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The consequences of assuming the third-generation ,Yukawa couplings are all large and comparable 
are studied in the context of the minimal~supersymmetric extension of the standard model. Gen- 
eral aspects of the renormalization group (RG) evolution of the parameters, theoretical constraints 
needed to ensure proper electroweak symmetry breaking, and experimental and cosmological bounds 
on low-energy parameters are presented. We also present complete and exact semianalytic solutions 
to the one-loop RG equations. Focusing on SU(5) or SO(10) unification, we analyze the relationship 
between the top and bottom masses and the superspectrum, and the phenomenological implications 
of the grand unified theory (GUT) conditions on scalar masses. Future experimental measurements 
of the superspectrum and of the strong coupling will distinguish between various GUT-scale scenar- 
ios. And if present experimental knowledge is to be accounted for most naturally, a particular set 
of predictions is singled out. 

PACS number(s): 12.10.Dm, 12.10.Kt, 12.6O.Jv, 14.8O.L~ 
I. INTRODUCTION 

Unified theories are currently the most promising can- 
didates for physics beyond the standard model. The ma- 
Cage of force unification, namely, grand unified theories 
(GUT’S) or perhaps string theory, and spin unification, 
by which we mean a supersymmetry relating fermions 
and bosons, has been a fruitful and prolific area of re- 
search in the last few decades. Grand unification al- 
lows the understanding of the electroweak and strong 
forces as low-energy manifestations of a single micrb- 
scopic force, in particular explaining the quantization and 
the assignments of electromagnetic charges for all known 
particles. The simplest GUT’s [1,2], based on SU(5) or 
SO(N) gauge groups, unify some [SU(5)] or all [SO(lO)] 
of the quarks and leptons in each gen&ration. The unified 
matter multiplets neatly encompass the known standard- 
model matter particles-no new particles are needed, and 
no known particles are left out. The one exception is 
the right-handed neutrino, which must be included in 
SO(10) unification. If neutrinos have masses, this po- 
tential embarrassment becomes a boon. In fact, SO(10) 
not only favors typical ranges for their masses via the 
seesaw mechanism, but in specific models can also lead 
to detailed predictions about the flavor structure of the 
mass matrix. Moreover, SO(10) beautifully incorporates 
both the Pati-Salam idea [3] of leptons as the fourth color 
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and an underlying symmetry between the left- and right- 
handed quarks and leptons [4]. String theory aims to 
go beyond GUT’s and unify all forces including gravity, 
perhaps without any adjustable parameters. Though still 
in their infancy, string models would presumably repro- 
duce the successes of GUT’s by either implying a grand 
unified theory as a “low-energy” consequence or by fur- 
nishing the appropriate boundary conditions to mimic 
grand unification predictions. GUT’s, and even more so 
string theory, ambitiously span energy scales some 13 to 
15 orders of magnitude above the highest scales at which 
the standard model has been directly tested. For com- 
pelling esthetic reasons such a span requires these theo- 
ries to be supersymmetric: fermions and bosons, present 
in equal numbers, with mirror (and therefore highly re- 
stricted) interactions. Supersymmetric theories are the- 
oretically attractive on their own, but when wedded to 
unified theories they can yield quantitative phenomeno- 
logical successes. Supersymmetry (SUSY) cannot be an 
exact symmetry of nature, but it must be approximately 
valid down to roughly the electroweak scale if such a low 
scale is to have a hope of being naturally embedded in 
a GUT- or string-scale theory [5]. The minimal candi- 
date model for unification is then given at low energies 
by the supersymmetrized standard model, which we will 
call the MSSM,’ having a squawk for each quark, a slep- 
ton for each lepton, a gaugino for each gauge boson, and 
Higgsinos for the requisite two Higgs doublets H,, and 

‘Here we use the term MSSM to refer only to the particle 
content and interactions of the minimal supersymmetric ex- 
tension of the (essentially) experimentally extablished stan- 
dard model, without ‘any assumptions about the boundary 
conditions on its parameters at the GUT or string scales. 
1553 01996 The American Physical Society 
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Hd which give masses to the up- and down-type quarks 
and leptons (respectively). For a given effective theory 
below the unification scale, such as the MSSM, the renor- 
malization group (RG) evolution determines the relation- 
ship between the physics of the unified theory and the 
physics observed at the electroweak scale. If one chooses 
as the effective theory the particular particle content of 
the MSSM, and embeds this minimal model in an SU(5) 
GUT, one arrives at a remarkably successful predicted re- 
lationship between the three low-energy gauge couplings 
(6-81. There are also various predictions for the quarks 
and leptons, some more robust than others. In partic- 
ular, the bottom quark and 7 lepton Yukawa couplings 
are in most cases predicted to be equal at the GUT scale 
[Q]; a successful prediction for the bottom mass at low 
energies, especially given a heavy top quark, can then 
be easily obtained with precisely the two Higgs doublets 
needed for the MSSM [lo]. The large Yukawa coupling 
of the heavy top quark can also trigger a correct break- 
down of electroweak symmetry at low energies [ll,lZ]. 
Thus the various pieces of the unification puzzle inter- 
lock tightly to produce a framework which we find both 
theoretically and phenomenologically compelling. 

Numerous authors have explored in detail the issues as- 
sociated with gauge coupling unification, in GUT’s and 
lately also in string theories. The present paper takes a 
different path and seeks the consequences of Yukawa cou- 
pling unification 113,141. We will only be concerned with 
the Yukawa couplings of the third generation, namely, 
the top and bottom quarks and the 7 lepton, for two 
reasons: ii&, because they are larger than the Yukawa 
couplings of the lighter generations, so it is natural to 
expect that they arise directly and from renormalizable 
operators and so are robustly predicted by the unified 
model, whereas the smaller couplings presumably arise 
from more complicated mechanisms and are thus more 
model-dependent; and second, because the third gener- 
ation Yukawa couplings are the only ones big enough 
to appreciably influ&ce the rest of the MSSM via the 
RG evolution. The focus of ow research parallels these 
two motivations: we have seen in previous work [15], as 
summarized below, that the top mass can be predicted 
from approximate or exact unification at the GUT scale; 
and we expand on our previous observations [lS] that 
the large bottom and 7 Yukawa couplings which result 
from such unification qualitatively change the expected 
features of the MSSM at low energies. 

The assumption underlying this work is that, at the 
unification scale, either (I) X, = X6 = Xt or at least 
(II) X, = Xs - Xt, where X,,a,r are the Yukawa cou- 
plings to the appropriate Higgs doublet, and “-” means 
that the couplings differ by a factor of order one. When 
is this assumption valid? In the simplest SO(10) sce- 
nario, in which both light Higgs doublets arise from a 
single SO(10) multiple+, the tree-level Yukawa couplings 
are exactly equal at the GUT scale, as in assumption 
(I) [17,15]. Threshold corrections will typically lift this 
equality somewhat, and thereby can facilitate proper 
electroweak symmetry breaking, as we show below. In 
more involved SO(10) models, the light Higgs doublets 
may come from mixtures of several SO(10) multiplets. 
Nevertheless, we expect assumption (II) to often hold. In 
the simplest GUT scenarios based upon SU(5) the bot- 
tom and 7 couplings are equal, but are unrelated to the 
top coupling. Most of the work on the MSSM has usually 
assumed that the top coupling was much larger than the 
other two, resulting in the observed hierarchy between 
the top and bottom quarks. From a GUT-scale model- 
building perspective it seems to us at least as natural 
a priori to assume that all three Yukawa couplings are 
comparable, as in case (II); then the observed lightness 
of the bottom and 7 must result from the small vacuum 
expectation value (VEV) of the Higgs doublet to which 
they couple. Finally, the jury is still out on the pre- 
dictions string theory makes for the Yukawa couplings. 
If the &ective field theory which describes physics below 
the string scale is a GUT, then one of the above scenarios 
may hold 1181. Otherwise, there are still reasons to be- 
lieve that the Y&w couplings for the third generation 
are approximately equal, at least in some string-inspired 
models. 

