 
ever, Yukawa unification is generally not possible. The 
domain of allowed t’ and b’ masses is impacted by con- 
straints coming from the SUSY sparticle sector, the most 
important of which is the requirement that thti lighter i’ 
eigenstate (ii) be more massive than the LEP-I limit of 
45 GeV and also heavier than the ~~ LSP. This constraint 
can rule out a range of lighter b’ masses; the smaller the 
soft-SUSY-breaking mo and ml/z parameters, the larger 
the range. For given t’ and b’ masses the ii constraint 
places significant restrictions on mo and mllz, and thence 
on other sparticle masses. Generally, small rn,, values are 
disfavored unless mg is large, and there is a significant 
lower bound on mg such that no mo, A choices yield a 
satisfactory ii mass. There is no analogous bound in 
the three-generation case. Thus, the sparticle mass scale 
must be larger in four- vs three-generation MSSM mod- 
&. 

Significant differences are also found for the relations 
between different sparticle masses in comparing Ns = 4 
results to thowfor Ng = 3. The most dramatic difference 
arises directly from the roughly factor of 2 larger value 
of the unified gauge coupling u(Mu) in the Ng = 4 case. 
This leads to ratios such as m~,/mio and rn~,/rn~~ being 
approximately a factor of 2 larger for.N, = 4 compared 
to NB = 3 for a given choice of mo/ml/z. Indirect tests 
or verifications of the presence of a fourth generation by 
observing only a light gaugino and sparticles belonging 
to the first two families are ,thus possible. 

Direct experimental constraints on the perturbative 
four-generation MSSM model are becoming very strong, 
and near-term exp&ments could easily eliminate the 
model altogether. The v’ and 7’ have masses that are 
strongly bounded I?om above for all mt,, my > 45 GeV 
(the current LEP-I bound) and will be readily seen at 
LEP-176. For u’ and 7’ masses just above the current 
LEP lower bounds (we take 50 GeV for these masses) 
perturbativity constraints force mt,(pole) < 160 GeV 
and m,,(pole) 5 120 GeV. We also can be quite cer- 
tain that the t’ is heavier than the b’ since otherwise the 
t’ decays to bW (or bW*), and t’f’ final states would 
have led to top-quark-like events at a rate inconsistent 
with CDF and DO results. For mt, (pole) > ,rna, (pole), 
the b’ can (and must, if it is to have evaded detec- 
tion to date) decay via flavor changing neutral current 
processes to b + X (X = y,g, qq, Z(*), ho,. .). For ex- 
petted branching ratios, nonobservation of b’6’ produc- 
tion events at the Tevatron in which both b”s decay 
to b + y probably excludes m,,*(pole) 5 80-85 GeV. 
The range ma,(pole) > mz + ms(pole)+ N 5 GeV (for 
which b’ + bZ decays liave significant branching ratio) 
is probably excluded by the nonobservation of the ex- 
tra Z’s expected from b’6’ production events, except for 
soft-SUSY-breaking parameter scenarios such that mho 
is small enough for b’ + bh” decays to dominate over 
b’ + bZ-the sc&arios for which the ho channel can be 
open have a large soft-SUSY-breaking scalar mass, rn,,. 
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The top-quark searches of CDF and DO would have de- 
tected production of t’? with t’ + b’W (or W’) and b’ 
decaying hadronically, unless mt,(pole) is quite close to 
mb,(pole) (implying soft W’ decay products that evade 
their hard cuts). We roughly estimate that mt,(pole) 
must be 5 115-120 GeV on this basis. All of this leads 
to a highly preferred mass range for the b’ and t’: 

120 GeV 2 rnt, (pole) 2 mb, (pole) 

with 100 2 mb,(pole) > 80 GeV. (21) 

We estimate that, for an integrated luminosity of L = 150 
pb-‘, it is well within the capability of the Tevatron to 
either exclude all reasonable allowed models or detect a 
signal. 

