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Excited states of heavy baryons in the Skyrme model 
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We obtain the spectra of excited heavy baryons containing one heavy quark by quantizing the 
exactly solved heavy meson bound states to the Skyrme s&ton. The results are comparable to the 
recent experi,mental observ$ions Bnd quark model predictions, and are consistent with heavy quark 
spin symmetry. However, the somewhat large dependence of the results on the heavy quark mass 
strongly calls for the incorporation of thk soliton-recoil effects, 
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I. INTK~DUCTION 

Up to the present, most ground state, charm baryons 
containing ,one c quark, from AZ to oz, have been ob- 
served, [l]. There has been, a lot of effort to find excited 
charm baryons and recently experiniental evidence for 
X:(2530) [2], Af(2593), and hz(2625) [3-61 was reported. 
Although their quantum numbers are not identified yet, 

the spin parity of the Cf(2530) is interpreted as jr = g’, 
and Az(2593) and Az(2625) decaying to Az?r+?r- are 

regarded as candidates for the jT = $- and $- ex- 
cited states, respectively, in accordance with the quark 
model predictions [7-121. The small mass splittings be- 
tween X:(2530) and X,(2453) and between Az(2593) and 
Af(2625) are consistent with heavy quark spin symmetry 
[13,14], according to which the hadrons come in degen- 
erate doublets with,total spin j, = j, f i (unless j,, the 
total angular momentum of the light degrees of freedom, 
is zero) in the limit of the heavy quark mass going to 
infinity. 

On the other hand, the excited heavy baryons have 
been extensively studied not only in various quark and/or 
bag models [7-12,151 but also in heavy hadron chiral per- 
turbation theory 1161 and in the bound state approach of 
the Skyrme model [17-201. In the bound state model, the 
heavy bzyons ari ~described by bound states of heavy 
mesons and a soliton [21,22]. A natural explanation of 
the low-lying A(1405) is one of the successes of the bound 

state approach [23], where this jv = $- state is described 
by an S-wave K meson loosely bound to a soliton. The 
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same picture was straightforwardly applied to the excited 

A:(;-) in Ref. [17]. The lack of heavy quark symme- 
try in this first trial was later supplied by ~treating the 
heavy vector mesons on the same footing as the heavy 
pseudoscalar mesons [22], and a generic structure of the 
heavy baryon spectrum of orbitally excited states was 
established [18]. 

However, these works were done under the approxima- 
tion that both the soliton and the heavy mesons are in- 
finitely heavy and so they exist on top of each other. It is 
evident that this approximation cannot describe well the 
orbitally and/or radi&y excited states due to the ignor- 
ing of any kinetic effects. In Ref. [19], the kinetic effects 
for the excited states are estimated by approximating 
the static potentials for the heavy mesons to a quadratic 
form with the curvature determined at the origin. Such 
a harmonic oscillator approximation is valid only when 
the heavy mesons are sufficiently massive so that their 
motions are restricted to a very small range. The situa- 
tion is improved in Ref. [20] by making an approximate 
Schrcdinger-like equation and by incorporating the light 
vector mesons. In a recent paper [24], we obtained all the 
energy levels of the heavy meson bound states by solv- 
ing exactly the equations of motion, from a given model’ 
Lagrangian without using any approximations. (See also 
Refs. [25,26].) In this paper, we quantize those states by 
following the standard collective coordinate quantization 
method to investigate the excited heavy baryon spectra. 

In the next section, we briefly describe our model 
Lagrangian and the method of solving the equations 
of motion to obtain the bound states. Then, in 
Sec. III, we quantize the soliton-heavy-meson bound sys- 
tem based on the standard collective coordinate quanti- 
zation method and derive the mass formula. The re- 
sulting mass spectra of A,, C,, Ab, and Cg baryons are 
presented in Sec. IV and compared with the recent ex- 
perimental observations and with the quark model pre- 
dictions. Some detailed expressions are given in the Ap- 
pendix. 
1605 0 1996 The American Physical Society 
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II. THE MODEL 

We will work with a simple effective chiral Lagrangian 
of Goldstone mesons and heavy mesons [27]: 

L = LgM + D,*DWi -rn:& - ;W”“@;; 

+m;.~*“~;+ + fQ(@bZ$+ + @;A”*+) 