In addition to the above more theoretical motivations, 
there is also a phenomenological astrophysical advan- 
tage to large tap, at least in SO(10) models [19,20]. 
Various astrophysical and cosmological data, such as 
the neutrino solar flux deficit and the density fluctu- 
ations at large scale observed by the Cosmic Back- 
ground Explorer (COBE), can be explained if the left- 
handed neutrinos acquire a mass via the seesaw mecha- 
nism from right-handed neutrino Majorana masses in the 
10” - 1Ol3 GeV range. A third-generation right-handed 
neutrino with such an intermediate mass can significantly 
affect bottom-7 unification (through the RG evolution of 
Yukawa couplings). If SO(lO)-type boundary conditions 
Xf = Xz and Xy = X$ are assumed, it is difficult to re- 
produce the experimental value of msfm, for small tan@ 
(< 10 - 20). Interestingly, though, for larger values of 
tan& the intermediate-scale right-handed neutrino does 
not significantly alter the successful prediction of mb/mr. 

Motivated by the phenomenological successes of the 
unified MSSM and by the wide-ranging contexts display- 
ing approximate or exact Yukawa unification, we ana- 
lyze in this work various implications of a Y&ova-unified 
MSSM. In Sec. II we review the prediction of the top 
mass as a sensitive function not only of the GUT-scale 
boundary conditions and the bottom and 7 masses, but 
also (perhaps surprisingly) of the superpartner masses. 
Reversing the argument, we find bounds on the super- 
spectrum as functions of the top mass. Section III treats 
the related predictions for the radiative bottom quark 
decay b + 87 (and comments on 7 + ~7). We point 
out the importance of seemingly subdominant diagrams 
which are also enhanced by large tanp. Satisfying the re- 
cent experimental bounds on this process places certain 
constraints on the superspectrum if a delicate fine tuning 
is to be avoided. In Sec. IV we outline the basic implica- 
tions of X6 N Xt for electroweak sy,mmetry breaking. Not 
only must the symmetry be broken radiatively without 
losing the SU(3), x U(l),, gauge symmetries, but also 
a large hierarchy must be generated in the Higgs VEV’s 
to accour$ for the top-bottom mass hierarchy. Section V 
deals with the various options for generating this hiera- 
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thy. Two symmetries (Pew&Quinn (PQ) and (R)] can 
make this hierarchy more natural, and lead to a favored 
superspectrum, but there is always a necessary fine tun- 
ing of at least one part in N 50 (- nt/ms) somewhere 
in the Lagrangian [21,16]. We return in Sec. VI to the 
problem of properly breaking the electroweak symmetry 
in the presence of the PQ and R symmetries. The various 
conditions which must be satisfied at appropriate scales 
to guarantee the proper spontaneous symmetry breaking 
are discussed in some detail in subsection VIA. In addi- 
tion to the various individual mass-squared parameters, 
we examine the two flat directions in the scalar poten- 
tial (and the scales at which they may destabilize the 
vacuum) and the trilinear scalar couplings from A and p 
terms. These can be important, even for the third gener- 
ation, when there is some hierarchy between nz~ and the 
SUSY scale. We then turn to the general behavior of the 
soft scalar masses as they evolve down from the GUT 
scale, focusing in subsection VIB on the homogeneous 
part of the RG equations which dominates when the PQ 
and R symmetries ate approximately valid. The favored 
scenarios with and without these symmetries are briefly 
summarized in subsection VI C, without any assumptions 
about the soft scalar masses at the GUT scale. These as- 
sumptions are introduced in Sec. VII. The GUT-scale 
constraints on scalar .massw in minimal SO(10) theo- 
ries, and in SU(5) or nonminimal SO(10) models, are 
presented in subsection VIIA using a common notation. 
The ramifications of these SO(lO)- or SU(5)-type GUT 
relations are explored in detail in subsections VIIB and 
VIIC, respectively. These include the ewe of obtain- 
ing proper electroweak symmetry breaking for different 
values of the parameters, the possible and probable su- 
perspectra, and the implications of lifting the PQ or R 
symmetries. We also study, the effects of a right-handed 
neutrino mass below the GUT scale, briefly examine the 
consequences of universal. scalar masses, and reconsider 
SU(5)-type boundary conditions as a perturbation on 
the SO(lO)-type conditions. We then turn in Sec. VIII 
to the astrophysical and costiological constraints on the 
Yukawa-unified MSSM. We address both the electric new 
trality of the lightest superpartner and its relic abun- 
dance. To estimate this abundance, we adapt previous 
analyses to the large tan@ scenario, and in the case of a 
B&o-like LSP (lightest superpartner) classify the domi- 
nant operators contributing to LSP annihilation in order 
tp clarify its suppression. We present our conclusions 
.xn Sec. IX. In particular, we summarize the phenomeno- 
logical expectations from Yukawa unification, comment 
on the most natural and therefore favored scenarios, and 
outline some directions for future investigation. In Ap- 
pendix A we present the exact and complete semianalytic 
solutions to the one-loop RG equations for the MSSM 
with large Xt,+ They are semianalytic in that they are 
given in terms of integrals qver the dimensionless (gauge 
and Yukawa) couplings, which must be evaluated numeri- 
cally or approximated analytically, as we show for several 
examples. Appendix B is dekoted to a study of one of 
the potentially flat directions in the scalar potential of 
the MSSM, and to the scales at which it can impose a 
constraint on the scalar mass parameters. Finally, Ap 
pendix C justifies the approximation we have made in 
using the RG-improved tree-level scalar potential. 

II. TOP MASS: PREDICTION 
AND CONSTRAINT 

At tree level, the observed masses of the third family 
fermions are related to their Yukawa couplings and to the 
VEV’s of the up- and down-type Higgs doublets via 

rnt = &vu 3 X,vsino, 

ma = x*vD SE X*v cosp, 

m, = X,VD FE x,u cos p, (1) 

where v = 174 GeV and tan0 q UU/WD = (@)/@I;). 
The Yukawa couplings are in turn determined through 
the renormalization group evolution by the Yukawa cou- 
plings X& at the GUT scale MDUT. And finally, in the 
grand unified theory these couplings are related to each 
other according to 

x,G = x,G NXFSXG. (3) 

In the minimal SO(10) scenario Xf/XF = 1, while Higgs 
mixing or an SU(5) model could suggest that Xp/Xg is 
of order 1. The RG evolution requires as additional in- 
puts the scale of unification MG and the unified value gc 
of the gauge couplings, both of which are already fixed 
by gauge unification (but see Ref. [15] for the treatment 
of a.). Thus the four low-energy observables mt, me, 
nzr, and tan@ and the two GUT-scale parameters X0 
and Xp/XF are related by three (RG) equations; fixing 
ms and m, from experiment leaves three equations in 
the four remaining variables mt, tan@, XG, and Xp/XF, 
yielding a single prediction for the top mass as a function 
of the angle 0. (In principle, of course, the Higgs doublets 
VEV’s 21~ and ?)D and hence also p are predicted in terms 
of the GUT-scale parameters of the Higgs sector, but at 
this stage those parameters are completely unknown; we 
will return to them below.) If, as in minimal SO(lO), the 
initial ratio X,“/Xf is f&d, then the top mass and tan0 
are predicted individually. We have previously presented 
a detailed study of this prediction [15] when Xp and X2 
we split at most by threshold corrections; we will return 
to the more general case X9 - Xg below. A crucial find- 
ing of that work (valid more generally for any Xf - Xf) 
was related to the fact that, since the mass of the bottom 
quark results from a large coupling to a small VEV rather 
than a small coupling to a large VEV, any chin1 symme- 
tries protecting this mass should act on the VEV and not 
on the Yukawa coupling as in the usual case. Such ap- 
proximate symmetries, discussed in detail below, are not 
respected by the parameters of the generic MSSM, which 
therefore exhibits large corrections to mb from one-loop 
couplings to the other Higgs VEV ([15]; see also [22]). 
In particular, we found that the usual suppression factor 
of l/167? in the leading one-loop corrections is a pri- 