Of course, some of the above restrictions follow from 
the assumption that the top-quark events at CDF and 
DO arise from the third-generation top. We have noted 
that the alternative case (emphasized in [14]) where these 
are t’i’ events in which t’ -i bW, while the normal t has 
mt N mw and decays via the difficult-to-detect t + &gy 
channel is not possible in the SUSY GUT context as- 
suming universal mo and A parameters. As one adjusts 
parameters so as to minimize rni, +rn%y, the ii always be- 
comes too light, its mass falling below the LEP-I bound 
or below the LSP mass, or the theory becomes incon- 
sistent by virtue of the CP-odd Higgs or some colored 
and/or charged fourth-family sparticle being required to 
have mz < 0, long before the lighter & reaches masses 
below mw 

Certainly, if there is a fourth generation with Yukawa 
couplings that remain perturbative up to MV, experi- 
mental&s will discover a plethora of new signals at LEP- 
II and with increased luminosity at the Tevatron. If 
in the end no signal is found, requiring (roughly) rn,,, 
my, 2 95 GeV and mt,, rna, 2 200 GeV, determined 
four-generation model builders must become resigned to 
having one or more of the Yukawa coupling constants 
becoming nonperturbative before evolution up to Mu is 
complete. While there is no known fundamental reason 
to disallow this, such a scenario is distinctly less predic- 
tive, and therefore less attractive, than full perturbative 
evolution up to the unification scale for all parameters. 
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APPENDIX A 

In this appendix we collect all of the renormalization- 
group equations for the four-generation extension of the 
MSSM that are used in our calculations. Among the 
many references available, we primarily employed Bjork- 
man and Jones [15], Martin a&Vaughn [41], and Cvetic 
and Preitschopf [6] for the various 0 functions required. 

Assuming no KM mixing and universal scalar masses 
at Mu, and defining t = (1/2?r)ln[Q(GeV)], Yi = 
X:/(47?), and ai = 97/(4x), we summarize the RGE’s 
below. We denote the anomalous-dimension contribu- 
tions to dy./dt by 4&l) at one loop and (47r)2y,!2) at 1 I 
two loops for the ith (unmixed) fermion. 

For the Yukawa couplings,we write 

(1) where i = t, b, 7, t’, b’, u’, 7’. The expressions for 4nyi 

and (47r)zy,!2) are 
47# = -+I - 3% - ?$a + 6yt + 3~5, + yb + y”, , 

644 

(4?r)%,(2) = g+YI + !+; + t$Y; + cqcy~ + y$%r,a, 

+%a3 + I6ytw + 16wa3 + $yta~ + $ytra~ + fym + 6y& - 22~; - gy$ - 3y;, : 5ybyt 

-3YwYe - YT’Y”’ - 5Y,2 - gytyt, - 3YbYb - y*yr - yby,, - 3yty,, , 

4% (I) = -&I - 3az - $% + 6% + 3yv + l/t + yr + y,, , 

(A3) 
2 (2) - 311 2 

(4r) ‘Yb - m% + +; + +; + ‘%a2 + +‘,a, + 8aza3 + 16yaaj + 16ya,aj + ;yaal + jytcq 

-~~a-% + ;YA + :yra + 6yr-a - 22~; - 9y;, - 3~: - 3y;, - 5ybyt - 3yb,yt, - y+yv, 

-5y,” - 9YbYV - 3YtYt, - 3YbYr - 3Yf&’ -?Mw , 

47r-y~y!l) rz -g a1 - 3az + 3yiJ + 3yv + 4yr + ye ) 

(A4) 

(4+!2’ = +f + +; + $W, + 16ysa.3 + 16ywa3 - fy& - $yaal + iyrcq + ;yr,al + 6y,az 

-9y62 - 9YC - 1oY: - 3YZ, - 3YbYt - 3Ybw - y+y” - 3y,y+ - 9y,yb - gy,yb, , 
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4ry,(,') - I3 --15~u,-3~z-~a3+6yt,+3yt+y*,+yv,, 