+&$‘“XP(‘Z$yA~~;t + @;Ax@$,). (2.1) 

Here, f$$’ is an effective chiral Lagrangian of Gold- 
stone pions presented by an SU(2) matrix field U = 
exp(i~.m/f,), which is simply taken as the Skyrme model 
Lagrangian 

CF = $ n (a,u+aw) + & Tr [U’O,U, u+a,Lq2, 

(2.2) 

with the pion decay constant fn and the Skyrme param- 
eter e. With the help of the Skyrme term, it supports a 
stable baryon-number-l soliton solution under the hedge- 
hog configuration 

U,(r) = exp[i7. iF(r)], (2.3) 

where F(r) satisfies the boundary conditions F(0) = ?r 
and F&3)‘= 0. and F&3)‘= 0. 

The heavy pseudoscalar and vector mesons containing The heavy pseudoscalar and vector mesons containing 
a heavy quark Q are represented by anti-isodoublet fields a heavy quark Q are represented by anti-isodoublet fields 
@ and @;, with their masses rn, and rn+,. , respectively. @ and @;, with their masses rn, and rn+,. , respectively. 
As an example, in the case of Q = c, they are D and D’ As an example, in the case of Q = c, they are D and D’ 
meson antidoublets: meson antidoublets: 

* = (DO, D+) and ip* = (D*O, D*+). (2.4) 

The chiral transformations of the fields are defined as 

.( + L<ht = htR+, 

(2.5) 

where [ = fl = exp(ir x/Z&), L E SU&, R E 
.SU(~)R, and h is an SU(2) matrix depending on L, R, 
and [. The field [ defines vector and axial vector fields 
as 

v, = $(E+a,E + Fa,t+), 

P-6) 

Then the covariant derivatives are expressed in terms of 

v, a.5 

D,O = @(&., +I’,‘,, (2.7) 

and a similar equation for a’;, which defines the field 
strength tensor of the heavy vector meson fields as +;” = 
D,G$ -D/BP;. 

In our Lagrangian, we have a few parameters, fr, e, 

ms m,., fQ, and g9, which in principle have to be 
fixed from the meson dynamics. We will use the experi- 
mental values for the heavy meson masses. In order for 
the quantized soliton to fit the nucleon and A masses 
[ZS], the pion decay constant has been adjusted down to 
f,, = 64.5 MeV (with e = 5.45). However, recently it was 
shown that, taking into account the Casimir effect of the 
fluctuating pions around the soliton configuration [29], 
one can get reasonable nucleon and A masses with the 
empirical value of the pion decay constant (-93 MeV). 
As for the coupling constants fm and gd, there are no 
sufficient experimental data to fix them. What is known 
to us is that, in order for the Lagrangian to respect the 
heavy quark symmetry, they should be related to each 
other as 

and the nonrelativistic quark model prediction for the 
universal constant g is -0.75 [27], while the experimen- 
tally determined upper bound is 9’50.5 [30]. We will 
take jQ and gQ as free parameters, keeping the relation 
(2.8) and the nonrelativistic prediction in mind. The pa- 
rameter dependence of the results will be discussed in 
detail in Sec. IV. The Lagrangian (2.1) is the simplest 
version of the heavy meson effective Lagrangian and one 
may include the light vector meson degrees of freedom 
such as p and w [26,31] and the higher-derivative terms 
to improve the model predictions. 

The equations of motion for the heavy mesons can be 
read off from the Lagrangian (2.1) as 

D,D’@+ + rn;*+ = fQA%*+ U’ 

(2.9) 

with an auxiliary condition for the vector meson fields, 

m&D,VYt = - D,D,@*p”+ - fQD”(A”&) 

+ gOE’Y’PD,(A~@;$), (2.10) 

which reduces to the Lorentz condition a%$+ = 0 in the 
case of free vector meeon fields. To avoid any unnecessary 
complications associated with the antidoublet structure 
of @ and @;, we work with a+, and @Et. When the static 
hedgehog configuration of U, is substituted, the vector 
and axial vector fields become 

V’ = (P, V) = (0, --i(T x +J(r)), 

(2.11) 

A’ = (~“,a) = (0, i[a1(T)7 + az(r)ir. i]), 

where v(r) = [sin’(F/Z)]/r, al(r) = (sinF)/r, and 
a2(r) = F’ - (sinF)/r. 