1556 RICCARDO RATTAZZI AND URI SARID 53 
oti completely mdone by the enhancement - tan/3 from 
the larger VEV of the “p-type Higgs doublet. The two 
dominant contributions are given by the diagrams shown 
in Fig. 1. Keeping only these corrections (and therefore 
dropping similar but smaller corrections to m,), the third 
generation mass relations now read 

(4) 

where we have explicitly shown the dependence of the 
three Yukawa couplings at low energies on the two GUT- 
scale parameters. The exact form of the corrections to 
the bottom mass was given in ow previous work. A “se- 
ful approximation is given by &na/ms = (tanfll.50) Sb, 
where 

f(r) = (1-z +zlnz)/(l -z)~, rns and pare the gluino 
mass and the p term evaluated at the electroweak scale, 
aw = g;/4n and Q. = g.2/4* are the SU(2) and SU(3), 
coupling strengths, respectively, and m,e2 z ~(m~+m$) 

is the average of the squared masses of the SU(Z)-singlet 
bottom squark and the SU(Z)-doublet third generation 
squarks. (In the second (subdominant) term we used 
At N 2M11z = Zzrn+ and approximated rni + m’$ N 

rnf’ + m$. Also, the expressions are considerably modi- 

fied when one of the stop or sbottom eigenvalues becomes 
very small, but this will not be relevant for the cases we 
study.] We see that even if Xp/Xf is fixed, for exam- 
ple, in minimal SO(lO), we now have the additional “n- 
known 66, which precludes a separate determination of 
mt and tanp. In other words, if we do not know enough 
about the superspectrum to pin down &,, we cannot fix 
X0 by comparing the prediction of mb with experiment, 
and hence we lose the independent prediction of the top 
mass. 

It will prove very helpful to understand the magnitude 

FIG. 1. The leading (finite) one-loop MSSM contributions 
to the b quark mass. 
of the Gwz~/m~ corrections, and in fact of all large tan@ 
enhancements, from the point of view of symmetries. To 
this end we recall the Peccei-Quinn (PQ) and R symme- 
tries introduced in Ref. [15]. The PQ symmetry amounts 
to setting p = 0, while the R symmetry requires the van- 
ishing of gaugino rna~~es Ml,,, of the supersymmetry- 
(SUSY-)breaking trilinear scalar couplings Ai, and of the 
bilinear SUSY-breaking Higgs coupling B. If either sym- 
metry were exact, then when the “p-type Higgs boson 
acquired a VEV the down-type VEV would remain zero, 
so tan/7 would be infinite. (Of course we have in mind 
the usual scenario in which the Higgs boson mass matrix 
has a negative eigenvalue in the H, direction only.) Also, 
down-type quarks and leptons such as the bottom and 7 
would be exactly massless to all orders. We will see that 
these symmetries are the key to making large tan0 as 
technically natural as possible: just as the bottom mass 
can be made as light as needed by imposing the usual 
chiral symmetry, so the PQ and R symmetries can be 
imposed on the Lagrangian to varying degrees. Unfortu- 
nately, current bounds at the CERN e+e- collider LEP 
set strong bounds on how natural the large tanP scenario 
can be [l&21], as we discuss below. But PQ an,d R are 
still the key to alleviating as much as possiblethe need 
for fine tuning, and are also useful for classifying the var- 
ious superspectra and discussing their phenomenological 
consequences. 

If the symmetries are only approximately valid, one 
must specify at what scale this approximation holds: we 
will see that in very fine-tuned scenarios, the squark 
masses m,, evaluated at the electroweak scale are much 
smaller than their values MO at the GUT’scale, so an 
approximately symmetric GUT Lagrangian having p - 
M1lz < MO could yield a spectrum at observable ener- 
gies p N Ml/, N rno having no’ observable symmetries. 
Thus for those cases we will distinguish between having 
PQ and R symmetries at all scales, and having them only 
at high scales. 

In Fig: 2, we present the results of a detailed two- 
loop analysis, following Ref. [15bf the running modified 
minimal subtraction scheme (MS) bottom quark mass 
m&n& the top quark pole mass, and the approximate 
ratio tanP as functions of XC within the perturbative 
regime. We chose two sample values of the QCD cou- 
pling a.(mz), and considered, either exact or approxi- 
mate Yukawa unification, where the former is defined to 
be XF = Xf while the latter is exemplified by Xp/XS = 2. 
[There is in addition a slight logarithmic dependence on 
the superspectrum, as calculated in Ref. (151; for definite- 
ness we have assumed the spectrum singled out below, 
namely all squarks and sleptons and the pSeudoscalar 
Higgs bosons at N 600 GeV, while the’SU(2) gaugino 
and the Higgsinos are at N mz.] Also shown are the 
corresponding allowed ranges for mb(ma) extracted from 
the data on e+e- --t big using QCD sum rules [23]. We 
“se the values obtained in the analysis of Ref. [15], which 
update those in Ref. 1241. The uncertainty on na(tia) is 
essentially theoretical, being dominated by our ignorance 
of O(c$) corrections to QCD sum rules. In the absence 
of ba, VV~ could read off an allowed range of XG by requir- 
ing agreement between the theoretical and experimental 
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a,(mZ) = .115 a,(mZ) = ,125 

5.2 5.2 
5.0 5.0 
4.8 4.8 
4.6 4.6 
4.4 4.4 
4.2 4.2 
4.0 4.0 
3.8 3.8 

FIG. 2. The predic- 
tions of two-loop RG evolution 
(plus one-loop threshold car- 
rections) for the running bot- 
tom quark mass (in GeV), 
the pole top quark mass (in 
GeV), and tanp, as functions 
of the GUT-scale Yukawa cow 
pling Xo. To compute thresh- 
old corrections,, we assumed 
the preferred superspectrum of 
Eq. (22). The solid lines COT- 
respond to exact Yukawa uni- 
fication, while the dashed lines 
indicate XO g Xp = 2Xf 
as an example of approximate 
Yukawa unification. The val- 
ues of mb, after the finite COT- 
rections 6nu are added, should 
fall within the shaded bands in 
order to agree with the bottom 
mars as extracted from QCD 
sum rules 1151. 
values of ms; then both mt and tan0 could be predicted 
within some range. Instead, we can only determine the 
top mass (and tanp) as functions of 6,. 

Turning the argument around, for a given top mass 
we can calculate the amount of correction h needed to 
bring the bottom mass prediction into &?ement with 
experiment. We can then remove the tan0 dependence, 
leaving only the spectrum-dependent quantity 65. Ta- 
ble I displays these minima1 and maximal allowed values 
of $ and 6b. (Actually, these bounds on h and &z 
themselves depend,on the spectrum due to thres “h old car- 
rections, but this dependence is a weak logarithmic one; 
typically, the logarithmic variation in mt is at most a 
few GeV for the more interesting higher values of mt. To 
obtain precise predictions, ~though, all thresholds correc- 
tions should be included using a definite superspectrum.) 
We learn that a positive 6s must be quite small, while a 
negative 6b may be large enough in magnitude to bring 
high predictions of mb back into agreement with experi- 
mat. For example, when a,(mz) = 0.115 and X:: = Xg, 
superpartner spectra for which ]&,I > 5% allow a light 
top quark, whereas s@ectra for which IS,,1 ;1 16% man- 
date a light top, where by light we mean mt 5 160 GeV. 
Conversely, when Xt: = 2X:, a superspectrum for which 
ISal < 15% mandates a heavy top and favors a small 
a.(mz). Figure 3 translates this information into con- 
straints on me (the mass of the gaugino superpartner 
of the W) and @ at the electroweak scale, normalized to 
TABLE I. The consequences of Yukawa unification using two-loop RG evolution and one-loop 
logarithmic threshold corrections from the preferred spectrum of Eq. (22). For every value of the top 
quark pole mass we list the unified Yukawa coupling at the GUT scale, the minimim and maximum 
values of &m,fms needed to bring the bottom quark prediction into agreement with experimental 
data, and the corresponding values of the tan&independent qtiantity 66. ~ 
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m+.jmO 
.5 
.4 
.3 
.2 
.I 