(A5) 

(4+'$) = $$a; + $0; + !$a"3 + alci2 + sa,a, + SCY~CY~ + 16yta3 + 16ytas + gyttal + $ytal 

+$/cu, + 6yt,rwz - 22~; - 9y,2 - 3y;, - 5y1,,yt, 

-3YbYt - Y7'Y"' - 5YZ, - 9Yt,Yt - 3YVYb - YVW - WY7 - 3yt,y,, , 

4?ry,. - (I) - - $1 - 3% + 3w + 3yb + y, + 4y+ + y", , 

W) 

2 (2) _ 171 2 
(4r) 77, - ~a, + Ta; + $w, + 16yvcrs + 16yaas - $ywal - $ybcq + ;yTml + $yval + 6y,,az 

-9yg. - 9y; - lay;, - 3Y: - 3YwYt, - 3yayt - Y?'Y", - 3y,w - sy,,yv - 9y,tyb - 3y;, 

-3Y"sYt - 3Yv,Yt, - 2y,,y,, , 

4?r$ = --~cll - 3az + 3y,r + 3yt + 4y,r + y+ , 

C-48) 

(4?r)'@ = %$c?f + 5~; + ~LY~CY~ + 16y& + 16y@a + fyTal + 6y,,a2 

+;yv,a* + $Yt% + $ym - 9y," - 9y; - 1oy;, - 3y*yt - 3y*,yt, 

-3Y+Y"r - 3y:. - l/ry+ - 3Y,,Yb - 3Y,?Yb! - 9Y"qh - SYv,Yt, 
For the Higgs boson mass terms, we have 

dm?i _ -- 
dt 

3 c y4Up + y&L. - &M,2 - 3azM;, 
*Z&t' 

(Ag) 

(Al’4 

The third- and fourth-generation scalar quark and lepton 
soft mass terms evolve according to 

A = 21/6,6'?&,,9 - &alM,2 - +&M;, 
dt W3) 
W4) 

dn$ E, 
A = 2y,,,*D7,,, - +iln/r,", 

dt 

!%.t& = 2y,t(,>. 
dt 

W5) 

In the above, 

The running of the first- and second-generation scalar 
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quark and lepton soft-SUSY-breaking masses is obtained 
by neglecting all Yukawa couplings in the expressions 
above. The parameters ~1, specifying mixing of the Higgs 
superfields in the superpotential, and B, such that Bp 
is the coefficient of the H,H, scalar field mixing term in 
the soft-SUSY-breaking potential, evolve according to 

Wd _ 3 
c Yn + ; c Yl 

,a 2 q=t,*‘,*,*’ l=r,r’,v’ 

W”) 

dB 

z- 
-3 c Y&+ c YIAl 

q=t,t’,b,b’ ,=7,r’,v’ 

3 
+pM~f 3azMz. (A=) 

The running of the third- and fourth-family soft-SUSY- 
breaking potential trilinear term A coefficients is given 
by 

dAt t’ 
2 = 6At,t,yt,t, + Aa,a.~b,a. + 3At,,tyt,,t + A,,y,, lit 

( = 6As,b,~a,v + At,t,yt,t, + 3Aa,~,y,,,,~ dt 
The Higgs boson, scalar quark, and scalar lepton mass- 
squared RGE’s generally include a term in each equation 
that is a numerical factor times aIS’, where 

S’ E m~~-ma,+m~+m~,-2m~+m~ 

-2m& + rn;, - rn; - rni, + rni + M&s. (1126) 

Substituting from the RGE’s with S’ terms included, one 
finds 

dS’ 46 
dt = ps. 6427) 

Because of the universal scalar mass boundary condition 
at Mu that we assume, S’(Mu) = 0. Therefore S’(t) = 0 
for all t and we do not include this term in the mass- 
squared RGE’s presented above. 