Then the problem becomes one of finding the classical 
eigenmodes (especially the bound states) of the heavy 
mesons moving under the static potentials formed by the 
soliton field. The equations axe invariant under parity 
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operations and the “grand spin” rotation generated by 
the operator 

K=J+I=L+S+I, (2.12) 

where L, S, and I are the orbital angular momentum, 
spin, and isospin operators of the heavy mesons,’ re- 
spectively. This allows us to classify the eigenstates by 
the grand spin quantum numbers (k, k3) and the parity 
?i. We will denote the set of quantum numbers by {n} 
(s {ii; k, ks; n}, where ii is a quantum number to dis- 
tinguish the radial excitations). For a given grand spin 
(k,k,) with parity ?r = (-1) k+‘/2, the general wave func- 
tion of an energy eigenmode can be written as 

*;t,(* t) = ,+i+Q * 
, ’ % w!m >n 9 ( (2113) 

+rp; an (y) GYg)(+)l s ’ 

where G z -i(?xL) and Y::?(i) is the (iso)spinor spher- 
ical harmonic obtained by combining the eigenstates of 
L and I. The wave functions should be normalized so 
that the eigenmodes carry a unit heavy flavor number 
(C = +l and B = -1). The normalization condition is 
given in the Appendix. Note the different sign conven- 
tion of the energy in the exponent for the time evolution 
of the eigenmodes and that v;‘(r) II&(~)] is absent in 

the case of k” = i’ (i-). Substituting Eq. (2.13) into 
the equations of motion (2.9) and the auxiliary condition 
(2.10), one can obtain coupled differential equations for 
the radial functions (P(T) and (P:(T) (a = 0,. ,3). (See 
Ref. [24] for more details;) 

Given in Fig. 1 is a typical energy spectrum of bound 
heavy meson states obtained by solving the equations nu- 
merically with experimental heavy meson masses (mu = 
1867 MeV, mu. = 2010 MeV and mg = 5279 MeV, 

. = 5325 MeV), f,, = 64.5 MeV, e = 5.45, and 
7,72rnm* = SQ = -0.75. We present the binding en- 
ergies defined as A& = mpl - E. Comparing it with the 
energy spectrum obtained in the infinite heavy mass limit 
[18], one can see that the “parity doubling” artifact is re- 
moved by the centrifugal energy contribution and there 
appear many radially excited states. As a trace of the 
heavy quark symmetry, the energy levels come in nearly 
degenerate doublets with grand spin k* = ki f 4 (unless 

kt = 0) and parity ?r = (-1)“’ [18], where Ke q K - SQ 
with the heavy quark spin SQ. The energy levels are ob- 
tained in the soliton-fixed frame, which must be a crude 
approximation.’ The soliton-recoil effects should be incor- 
porated in order for the bound state approach to work 
well with heavy flavors. In this work, however, we will 
proceed without incorporating the soliton-recoil effects. 
We will discuss some possible modifications of the results 
in Sec. IV, leaving the rigorous and detailed investiga- 
tions to our future study. 
400 - - “2+ $ >---- 

-500 - 

“2+ 
-600 - 
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FIG. 1. Energy levels of k” bound heavy meson states ob- 
tained with f,, = 64.5 MeV, e = 5.45, mg = 1867 MeV, 
mn. = 2010 MeV, mB = 5279 MeV, mu. = 5325 MeV, and 
f&m,. = gp = -0.75. The dash-dotted line is the binding 
energy obtained in the infinite mass limit. 

III.QUANTIZATION 

The s&ton-heavy-meson bound system described so 
far does not carry any good quantum numbers except 
the grand spin, parity, and baryon number. In order to 
describe baryons with definite spin and isospin quantum 
numbers, we should quantize the system by going to the 
next order in l/N, [21]. This can be done by introducing 
collective variables to the zero modes associated with the 
invariance of the soliton-heavy-meson bound system un- 
der simultaneous isospin rotation of the soliton together 
with the heavy meson fields: 

a*>q = W&l(*) c+(t), 

@,(*,t) = h(r,t) ctm (3.1) 