a,(mZ) = ,115 
.5 .5 
.4 .4 
.3 .3 
.2 .,2 
.I .I 

50 
(b) Cc) 

a,(mZ) = .125 

FIG. 3. The values of p and 
the W-ino mass, normalized to 
a typical squark mass [specif- 
ically m$ = $(rni, + rni)], 

which allow proper bottom-T 
unification for large tanp. The 
shaded and hatched regions COT- 
respond to exact and approx- 
imate Yukawa-unified scenar- 
ios, respectively, while the solid 
and dashed lines represent the 
lower bounds imposed by LEP 
chargino limits assuming mo is 
600 (the preferred value) or 200 
GeV, respectively. 
a typical squawk mass mo (taken specifically to be m,~), 
for various values of the top quark mass, ‘a.(mz) and 
X:/Xf. Also shown are the lower bounds on m&n,, and 
~Jrno imposed by LEP chargino limits, for mo = 600 GeV 
(solid lines) or ma = 200GeV (dashed lines). Evidently 
the large, nonlogarithmic threshold correction &, is ac- 
tually of great use: since, unlike the typical logarithmic 
corrections, it is very sensitive to the superspectrum, we 
can use experimental measurements of the top mass to 
learn about the hierarchies in the superspectrum. And 
from a model-building viewpoint, we can exclude those 
theories in which the ,gaugino mass and p parameter do 
not fall into the allowed ranges shown in Fig. 3. 
To reemphasize the importance of the corrections to 

the bottom mass (see also [25]), we have studied the con- 
sequences of bottom-7 unification for arbitrary Xf/Xf, 
imposing only that Xc E Xp < 2 to ensure the validity of 
a pertwbative expansion. (A larger Xf would result in a 
weak-scale top mass very close to the fixed-point value, 
regardless of bottom-r unification. This fixed-point value 
depends on Xg and X2, as well as on a..) Ifi Fig. 4 we 

show the predictions for tan0 and n$“le, fixing the values 
of a.(mz) and mb(m~,) and integrating over all possible 
superpartner and pseudoscalar Higgs~ boson masses be- 
a&n,) = .I25 

FIG. 4. The ranges of top quark pole mass 
and tan0 allowed by bottom-T unification at 
MCUT, for different v&lues of the strong cou- 
pling and of the running bottom quark mass. 
We scan over’ all pbssible superspectra be- 
tween mz and 1 TeV, allow arbitrary Xp/XF, 
and restrict XO = xF < 2 to ensure perturba- 
tivity. The effects of the one-loop corrections 
66 are evident by comparing the black re- 
gions, for which 66 = 0, with the gray ones, in 
which -25% < 66 < 20%. These predictions 
are expected to be accurate to within a few 
GeV. The dashed horizontal line and hatched 
band are the top mass central value and an 
estimate of its uncertainty, respectively, as re- 
cently announced by the CDF collaboration 

[411. 
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tween rn.z and 1 TeV. The black regions correspond to 
6s = 0, while in the gray regions -25% < 66 < 20%. The 
effects of finite &, are striking. 

There is another immediate phenomenological impli- 
cation of the large one-loop corrections in the tanp >> 1 
framework [15,26]: the same diagrams, but with a photon 
attached in all possible ways and with a flavor-changing 
vertex as shown in Fig. 5, contribute to the bottom quark 
radiative decay b + ~7. These contributions, which for 
small tan@ are typically somewhat smaller than or com- 
parable to the two-Higgs-boson standard model contribu- 
tion, are parametrically enhanced by a factor of tanp N 
50 in the amplitude. But the CLEO bound [27] on the 
incltisive branching ratio B(b + ST) < 4.2 x lo@ (at 

95% C.L.) is already roughly saturated by the two-Higgs- 
boson standard model amplitude even if the charged 
Higgs boson is rather heavy (and is in fact oversaturated 
with a light, charged Higgs boson) Hence the large tan 0 
contribution must not be too large. 

For two reasons [28], we will focus our attention on 
the Yukawa-coupled (“primary”) chargino-exchange di- 
agram of Fig. 5(a) rather than the gluino-exchange di- 
agram of Fig. 5(b) or the gauge-coupled (L‘seconday”) 
chargino-exchange diagram of Fig. 5(c). First, through- 
out the relevant regions of parameter space, the primary 
chargino-exchange amplitude exceeds or approximately 
equals the other amplitudes in magnitude. Second, it 
is predominantly determined by the third generation, 
namely by stop exchange, and hence its magnitude is 
fixed by the Kobayasbi-Maskawa quark-mixing matrix el- 
ement V,. N I$&; in contrast, the other two diagrams arise 
from squark mixing between the second and third gen- 
eration, and therefore depend on an independent mixing 
angle, which we shall call 1123. The primary chargino di- 
agram also depends on the A parameter which mixes the 
SU(2)-doublet and -singlet stop squarks, but as we noted 
above, the RG equations typically f?x A at low energies 
almost entirely in terms of the gaugino mass (indepen- 
dent of the GUT-scale value of A). So the sign and mag- 
nitude of this diagram is completely calculable [14,16] in 
terms of the same parameters which enter &; we have 
found that, when 6s < 0, as must be the case for any 
sizable I&l, the chargino exchange amplitude J&- inter- 
feres constmctively with the standard model and charged- 
(a) Cd 

FIG. 5. The primary chargino, gluino, and secondary 
chargino diagrams which contribute to radiative bottom 
quark decay and are enhanced by large tap. Note that 
while the amplitude in (a) is completely predicted by 
third-generation parameters and Kv,s, the other two depend 
sensitively on intragenerational squark mixing parameters 
and may be equally important. 

Higgs-boson amplitudes (dSM and dH-, respectively). 
Hence there can be no cancellations between these, and 
the constraint on &- is more severe. On the other hand, 
the new angle I&, which determines the gluino and sec- 
ondary chargino amplitudes dc and A&, gets not only 
a contribution N Veb through the RG evolution, but also 
one from the flavor structure at the GUT scale. Since 
we would like to remain as model independent as possi- 
ble, we will not make any assumptions about this struc- 
ture, and thus 1123 will not be determined. By tuning the 
flavor parameters and thereby V,, one could cancel the 
various large tan/3 contributions to b + .vy against each 
other and avoid any bounds from this process. However, 
one should also be careful about other phenomenolog- 
ical implications of this new source of flavor violation. 
Since we are dealing with a grand unified theory, there 
is also a leptonic counterpart of the new mixing angle 
I&, and this gives relevant contributions to the rate for 
7 + ~7. A more detailed analysis of the potential for 
cancellations and of P(T + ~7) is presented elsewhere 
[28]. Our approach here will be to take into account only 
the sizeable and calculable primary chargino contribu- 
tion: in those parameter ranges for which it is small, the 
other amplitudes are typically also small and there is no 
conflict with experiment, while in those ranges for which 
dSM+dH- +.&- exceeds the experimental bounds, the 
other diagrams must be tuned to cancel against these am- 
plitudes. Our goal is to study when and to what degree 
such a cancellation is needed. 