The final soft-SUSY-breaking parameters are the gaug- 
ino masses. Using the notation NB for the number of 
generations, these evolve according to 

% = (2N, + $Y~M~, 

% = (2N, - 5)azMz, 

$$ = (ZN, - 9)w,M3 

kW 

Finally, we present the gauge coupling RGE’s for com- 
pleteness. These are the same as the massless fourth gen- 
eration neutrino case, since the extra right-handed new 
trino that provides a mass term in our case is decoupled 
from the gauge sector. Keeping the number of genera- 
tions, NS, explicit, including the third- and fourth- (un- 
mixed) generation Yukawa couplings, and including ex- 
actly two Higgs doublets (as appropriate for the MSSM), 
one has the gauge RGE’s: 
(A29) 

% = (2N, - 5)a; + 2 a~ + (14N, - 17)~~ + 8N,a3 

-2(y, + Y+) - 6(yb + ~a’ + yt + ye) 1 , (A30) 

2 = (2Ng - 9)a; + 2 ;N 901 + 3Ngm + 
(““I’ ] 

+t -,54 (~3 - 4(1/b + yb, + l/t + yt,) (A31) 
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The renormalization-group equations were implemented 
numerically, and iteration was employed to find a fully 
consistent solution for the complete evolution between 
Mu and mz. 

APPENDIX B 

In this appendix we discuss the question of the accu- 
racy with which cosap and, thence, tanp, can be deter- 
mined using the mass differences of Eq. (10) [42]. 

To use rnFL - rn; requires determinations of nz~ and 

mi‘. The required measurements are best performed 

at an e”e- collider where the center-of-mass energy is 
precisely known and the energy spectra of final leptons 
can then be directly related to the masses of the pro- 
duced particles and their decay products. $termination 
of mi, is relatively straightforward since Ir. + 12: is al- 
most always an important, if not domin+, mode-if 
mi, > mn: N WZ~;, then li + 2:~ and 1~ + dl citn 

be competitive. A fit to the 1 spectrum will yield the 
masses of both the lL and the 2:. Should’the %:Y and 
dl modes also be important, the fit would presumably 
reveal the presence of several upper end points, and al- 
low determination of both mi; and rni;. A Monte Carlo 
study is desirable to determine the exact accuracy with 
which all masses could be determined in the multiple de- 
cay case. Perhaps accuracies of about -110 GeV could be 
achieved. For mi, N 240 GeV (near ow lower limit in the 
Ng = 4 case scenarios, but already rather marginal for a 
+ = 500 GeV NLC) this would correspond to accuracies 
of - 490, i.e., on the edge of what would be useful. 

Determination of rn; follows a similar pattern. We give 
below discussions for two scenarios: (a) rn; < mi: and 

(b) mo > ms:. Scenario (a) does not arise for the specific 
Ns = 4 models illustrated in Figs. 13-15, but might be 
relevant if there was significant nonuniversality in the 
Mu-scale soft-SUSY-breaking parameters. For Ng = 4, 
universal mo and &f, values always lead to 1ll6 > mfi:, 

as shown. 
If rn* < mi: then the 2: decays to a mixture of SLY 

and l6; since mi,, > m: the latter decay is usually the 
dominant one-indeed, in many cases mi, - rn; is large 

enough that the 2: + i~v channel is forbidden even 
though the 2: + li? channel is open. At an e+e- collider 
the end points of the 2 spectrum Tom T:g; production 
followed by if + lfj decay provide a determination of 
both mn: and rn;; direct observation of the i/ is not 

required, a fortunate fact given that it decays invisibly 
to I&. 