y‘(‘,t) = %r,,(*,t) @(% 

where t,” z U, and C(t) is an SU(2) matrix. The sub- 
script “bi” is to denote that they are the fields in the 
body-fixed (isospin comoving) frame. (Hereafter, we will 
drop it to shorten the notation and all the heavy meson 
fields appearing in equations are those in the body-fixed 
frame unless specified.) Assuming sufficiently slow col- 
lective rotation, we will work in the Born-Oppenheimer 
appr&imation where the bound heavy mesons remain in 
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an unchanged classical eigenmode. 
Introduction of the collective variables as Eq., (3.1) 

leads us to an additional Lagrangian of 0(1/N,), 

L-1=$2+w.o, (3.2) 
where the ,angular velocity w of the collective rotation is 
defined by 

CibE ;,.w (3.3) 

and Z is the moment of inertia of the soliton [28]. The 
explicit form of 0 is 
where {A, B}+ c AB + BA and 

with t,(r) = cosF, tz(r) = 1 - cosF, and tz(?‘) = sinF. 
Note that it is nothing but the isospin current of the 
heavy me.sons interacting with Goldstone bosons (module 
the sign) as discussed in Ref. [18]. 

The spin operator .I and isospin operator I of the sys- 
tem can be obtained by applying the NGther theorem to 
the invariance of the Lagrangian under the corresponding 
rotations: 

1, = D&(C)%, 

(3.6) 

J=R+Kbr, 

where R is the rotor spin conjugate to the collective vari- 
ables, 

R=g=Zw+@. 
6w (3.7) 

Kbf is the grand spin operator of the heavy meson 
fields (in the isospin comoving frame) and Dab(C) 
[z iTY(TaC&t)] is the adjoint representation of the 
collective variables. Note that the grand spin operator 
plays the role of the spin operator for the heavy mesons, 
that is, their isospin is transmuted into a part of the spin. 

The physical heavy baryon states with spin parity jn 
and isospin i can be obtained by combining the rotor spin 
eigenstates and the heavy meson bound states of grand 
spin k with the help of the Clebsch-Gordan coefficients: 

x I %k,k4, (3.8a) 
I 

with k = lj - iI, y - iI + 1,. , i + j. Here, I i; ml,mz} 

( ml, rn2 = -i, -i + 1,. , i) denotes the eigenstate of the 
rotor-spin operator R,, 

R’li;ml,ma} =i(i+l) 1 i;ml,mz}, 

Rz I ~;~~,~z}‘=m I Gm,mz)> (3.8b) 

1, I C%%) = ml I ~;~l,%)> 

and I A; k, k3; ?r) is the single-particle Fock state’of the 
heavy meson fields where one classical eigenmode of the 
c&responding grand spin quantum number is occupied: 

K;,I%;k,k~;r)=k(k+l) I%;k,bg;?~), 

(3.8~) 

As an artifact of large N, feature of the Skyrme model, 
one may have baryon States with higher isospin i 2 2. We 
will restrict our considerations to the heavy baryons with 
i = 0 (A ) and i = 1 (C,). To be precise, in Eq. (3.8), 
one may 1 ave to sum over the possible k as 

I ~,~3;~*,h)) =‘~4GSdh ILA) 
us 
x 1 i;is,js-ks} I %k,ks;+ (3.9) 

with the expansion coefficients ak to be determined by 
diagonalizing the Hamiltonian. However, as far as the 
heavy baryon states are concerned, the mixing effects are 
rather small. It is shown in Ref. [18] that there is no 
mixing even when two states become degenerate in the 
mg + co limit. (Such a mixing effect plays the most 
important role in establishing the heavy quark symmetry 
in the pentaquark baryons [32].) Thus we will involve 
only one single-particle Fock state in the combination 

(3.8). 
The physical baryons should be the eigenstates of the 
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Hamiltonian and their masses come out as eigenvalues. 
The Hamiltonian can be obtained by taking the Legen- 
dre transformation with the collective variables and the 
heavy meson fields taken as dynamical degrees of free- 
dom. Up to the order of ,1/N,, we have 

H=H+‘+P’+H-‘, (3SOa) 

where Hm (rn = +I, 0, -1) is the Hamiltonian of O(Ncm). 
The Hamiltonian of the leading order in N, is the soliton 
mass [28]: 