We will use the following expressions [29] to calculate 
the limits on the MSSM parameters for large tan@: 
(sa,,/?r) [T+“~~A, + C]” 
B(b -+ “d N B(b -+ cep)I(mc/mb) [l - (2/3?r)a,(mb)f~c~(mc/mb)] 
where B(b + ceD) = 0.107,~ = a&nz)/a,(mb) = 0.526 
[using a.(mz) = 0.12 as a reference v&x?], c = -0.191, 

I(%/%) = 0.45, f~cm(m,/mb) = 2.41. The dimen- 
sionless amplitude is given by A, = dsM + An- + + 
where 

JqSM = ??.!?&, 
w 

(7) 



1560 RICCARDO RATTAZZI AND URI SARID 53 
and the various functions are 

p(z) = 
7-5x-82 

36(r - 1)3 
+ 2(3x - 2) lnz 

6(x-1)4 ’ (10) 

(11) 

In Eq. (9) we assume that t,he two stop mass eigen- 
values are roughly degenerate: (This is in particular a 
good approximation for the interesting situation in which 
the stop is heavier then the top and the diagonal soft 
masses are almost degenerate.) Notice that the crucial 
off-diagonal iris mixing has been factored out in &-. 
We have kept the exact dependence on the chargino mass 
matrix: 

We can now determine how large JL- can be with- 
out requiring some cancellation to avoid conflict with ex- 
periment. We find that if &- 3 0 then the two-Higgs- 
boson standard model exactly saturates the experimental 
bound for mH- = 1 TeV and mt = 170 GeV; for those 
values AH- N 0.15dsM. Assuming some theoretical un- 
certainty allows the charged Higgs boson to be signifi- 
cantly lighter: a 30% uncertainty in the branching ratio 
would allow a charged Higgs boson of 350 GeV (AH- N 
0.5dSM), while with a 50% uncertainty the charged Higgs 
boson can be as low as 250 GeV (Ax- N 0.75dm). For 
the ranges of top quark mass we are considering, the mt 
dependence is much smaller than such theoretical uncer- 
tainties. Now, if we add constructively a supersymmetric 
contribution equal to 50% of the standard-model ampli- 
tude, the branching ratio is 30% above the experimental 
bound without including any charged-Higgs-boson ampli- 
tude, or 50% above the experimental bound if we include 
a 25% charged-Higgs-boson contribution. (These val- 
ues correspond to taking the soft SUSY-breaking scalar 
masses to be roughly degenerate at - 700 GeV while the 
p and wine mass are at - mz, which we argue is the 
favored scenario.) The charged Higgs mass cannot be 
made too large without fine tuning the 2 mass, so a 25% 
charged-Higgs-boson contribution is a reasonable lower 
bound. Thus, to be conservative, we conclude that there 
must be SOW cancellations whenever &- > O.~&M, ei- 
ther km the other diagrams Figs. 5(b) and 5(c)] due to 
tuning of the flavor physics or from cancellations in the 
A parameter due to tuning of the GUT values of A and 
the gaugino mass. We define a measure of the need for 
cancellations as2 

f*,.,Gmin(I~/,l). (14) 

For example, if the chargino amplitude is 10 times greater 
than the saturating amplitude 0.5dm4, then some other 
contribution must be adjusted with a precision of 0.1 to 
cancel against it. In fact, we will never need the exact 
definition of E*+~+ all that we will require of it is that it 
be small whenever the chargino amplitude is considerably 
too big. 

IV. ELECTROWEAK SYMMETRY BREAKING 

Thus far, the existence of the electroweak-breaking 
Higgs VEV’s uu and us has been simply assumed. We 
must study the generation of those VEVs in order to 
understand how compatible is the idea of Yukawa uni- 
fication with radiative electroweak breaking, how the 
SO(l0) 01‘ SU(5) symmetry constraints on the soft SUSY- 
breaking mass parameters affect this breaking, how the 
topbottom mass hierarchy is obtained, and how natural 
or unnatural is such a scenario. This study will reveal 
favored ranges for the Yukawa couplings and the soft 
SUSY-breaking masses, and highlight the central role 
of the PQ and R symmetries in discussing electroweak 
breaking for Y&ma-unified models. 

Electroweak symmetry breaking is governed by the 
scalar potential for the neutral components of the two 
Higgs fields Hu and HD, which at tree level is of the 
form 

where g2 and g1 are, respectively, the SU(2) and hy- 
percharge gauge couplings. The parameters m&,D = 

$, D + $ contain the soft-breaking Higgs ,masses as well 
as ‘the p parameter from the superpotential, while B is 
the soft-breaking bilinear mass parameter. The condi- 
tions for proper electroweak breaking are well known: 

m; f m; 2 2lpBI (1’3) 

ensures that the potential is bounded from below, and 

m;n2, < p=B= (17) 

guarantees the existence of a minimum away from the 

%ince A,-- = 0.5dsM requires no more tuning than A,-- < 
0.5dsM,~we define ~b+.~ so it saturates whkn &- = 0.5dsM. 
For similar reasons we will define 6~ = min(B/mE, 1) and 
e,g E min(m~/m~, 1). 
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origin and so breaks the symmetry. In practice, since 
l@Bl will always be much less than or at most compxa- 
ble to lm;I and lrn’ 1, we can reduce these requirements 

P to m2, = vi& + mD > 0 (using ‘the expression for the 
pseudoscalar Higgs mass) and m$ < 0 (noting that large 
tan@ means that the uptype Higgs boson gets the large 
VEV). 

It is useful to interpret the two above conditions for 
proper symmetry breaking in terms of the usual custo- 
dial symmetry exchanging up and down-type particles. 
In practice we need m$ < 0 < mg, which represents 
a substantial violation of this symmetry. In the usual 
scenario, with the initial condition Xt > Xb,7, this cwto- 
dial violation is provided by the Yukawa~couplings them- 
selves. The large top Yukawa coupling drives negative 
the soft-breaking mass parameter of the “up-type” Higgs 
boson HU to which it couples, while the other Higgs bo- 
SOD is largely unaffected. Hence, even with custodially 
symmetric soft masses at MG, it is very natural to ob- 
tain [11,12], at the electroweak scale, m$ < 0 while the 
other Higgs-boson mass is sufficiently positive to ensure 
ms + m$ > 0. On the other hand, with unified or ap- 
proximately unified Y&&a couplings (xf/xf N I), it 
is hard to see why the two Higgs-boson mass parame- 
ters should run differently, so the natural explanation for 
m$ < 0 < rn; + mb is lost. In fact, with the bound- 
ary condition Xf = Xg, the only sources of custodial 
breaking in the couplings are the hypercharges and the 
absence of a right-handed neutrino (but presence of a 
right-handed 7). These furnish only a tiny splitting even 
when integrating f&n the GUT to the electrotieak scales. 
If such a splitting between rnc and rn% is to be - rnz 
then the soft-breaking masses themselves must be con- 
siderably bigger than mi. TO break the symmetry more 
naturally, custodial breaking must be enhanced. To this 
end, either rnc can be split by various means from m& al- 
ready at the GUT scale, or one may relax the requirement 
Xf = X2, which in any case is bound to be modified- 
either by a little, due to GUT-scale threshold corrections, 
or by a lot, in the case of mixed-SO(lO) or SU(5) models. 

Furthermore, in the usual scenario, if all mass param- 
eters in the scalar potential are comparable then sb are 
the VEV’s of the two Higgs doublets; but comparable 
Higgs VEV’s are perfectly compatible in the usual sce- 
nario with the experimental hierarchy mt > mb since 
that is furnished by the assumed hierarchy of Yukawa 
couplings Xt > Xs. By contrast, in a unified scenario it 
is the ratio of VEV’s which must be large. Upon min- 
imizing the scalar potential V,, one easily obtains (for 
large tax@) 

as well as rni = -2mc (which sets the scale). A large 
VEV hierarchy requires a small coupling between the two 
Higgs doublets, namely pB < rni + rni = ml, so that 
an expectation value in one is only weakly fed into the 
other. But this small Higgs coupling, as we now discuss, 
implies [21,16] a necessary degree of cancellation between 
some parameters at the GUT scale. 
V. GENERATING A HIERARCHY 

From Eq. (18) it is clear that to generate the bierar- 
thy of VEV’s (tar+ N 50) necessary for the top-bottom 
(and top-T) mass ratio, we need a small pB or a large 
m2 This is difficult: on one hand, ml = rnc + rng and 
m; = - 2mh run quite similarly and are tightly cou- 
pled through the RG evolution, so it is difficult to make 
m; much larger than the electroweak scale; on the other 
hand, /I cannot be much below the Z mass since otherwise 
a light chargino (or neutralino) would have been detected 
at LEP, and the RG equations imply that B is naturally 
at least as large as m%, which again cannot be much 
below the 2 mass without producing a light chargino or 
neutralino. To make these arguments concrete, we can 
rewrite Eq. (18) as 