If rn; > rn*:, then fi + 2:1, and the 2: decays via 

a virtual sneutrino or slepton to the three-body mode 
21@, via virtual squark to qq%y, or via virtual or real 
W to a mixture of these two final states. Analogous to 
the previous case, the 1 spectrum end points will allow 
determination of rn: and rn+ although one will have to 

carefully account for the underlying smooth 1 spectrum 
from the g: decay if events containing only 21 f 4j-t 
missing energy [which avoid contamination from the soft 
l(s) from 2: decay] do not occur at a sufficient rate. 
Ideally, it would be good to learn first about the %:2; 
channel by setting fi to a value above 2mi: but below 
(or not far above) 2m;-due to the rapid turn-on of a 
two-fermion channel, the rate for e:gi; production might 
be reasonable, while the 17: rate could be zero or quite 
small (due to a large mu - mrt splitting and/or the slow 

turn-on of the iZ spin-0 pair channel). To study 56, one 
would then up the energy to a level such that the cii rate 
was large. 

A significant complication is the fact that iLiL produc- 
tion would also be present at a similar rate to iX (recall 
that mi, > ms). For the present case of ms > mn:, 

TL + #, ugz, &i”, will all occur, most probably with 

similar branching ratios. Events in which both TL’s decay 
to Id can be eliminated by requiring some jet activity 
(which is generally present for the Z final states). If 
both jL’s decay to g;v, then the Ody charged l’s would 
be from decays of the ,$‘s, which would yield a smooth 

(and relatively soft) 1 spectrum; &addition, these jLiL 
events would tend-to have larger missing energy than the 
Z events. If one 1~ decays to @ and the other to I&:, 
followed by j$ + Iv%:, then we could end up with a 
21+ 2j + missing energy final state that might not be 
easily distinguished from the 21 + 4j + missing energy 
state of interest for Z events (certainly not all jets in 
the latter case would be detectable). But, the spectrum 
of the 1 from the 2: decay would,be soft and smooth, so 
that the I spectrum thresholds present in 5 --t 1%: might 
still stand out. 

Thus, it would seem that there are means for isolating 
the Z events of interest and extracting the 1 spectrum 
thresholds that would allow a reasonable determination 
of mo (especially if mi: is known from a lower energy 

measurement). Unfortunately, these complicated scenar- 
ios have not been explicitly studied for an e+e- collider. 
The results for simpler scenarios (see [30] and references 
therein) suggest the crude estimate that mass determi- 
nations for rn3 might be possible within f5%, at least 
for masses of order 200 GeV and below (i.e., compara- 
ble to the minimum possible rn; values in the scenar- 
ios discussed in subsection VIA). However, including the 
fact that the mf, and rn9 errors must be combined in 
quadrature, despite this fairly small uncertainty in the 
mass measurements we would not have the accxracy re- 
quired for a 3~ sensitivity to cosap, even for the smallest 
possible masses allowed in the Ns = 4 case. 

Let us now turn to the rn& -rn:, measurement. First, 

there is a very real possibility (a near certainty for Ng = 
4) that the squarks are simply so heavy, rnc 2 300 GeV, 
that impossible accuracy would be required for sensitivity 
to ~0~20. Even for masses below this level, it is still far 
from clear that the required accuracy can be achieved. 
Squarks will decay to a qua?k plus real or virtual gluino, 
the latter then decaying to a variety of final states (with 
q& unlikely to be domina& for the larger mg predicted 
for Ng = 4). Jet spectra end points (which would appear 
on top of a smooth jet spectrum background i?om the 
real or virtual 3 decays) could provide a certain level of 
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accuracy in the squark mass determination, but there 
would be a lot of overlap of the spectra from @&rent 
rj decay channels, and of the spectra from the d and ic 
decays themselves, that might very well prevent a good 

determination of rn2 - rn<. An extremely careful Monte 
Carlo study is required to be able to determine with any 
certainty the level of accuracy that can be achieved. 
Overall, we conclude that our ability to determine 
cos2fl and thence tanp must remain a topic of further 
study. Fortunately, the uncertainty in cod/3 is not the 
limiting factor determining the level of accuracy with 
which other mass sum r&s and relations can be tested. 

Other experimental and theoretical uncertainties are al- 
most certainly more important. 
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