H+l = Ms,,, (3.10b) 

and Ho is the Hamiltonian of the heavy meson fields 
which yields the eigenenergy E, when ,it acts on the 
single-particle Fock state 1 {ra}): 

Ho I {nl) = % I {nl). (3.1Oc) 

Finally, the Hamiltonian of the order of l/N, arising from 
the collective rotation is in the form of 

H-l = &(R - @j’. (3SOd) 

We will take the I/N, order ‘term as a perturbation: 
Then the mass of the heavy baryon state (3.8) is obtained 
as 

v+,~-) = Ms,, + E, + &T I (R - 0): I i;T)), 

(3.11) 

where E, is the eigenenergy of the heavy meson bound 
state involved in the construction of the state li;~‘~)). If 
only one single-particle Fock state I A; k, kJ; r) is involved 
in Eq. (3.8), we can write the mass formula in ‘a more 
convenient form as 

m(i;p) = Ms,, + E, + $ + &“j(j + 1) 

+(l - c,)i(i + 1) - c,k(k + l)]. (3.12) 

Here, we have used the Wigner-Eckart theorem to express 
the expectation value of 0 as 

(R;k,k;;n 10 1 ?iL;k,ks;?r) 

E -cn(ft; k, k;;?r j Kbf 1 fi; k, ks;n), (3.13) 

which defines the “hyperfine splitting” constant cn. The 
explicit expressions for c, are given in the Appendix. In 
evaluating the expectation value of Oz, we have used the 
fact that 0 is the isospin operator (with opposite sign), 
which implies 

021n;k,kg;~)= i In;k,ks;n). (3.14) 

IV. RESULTS AND DISCUSSIONS 

As for the AQ baryons that a% constructed with the 
i = 0 rotor spin state and one single-particle Fock state 
/ A; k=j, Icg; r), the mass formula can be further simpli- 
fied as 

n~,,~(~) = Ms,, + E, + & = mN + me + @.E,, (4.1) 

where mN is the nucleon mass (mlv = A~,,I + 3/82) and 
Ac, = en -mm. Thus the mass spectrum of AQ baryons 
is exactly the same as Fig. 1 with the Ac = 0 line replaced 
by the mu + rn* threshold. However, the Ap spectrum 
obtained with the parameters of Fig. 1 (set 1) is not at 
the level of being compared with experiments. As can 
be seen in Fig. 1, the binding energy (- 380 MeV) and 
the mass splitting (- 200 MeV) between the first excited 
AZ and the ground state are too small compared with 
the experimental values, - 520 and - 310 MeV, respec- 
tively. However, we can easily improve the situation by 
adjusting the parameters within a reasonable range. Ta- 
ble I summarizes the parameter sets that we will examine 
and the parameter dependence of A, spectra is shown in 
Fig. 2. 

What we want to have is mo&deeply bound states 
with wider level splittings, which can be achieved if we 
have deeper and narrower interacting potentials in the 
equatidns of motion for the heavy mesons. One way of 
obtaming’such potentials in a given model Lagrangian is 
to take the,empirical value for jr instead of ji = 64.5 
MeV. Since the solitoti wave function F(r) is only a func- 
tion of a dimensionless variable z = ej,~ (in the chiral 
limit), the functions al(~) and a~(?) appearing in the 
potentials scale with the factor ej,,. Furthermore, the 
soliton mass Ms,, and the moment of inertia Z cotie out 
in the form of 1281 

Md? II&/e ""f z=i-@fm), (4.2) 

with dimensionltiss quantities &’ and f that are indepen- 
dent of e and fr. If we are to have a correct A-Nb mass 
splitting (3/22), we have to fix the value of e so’that e3jn 
does not change. This condition yields e = 4.82 when 
fn = 93 MeV, which implies that the soliton mass be- 
comes,as heavy as 1.4 GeV. We expect that the Casimir 
energy of fluctuating pions [29] can reduce it down to 
0.87 GeV. In this work, for comparison, we fix the nu- 
cleon mass to 940 MeV for all parameter sets. Compared 
with jn=64.5 MeV and e=5.45, efm becomes 1.3 times 
larger and thus the potential becomes deeper and na- 
rower by the same factor. This is shown by the dashed 
line of Fig. 3. The change in f,, alone (set 2) helps the 
ground A, mass to come down to 2339 MeV with the 

TABLE I. Parameter sets. f,, is in MeV and the other 
quantities are dimensionless. 

fm e 9P ,fC!l2m*. 
Set 1 64.5 5.45 -0.75 -0.75 
set 2 93.0 4.82 -0.75 -0.75 
set 3 64.5 5.45 -0.92 -0.92 
set 4 93.0 4.82 -0.81 -0.81 
set 5 93.0 4.82 -0.70 -0.85 
Set 6 93.0 4.82 -0.65 -0.65 
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FIG. 2. Parameter dependence of A, mass spectrum. 