The most natural scenario would display approximate 
PQ or R symmetries, with either p < mz or rnE N B * 
A < mz or both, while all other masses would be around 
mz. When tan0 > 1, such small p or rn~ result in a 
chargino muchlighter than mz. Alas, this scenario is now 
experimentally ruled out: specifically, LEP [30] places a 
lower bound of roughly 4 mz on the lightest chargino 

mass. A lower bound of i rnz on the lightest eigenvalue 
of the chargino mass matrix in Eq. (13) translates into a 
bound on the Lagrangian parameters of 

Subject to this bound, the prefactor pmw/m$ in 
Eq. (19) is minimized when fi = m+ yielding 

prng/rns 2 ?/4 + 2-‘&nwfmz N 0.88. Therefore, the 
parameters~at the GUT scale must be adjusted so that, 
at the electroweak scale, either B is much lighter than 
its natural minimum value N m@, or m$ is much less 
than its natural value N mi. (Note that in the first case 
tan@ is the quantity that is tuned to be small, while in 
the second case rns is tuned to be small.) We quantify 
these tunings by Ed and EZ, respectively [see the foot- 
note for Eq. (14)]. Thus the bounds from LEP imply 
that some GUT parameters must be adjusted to cancel 
with an accuracy of at least 

1 
EBEZ < - 

1 

tanp - 50 i 
saturated when/l N rnE N mz 

(21) 

and the least amount of tuning is required when /I and 
mF are roughly as light as they can be, namely both 
near the 2 mass. 

Equation (19) by itself does not distinguish whether B 
or rng should be tuned small; that is decided by a+.-,, 
which requires considerable tuning of the flavor sector or 
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TABLE II. Typical scenarios, and consequent fine tunings, for generating the Higgs VEV hier- 
archy 21~ N lj5Ovrr with or without the PQ and R symmetries. 
of the A parameter at the GUT scale if the superpartners 
and the pseudoscalar Higgs boson are near mz. Table II 
sketches four possible scenarios, distinguished by whether 
PQ and R are good symmetries (at low energies-m< 
are the sfermion masses at the electroweak scale). Note 
that ~BEZ favor the PQ- and R-symmetric case 01‘ the 
asymmetric case having all masses near mz, but that 
eb+a7 favors the former over the latter. Thus the most 
natural scenario as measured by these three criteria is the 
maximally symmetric one: a Lagrangian ([16]; see also 
the first reference in 1311) which is maximally PQ and R- 
symmetric while obeying the LEP bounds and keeping 
the superpartners as light as possible, that is, 

mu - mo - +$rns (- 600 GeV), 

p-A-B “m~“$n~-m~, (24 

where by m. we mean the typical mass of the squawks and 
sleptons evaluated at the electroweak scale. (To reiter- 
ate, we chose p - rn~ - $rn, because this is the most 
natural case allowed by LEP-if p or rn~ were smaller, 
mz would require further tuning to make it sticiently 
light, while if they were much larger we would lose the 
advantages of the PQ and R symmetries and the tuning 
would again be exacerbated.) This spectrum implies a 
small correction to the bottom mass, Sb - 5%, and hence 
(from Table I) a heavy top and preferably a somewhat 
low value of a,(mz). 

VI. CORRECT SYMMETRY BREAKING 

A. The general problem 

We return now to the question of how the electroweak 
symmetry may be correctly broken, while preserving the 
SU(3), x U(l),, gauge symmetries. In principle, what 
needs to be done is to study the effective potential Vee 
for field values ns 5 4 5 MG, where ms denotes col- 
lectively the soft SUSY-breaking masses and 6 is the Seth 
of scalar fields in the MSSM. In practice, since we are 
dealing with a perturb&w theory, we need only con- 
sider the RG-improved tree-level potential V,(A) renor- 
malised at. scales A between ms and i&u=. First, we 
must make sure that the potential is stable for A >> ms, 
i.e., that Vo(A) is bounded corn below at high scales. 
If this were not the case, the scale of gauge symmetry 
breaking would be N A >> ms, which is phenomenolog- 
ically unacceptable, and possibly even SU(3), x U(l),, 
would be broken. Second, we need to guarantee that at 
scales A - ms the minimum of &(A) is such that H, 
and Hd, and no other fields, acquire nonvanishing expec- 
tation values. This amounts to imposing some positiv- 
ity constraints on the sfermion mass-squared parameters, 
which we discuss below. Finally, since we are interested 
in large rather than small tap, the instability should 
arise in the H, direction, while the small Hd VEV is 
generated through the mixing mass parameter BP. 

An essentially technical comment is in order here. We 
will be mainly concerned with the parameters related 
to the third family and to the Higgs sector. This is 
because, in the limit in which flavor mixings and the 
Yukawa couplings of the two light families are neglected, 
the SUSY-breaking masses of these families have a nu- 
me&ally small impact on the RG evolution of the pa- 
rameters of the third generation and the Higgs sector. 
The only effect [32] is via the hypercharge D-term,S (see 
Appendix A), which is small because of the small hy- 
percharge gauge coupling. Moreover the effects of S are 
completely determined by its GUT scale value SG, since 
it renormalizes multiplicatively. Indeed with SU(5) or 
SO(10) boundary conditions on scalar masses, SG itself 
is completely specified by the soft masses of H,, and I& 
[since these are the only light incomplete matter SU(5) 
multiplets]. 

The relevant parameters then consist of the seven soft- 
breaking scalar masses & = m& - $, p; = m& - 

2, m$, mi, m$, mi2, and m$, the three trilinear 

soft-breaking parameters AQ,~, the single bilinear soft- 
breaking parameter B, the /I term in thesuperpotential, 
and the three gaugino masses. Their one-loop RG equa- 
tions are given for reference in Appendix A. 

Let us now discuss in more detail the constraints which 
these parameters need to satisfy. We begin with those 
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which must be satisfied, at scales A > ms. It is well 
known that the MSSM, like any generic SUSY model, 
possesses a host of “approximately flat” directions in the 
space of scalar fields 4. By “approximately flat” we mean 
that the potential, at the renormalizable level, is only 
quadratic in those directions. In general, though, irrele- 
vant operators suppressed by inverse powers of a large 
mass M such as MGUT or Mplanck can give an addi- 
tional stabilizing contribution [33]. To be conservative, 
we will always assunie the superpotential contains an ap- 
,propriate operator of the form @/M. ‘Then along any 
such direction parametrized by a field &, the potential 
is essentially (see below) given by w~~1~~1’ + Iq&lB/Mz, 
where rn: is equal to a sum of squared masses. Re- 
~gardless of the sign of mz, there is no minimum for 
q5a > Jm7;i\;i s Ahigh (- lo9 GeV for M = AtGUT), 
so parameters normalized at scales A > Ahigh can never 
yield an unwanted minimum. For &, < Ahigh, the poten- 
tial in dominated by the quadratic piece, though there 
may be a scale Alow below which a linear term may again 
stabilize the potential. In the absence of a linear term, 
the lowest scale of interest is Alow N ms, at which the 
superpartners are integrated out. If rn; > 0 were to be- 
come negative at a critical scale Al, < A1, < Ahigh, 
dimensional transmutation [34] would take place: the 
VEV of & would be fixed by the one-loop correction 
to the effective potential &(A) to be of order A, (times 
a coupling constant). (Notice that, in the absence of the 
irrelevant operator, if rni were to be negative already 
at, the GUT scale, then we would clearly be expanding 
around the wrong vacuum in the GUT theory.) In order 
to get acceptable low-energy physics we have then to im- 
pose m:(A) 2 0, for all approximately flat directions (Y 
and for all scales A between the Ah+, and A,oa, relevant 
to that 4,. 