@A, mass difference being 270 MeV. 
Another way of improving the results is simply to take 

a l+rger 1gql value (putting aside the experimental up- 
per limit on 1gQ1 for a while), which makes the potential 
deeper. The dotted line in Fig. 3 is that obtained by 
varying gp and f&m+.. to -0.92 while keeping f,=64.5 
MeV (set 3). Surprisingly, this nearly 20% change in cou- 
pling constants results in about 50% enhancement in the 
binding energy, while the mass splitting is not so much 
improved compared with that of set 1. In the same way, 
we take the empirical value for jT and vary gg so that 
the ground A,: mass becomes close to the experimental 
value, which is achieved with gq - -0.81 (set 4). This 
parameter set yields a comparable A, mass spectrum to 
the experiments, which looks quite encouraging. Fur- 
thermore, if we break the heavy quark spin symmetric 
relation fQ/Zmp = gq between the two coupling con- 
stants, we can obtain more realistic mass splitting be- 

tween A:($-) and A:($-). As an example, we choose 
gQ = -0.70 and j~/Zrn~. = -0.85 with f,, = 93 MeV 
(set 5). Unfortunately, these coupling constants are not 

r (fm) 

FIG. 3. Shape of $gs[a,(r)-a,(r)] with various paramete 
sets. 
close to the recent estimates of -0.2 - -0.5 [33]. We 
regard this fact as an indication of the important role of 
higher-order corrections such as light vector mesons. 

In Fig. 4, we present our results on the A, spec- 
trum (obtained with parameter set 5) together with the 
experimental values and the other model calculations; 
SM (Skyrme model with the heavy pseudoscalar mesons 
only) [17], QMl (quark model) [7], QM2 [S], and QM3 
191. Our result can compete with the quark model cal- 
culations quantitatively. Especially one can notice that 
it is much improved compared with the first trial, SM 
[17], in the Skyrme model. One may improve the result 
by adjusting all the parameters for the best fit. What 
we have done in this work is just to vary two coupling 
constants around the values given by the nonrelativistic 
quark model prediction and the heavy quark symmetric 
relation, i.e., f&h+. = gq = -0.75. As for the other 
parameters, we used the empirical value for f,, with e 
being fixed by the A-N mass splitting, and experimental 
values for the heavy meson masses. 

Given in Fig. 5 are the spectra of C, of our prediction 
(obtained with set 5) and the other model calculations. 
As a reference line, the ground state of A, is adopted. 
Our result is again comparable to the others. However, 

I I 
I I 

m& 

(Ge”) 

2.6 

2.4 

[ 

i li*+ 
2.2 

-, 2289 ;::: ,, /= : “.- 2260 ,...--+~ 2282 

‘:.*m j i 

I Set 5 SM QM I QM 2 QM 3 Expt. 

FIG. 4. Mass spectrum of &(j-). The results with set 5 
are presented. For a comparison, we use the experimental 
nucleon mass in set 5. The predictions of other models, SM 
(Skyrme model with oniy pseudoscalar heavy meson) [17], 
QMl (quark model) [?‘I, QM2 [SI, and QM3 [9] are also given. 
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,-:::i, 
: 2765 ” - :: 2760 
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FIG. 5. Mass spectrum of C,(j”). Notations are the same 
as in Fig. 4. 

the splitting between C: [C,(%‘)] and C, appears too 
small compared with the experimental data. Note that 
the same is true for the quark models except QM2. It is 
also interesting to note that one cannot improve this sit- 
uation simply by making the hyperfine constant c larger 
in any way. By eliminating c, and Z in the mass formula 
(3.12), we obtain a model-independent relation 

mE: - %, = h -m&v) - ;b%, - %J. (4.3) 

(The same model-independent mass relation holds in the 
nonrelativistic quark model of De Rlijula, Georgi, and 
Glashow 1341.) Thus, when our model successfully repro- 
duces all the experimental values for mu, mn, mn,, and 

mE*, we get 

mE: - mzc - 40 MeV (4.4) 

as our best prediction. It is only half of the value evalu- 
ated with the recent X:(2533) [2]. 

We present the Aa mass spectrum obtained with this 
parameter set in Fig. 6 with the other model calculations. 
The parameter set used for the charm bayou does not 
work well in the bottom sector; set 5 yields the ground Aa 
mass as 5492 MeV which is N 150 MeV below the experi- 
mental value. We may repeat the same process of varying 
the gg (keeping the empirical value 93 MeV for jr) to fit 
the Ab mass of 5641 MeV. We also expect that the heavy 
quark symmetry relation (2.8) holds well in the bottom 
t Set5 Set6 SM QM I QM 3 Expt. 

FIG. 6. Mass spectrum of Ab(jw). The predictions of set 5 
and set 6 are presented with the results of SM 1171, QMl [7], 
and QM3 [9]. 

sector. This process leads us to gq = f~/2m,. = -0.65 
(set 6). The results with this pammeter set are also given 
in Fig. 6. The mass splitting (- 180 MeV) between the 
excited At &nd the groun’d state Aa appears much smaller 
than that of the A, given in Fig. 4, while the quark 
model calculations show nearly independent mass split- 
tings whether the heavy constituent is a e quark (- 370 
MeV) or a b quark (- 330-390 MeV). Together with 
the differences in coupling constants fitting the charm 
baryons and the bottbm baryons, this apparent differ- 
ence in the mass splitting is certainly at odds with the 
heavy quark ~&or symmetry. Such a heavy quark flavor 
symmetry is expected to be somehow broken because of 
the mass difference between the c quark and b quark. 
However, since both are much heavier than the typical 
scale of the strong interaction (Aqc~ N 200 MeV), the 
actual amount of symmetry breaking in nature that oc- 
curs at the order of &co fmQ would not be so large. 

Such behavior can also be seen in the Cb spectrum 
given in Fig. 7. Since there are no experimental data for 
the Ca baryons, we can only compare our results with 
the quark model predictions. One can find that the mass 

splitting between the ground A* and the Cs($+) is 180- 
190 MeV, which is comparable to the quark model predic- 
tions. Also the small mass splitting (- 10 MeV) between 

Cb(i+) and X6(:+) is still consistent with the quark 
model predictions. How&r, as in the Aa spectrum, the 
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excitation energy (- 170 MeV) of &(f-) again appears 
smaller than the quark model values (- 280 MeV). 

It may be the ignoring of the soliton-recoil effect in 

our work that causes the larger breakdown of the heavy 
quark flavor symmetry than what is actually implied 
in the model, In order to see this, let us go back to 
Fig. 1. We can see that the kinetic effect reduces the 
binding energy of the lowest D (B) meson bound state 
by 410 (240) MeV from its infinitely heavy mass limit 

Ae, = -;gF’(O) - 790 MeV [24]. Note that the ratio 

of the kinetic effects (410/240 - 1.7) and the ratio of 
energy splittings between the first excited state and the 
ground state (- 300/200) are very close to the square 

root of the (inverse) mass ratio (&% - 1.6). One can 
easily understand this feature in the harmonic oscilla- 
tor approximation. Thus, in our working frame, the fact 
that B mesons are 2.6 times heavier than D mesons be- 
comes directly reflected in the results. A simple way of 
estimating the soliton-recoil effect is to use the “reduced 
mass” of the soliton-heavy-meson system, as discussed 
in Refs. [20,24]. With the soliton mass about 1 GeV, the 
reduced masses of the D mesom and B mesons become 

N 2/3 GeV and - 5/6 GeV, respectively. Then the use 
of these small reduced masses can widen the energy split- 
tings and their small ratio - 5/4 will not break the heavy 

quark flavor symmetry so seriously. (See also Fig. 4 of 
Ref. 1241.) On the other hand, it will require stronger 
potentials to overcome the larger kinetic energies, which 
should be supplied by including the light vector mesons 
and/or higher-derivative terms into the Lagrangian [31]. 