When we restrict our attention to the fields of the third 
family and the Higgs sector, there are only two such flat 
directions: (1) (H,) = ‘(Hd) = 91, ,with all other fields 

=t_=*o; 2nd (2) (fL) = 42, (L) = (6; + 4z/~/Xa)“~, 

(Q) = (bc) = (h-$bJ1’2> with all other fields at zero 
[35]. The color and isospin orientations are determined 
by imposing vanishing D and F terms. Along 41 the 
potential is purely quadratic, V,(&) = mll$# with 
mf = m$ + rn; - 2lBpI. The stability constraint has 
already been given in Eq. (16). This constraint should 
be satisfied between Ahigh - lo9 GeV (to be conserva- 
tive) and Al, N ms. Along direction & there is also a 
linear term: 

For this flat direction, the dominant stabilizing term 
at high scales is the left-handed neutrino mass opera- 
tor (HuL)2/M~, where MN is ,the right-handed neutrino 
mass. Indeed the effect of this operator can be important 
down to Ahigh - 10’ GeV, since MN could be as low as 
1012-1013 GeV. At low scales, the linear term will stabi- 
lize the potential (provided rni > 0, which will always be 
the case). Therefore, as we show in Appendix B (see also 
Ref. [36]),~ the $2 flat direction can only pose a problem 
at scales above A,,,w - (2,/c+,/& .-.. IO4 - lo5 GeV. So 
we need to impose m?(A) > 0 at least for all A between 
A,,igh ? lo7 GeV and Alow N lo5 GeV. 

A general scan ~of the values of n&(A) at all inter- 
mediate scales would be numerically arduous. Fortu- 
nately, with only minor assumptions on the initial pa- 
rameters, m;(A) and m;(A) decrease essentially mono- 
tonically with A. Imposing positivity just at low A then 
guarantees the absence of unwanted vacua at all scales. 
Consider for instance the PQ- apd R-symmetric limit of 
the RG equations in Appendix A. Monotonicity of n& is 
clearly satisfied when Xt,a,r are positive throughout the 
running. In turn this condition is satisfied when the Xi 
start out positive and of comparable magnitudes (check 
for instance the entries in the matrix 3t in Appendix A, 
whose behavior in monotonic in A). In most interesting 
cases, the necessary positivity of masses at low energy 
will imply positive Xi at the GUT scale [for instance in 
minimal SO(lO)]. Introducing a finite ~1 does not alter 
the conclusions, as long as R symmetry is preserved. For 
small @ and large gaugino masses, the situation is also 
unchanged: in the,&& stage of the running, their contri- 
bution ton& is positive, but very small; however it soon 
becomes negative and its absolute value increases mono- 
tonically, when A is lowered, so again checking positivity 
of,mf,, at low scales suffices. Finally, when both PQ 
and R are broken, the above discussion applies straight- 
forwardly~to rni, but tiot to rnf due to the additional 
inhomogeneous piece B/L For this situation we have ex- 
plicitly verified monotonicity, for a wide range of initial 
parameters. We thus conclude that, quite generally, the 
imposition of the constraints at a,low scale is sufficient to 
ensure their validity throughout ,the RG evolution. Our 
analysis is thereby considerably simplified: we need only 
impose mf(A = ms - mz) N rni > 0 and 

m;(A N lo5 GeV) > 0 (24) 

to avoid an instability in the & and 42 directions. 
We note in passing that the constraints l?om flat direc- 

tions involving also the fields in the first two families are 
not a problem~for us. This is because their rnz always 
involve the soft masses for these fields, which are for us 
&sentially arbitrary and can thus ,be taken large enough 
to stabilize the flat directions. 

We next turn to the constraints on the potential at 
the electroweak scale. In what follows v+ will use just 
the tree-level potential V,(A). This approximation, dis- 
cussed in detail in Appendix C, is motivated by the fact 
that we are not concerned with precise predictions for 
the various masses, but rather with the characteristic hi- 
erarchies in the spectrum, with the rough bounds on the 
various parameters and with comparing the naturalness 
of varibus’&rameter choices. 

First, the scalar configuration with (Hu,,$ # 0, and all 
the other fields at zero, should be a local minimum. This 
will be the case if we impose that the MSSM parameters, 
evaluated at the electroweak scale, satisfy: 
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my(h = mz) > 0, i = Z,A,i,g,a,?,Z (25) 
where as before rn: = -2772; and m; = m; + m$. 
(Notice that in the above equation we have neglected 
any contribution to the sfermion masses coming from 
the Higgs VEV. We have also ignored the phenomeno- 

logical bounds on these masses, which yield somewhat 
stronger constraints: rnz 2 ms. However we stress once 
more that, for the purpose of studying the spectrum hi- 
erarchies and the naturalness of different scenarios, the 
above contraints are sufficient. Indeed, in most situations 
we will end up with sfermion masses well above mz.) 

A second class of constraints is needed to avoid having 
other minima with electroweak- or color-breaking VEV’s 
of order ms. Such minima can arise, even for positive 
sfermion masses, from the destabilizing effect of the tri- 
linear terms in the scalar potential. These are given by 
the soft A terms and also by the trilinear terms propor- 
tional to ~1 in the supersymmetric part of the scalar po- 
tential. In what follows we will mainly be concerned with 
necessary constraints, and will not enter into a compre- 
hensive discussion of the sui%ent ones. Let us consider 
the effect of A terms first. These were discussed in Ref. 
[37] where a necessary condition to avoid unwanted min- 
ima was given: mi + rng + rnt 2 1 Al’/3 (where a, b, e 
represent any three fields having a Yukawa coupling X, 
and A is the corresponding soft-SUSY-breaking trilinear 
coupling). When this condition is not satisfied, there is a 
color- and charge-breaking minimum with energy density 
- -ms4/X2. In the case of a light fermion this vacuum 
is considerably deeper than the usual Higgs boson one. 
For the top quark, X is sufficiently large, and ms is of- 
ten assumed to be sufficiently small, that this extraneous 
vacuum is not deeper (and typically shallower) than the 
ordinary vacuwn. This is why the A-term requirement is 
usually not applied to the stop. However, when there is a 
hierarchy rn~ > mz, the extraneous minimum, when it 
exists, is indeed parametrically deeper than the U(g2v4) 
Higgs minimum, so the necessary condition given above 
must be applied also to the soft parameters of the third 
generation. Similar arguments can be made for the tri- 
linear p terms, though we are not aware of previous dis- 
cussions in the literature. Now the triplets of fields in 
,danger of developing expectation va&es are those enter- 

ing the various p couplings: (H,,L,?), (&,a,;), and 
(&,6,2) [where the last member of each triplet is the 
SU(2)-singlet scalar field]. For instance, along the direc- 

tion (H,) = (z) = (?) = 4 the potential is given by 

V = (m; + n$ + mi’)1$j2 - 2/1X&43 + ~~~4~’ (26) 

where &t = A$ + (gf + gi)/2. To avoid a minimum away 
from the origin in the above potential, p must not be too 
big? 

‘Indeed one can find more general constraints by considering 
an arbitrary direction in the (H,,.?+i,) space. We are not 
interested here with such a general study-all we want to 
point out is that p cannot be much larger than the sfermion 
masses. Similar considerations apply to the A terms. 
Notice that, because of the D-term contribution to ;\f, 
the bound (27) is irrelevant when the Yukawa couplings 
are small (namely for sfermions of the first two fami- 
lies, or even 7 and b at small tan&) When p is some- 
what above this bound, an unwanted minimum with 
V N -#A$/XF is present. Again, for scenarios with 
a hierarchy ~1 > mz, this new vacuum is much deeper 
than the correct one. 

In the cowse of our study we have verified that the 
positivity constraints ,of Eqs. (24) and (25) are always 
stronger than those coming from the trilinear A and p 
terms, at least for the parameter ranges of interest to 
21s. Thus, while important in principle, the instabilities 
arising from trilinear terms in the scalar potential do not 
impose any constraints in practice. 