In summary, we have studied the heavy baryon spec- 

trum in the bound state approach to the Skyrme model 
by using the exactly solved heavy meson bound states of 
a given Lagrangian. Our results are qualitatively and/or 
quantitatively comparable to the experimental observa- 
tions and the quark model calculations in the charm 
and/or bottom sector. The nearly degenerate doublets 
in the spectrum are consistent with the heavy quark spin 
symmetry, and our work shows a great improvement com- 
pared with the first trial (171 of this model. However, the 
absence of the soliton recoil in our framework breaks the 
heavy quark flavor symmetry more than the model really 
implies. To be consistent with both the heavy quark spin 
and flavor symmetry, such a soliton-recoil effect should 

be incorporated into the picture. 
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APPENDIX 

In this Appendix, we present the normalization con- 

dition of the heavy meson fields and the explicit form 
of the hyperfine constants. As discussed in Sec. II, the 
heavy meson fields are normalized to give a unit heavy 
flavor number. For a given grand spin k with parity 
r = (-1)“*1/2, this condition can be written explicitly 

as 
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where the constants X*, &, and ^i;t are written in terms of k as 

A+ = (k - l/2)@ + l/2), A- = (k + 1/2)(k -I- 3/2), 

P+ = k - 112, pm = -(k + 3/2), (A’4 

^/+ = /+/A+ = l/(k + l/2), ye = p-/X- = -l/(k + l/Z) 

The c value defined in Eq. (3.13) can be written as 

where the functionals c:, cr, and c;; are obtained by inserting Eqs. (2.11), (2.13), and (3.5) into Eq. (3.4). Their 
explicit expressions are: 



The function& kl, kz, and k3 are defined by 

D x a’+ = i{k~(r) iY:;J + kg(r) LyEi + ks(T) Gy&!}, 

C-47) 

which gives 

kz=v;v-(v;f+;&). 
To obtain those formulas, we have uSed the conjugate 
form of Eq. (2.13): 

qr, t) = e -““lp+(Tpg+(i), 

qq(r, t) = -e-“c’i~~+(r)y!.:)+(i) 9 ’ 

%*(r,t) = e-‘C’ [P;+w YgJ+(i, f + $0;+(T) Yg+(;) L 

-v;+(r) Yi;;+(i) (G - Z:)], W 

where all the operators act on the right-hand side. 

,Then from Eq. (A3), we can write c, as 

1 

cn = ,/k(k + 1)(2k + 1) 
{W; k++; k4 

+c:(n; k; rrllLl]n; k; n) 
+c~(n;k;~llGlln;k;~)}r (Al’3 

where the “reduced matrix elements” are calculated as 
(k;n = (-l)k+‘/211rl,k;?i = (-1)“+‘/2) 

(kin = (-~)“-‘/~ll~llk;~ = (-1)~“) 

(k;r = (-1) k+l~Zl~Ll~k;r = (-1)“+‘/2) 

(kr = (-I)“-‘/~IILII~;?~ = (el)“-@) 

= (k+$)/T, 

(k;r = (-1) k+‘~Zl~Gl~k;n = (-I)“+@) 

(kn = (-1)“-‘/21\Gl,k;71 = (-I)“-l/2) 

(All) 
and the others are zero. 

As a specific example, the c values for the k” = 3’ 
states are given below: 
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Cl+ = 
z 

$~;+[l+l~(-h + tz) + l’p;12(3t1 + tz) - 214f2(t1 + tz)] 

+&;“d + $&‘)(3tl + tz) + J(p;‘p; + p;+p;)v(h + t*) 

+$fQ(‘+‘+d, + d+& + &‘Q(t“;+‘+‘; + Vp;+P;) - $gQl&12(al + Q)(tl + tz) , 

W2) 

and 

CL. = 

2 

~~@~1~(3~1 + tz) + l#(-t~ + tz) - 2(#(t, + tz)] 

+f(d+d + 9;+9~)(-tl + tz) - +;+lp; + &+rp;) 

-$fQ(9+9; + ‘d+‘+‘h - $gQk’:+9; + 9p;+$‘p;)(‘%h - 221k) - $gQ)#(al + az)(tl + tz) (A13) 
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