Next, we examine the evolution of the Lagrangian pa- 
rameters down to the electroweak scale. The form of 
the RG equations dictates that the soft-breaking scalar 
mass-squared parameters at the electroweak scale are lin- 
early related to their initial values, to the square of the 
GUT-scale gaugino mass i&l,, and to the square of the p 
parameter. (In fact there are also terms proportional to 
the GUT-scale values of the A parameters, namely cc A$ 
and c( AGM,~. As shown in Appendix A they can be 
neglected unless Ao is at least an order of magnitude 
bigger than the other GUT-scale parameters.) Thus the 
constraints of Eqs. (25) and (24), when saturated, con- 
stitute a set of eight hyperplanes in the space of initial 
scalar mass-squared parameters. When Mllz = p = 0, 

the low-energy masses rnz are just homogeneous linear 
combinations of the GUT-scale parameters M,?, so the 
various constraint planes determine a cone, or, rather, 
technically, a pyramidal surface, within which those con- 
straints are satisfied. Such a cone, drawn in the three- 
dimensional &pace of initial parameters for the minimal 
SO(10) theory as discussed below, is shown in Fig. 6. 
For finite gaugino mass, A or p, the constraint planes 
are shifted by finite amounts. If there was any allowed 

FIG. 6. The allowed “cones” in the space of scalar GUT 
mass parameters in the minimal SO(10) scenario with exact 
PQ and R symmetries, within which electroweak symmetry 
is correctly broken. Only the dominant (planar) constraints 
are shown: rns > 0, mi > 0, and rng > 0. Note the focusing 
of the solid angle f$r increasing XC, a consequence of the 
exponential homogeneous evolution. 
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solid angle for MI,z = A = ~1 = 0, the new allowed re- 
gion will be a truncated cone shifted from the origin. 
If there was no allowed solid angle for Mllz = A = 
p = 0, turning these parameters on can allow a finite 
(hyper-)polyhedron. In the absen& of running, that is, 
if the constraints of Eqs. (25) are evaluated at the GUT 
scale, the cone (or polyhedron) they determine spans a 
solid angle of order unity. As the parameters in Eqs. (25) 
are evolved to lower energies, the planes turn about the 
origin and the cone changes; it may even close completely, 
in which case proper electroweak breaking becomes im- 
possible. We will of course be interested in the cone 
evolved all the way to the electroweak scale; it is useful 
to remetiber that it is drawn in the space of parameters 
in the effective GUT-scale Lagrangian, and its bound- 
aries correspond to those GUT-scale parameter values 
which lead to the vanishing of particular scalar masses 
at the electroweak scale or of rn; at lo5 GeV-in other 
words, it encompasses the GUT-scale parameters which 
would lead to proper breaking at the electroweak scale. 
A narrow cone means that it is difficult to find GUT-scale 
parameters which will lead to a low-energy world similar 
to ours. 

B. The homogeneous evolution 

To understand the evolution of the cone, for the time 
being we restrict our attention to the homogeneous parts 
of the differential RG equations for the soft parameters, 
neglecting the gaugino, A, and p contributions. This not 

,only illuminates the functional behavior of the solutions,. 
but is also directly relevant for the case we have so far 
espoused, the PQ- and R-symmetric one in which the 
p and A parameters and the gauginos are much lighter 
I 
than all the other masses (except mz). In this maximally 
symmetric case the evolution is driven by the Yukawa 
couplings, which in turn depend on XG (and pc). 

For small XG there is little evolution, and the cone 
remains wide. Here ~there are no generic difficulties in 
satisfying the constraints for a wide range of initial pa- 
rameters. Whether such a range is available in particular 
GUT models is a question that will be answered in the 
next section. 

To understand the behavior for large XG, it is useful 
to change basis, considering certain fixed linear combina- 
tions M&f (where M is a constant .matrix) of the seven 
soft-breaking parameters. Appendix A contains the solu- 
tions, in this new basis, of the RG equations for the seven 
soft scalar masses, as well as for the three A terms and 
the B parameter, in terms of integrals over only the gauge 
and Yukawa couplings. The matrix M is chosen to sep 
arate the homogeneous part of the seven scalar mass RG 
equations into two classes: three of the linear combina- 
tions, denoted X,, X6, and X,, evolve essentially multi- 
plicatively, contracting exponentially as they evolve down 
to the electroweak scale. The other four, 11,2,3,4, are a@- 
proximately invariant. (Actually one linear combination 
of the Ii evolves slightly due to the hypercharge D-term 
S discussed in Appendix A, while three other indepen- 
dent combinations are truly invariant; but for the present 
purposes we can neglect S and consider all four li to be 
invariant.) Thus we find that, for large XG, the tbree Xi 
are exponentially suppressed at the electroweak scale rel- 
ative to thar GUT-scale values, and hence, generically, 
also relative to the four invariants li. In the limit of very 
large XG, at which the Yukawa couplings tend to their 
“fixed points” at low energies, the constraint equations 
constitute seven constraints in only four variables 13: 
Given the value of M in Appendix A, it is simple to check 
that, in the limit X + ca, there is only a trivial solution: 
Ii q 0. Tbis solution is highly nontrivial, however, in 
the sense that it requires adjusting the soft masses at the 
GUT scale such that they just cancel when combined into 
the Ii. At finite X the degree of cancellation needed is just 
the degree to which the Xi are suppressed; schematically, 
then, we must adjust the GUT-scale parameters to satisfy 

,I,,<exp($%t)X& i-1,2,3,4. (29) 

How much tuning is actually required in order to satisfy 
Eqs. (25)? We will determine numerically the allowed 
region of parameter space under various GUT-scale as- 
sumptions. Generically, one would expect a factor of 
exp[-(l/rz) J X2&] for each invariant which needs a can- 
cellation, hence {exp[-(l/n’) s A’&]}“. However, since 
the leptonic Yukawa coupling is considerably smaller 
than the other two over much of the RG evolution, and 
since one of th& invariants and one of the X’s are essen- 
tially determined by leptonic masses, a better estimate 
is {exp[--(l/ti’) J A’&]}“. To alleviate this tuning prob- 
lem, we should stay away from the fixed-point regime 
of large Yukawa couplings, or relax the PQ or R sym- 
metries (but then ege~ is made worse). Away from the 
fixed point, a splitting XF > Xc also helps. In the end, of 
course, the question itself only makes saw in a particular 
context: so far we have assumed there is no theoretical 
bias towards any relationship between the initial param- 
eters, except for the approximate PQ and R symmetries. 
In a GUT context there will be some definite biases. 

The large& fine tuning for the symmetric case is il- 
lustrated graphically in Fig. 6, assuming the SO(10) sce- 
nario discussed below in which only one contracted di- 
rection X and two invariants 11,~ play a role. The RG 
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h, = 0.4 h, = 0.7 A,= 1 

FIG. 7. The allowed regions for the same scenario as the previous figure, but projected into two dimensions by dividing by 
the typical GUT squark mass Mo. The GUT-scale Yukawa coupling is increased from left to right, and both exact Yukwva 
unification (black areas, solid lines) and approximate unification (light gray areas;,dotted lines) are considered. For Xc = 1 we 
also show the perturbed case X5/X? = 1.1 as the dark gray area and dashed lines. The lines delineate the half plane in which 
the corresponding mass squared is positive and hence acceptable. In the diagonally hatched regions rn% < rni, as discussed in 
the text. Finally, the vertically hatched triangles are the allowed areas assuming exact unification and a right-handed neutrino 
at MN = 10” GeV. 
equations’ for the seven soft masses are solved for three 
cases: XG = 0 (that is, without running), an interme- 
diate value of XG, and a large XG. The figure shows 
the cone in which the electroweak-breaking constraints 
of Eqs. (25) are satisfied, drawn in the space spanned by 
the three linear combinations of GUT parameters XG, 
11, and Is. Note that only a small number-three or 
four-of the constraints are the decisive ones, and once 
they are satisfied all others are as well; in this case, 
they are rn; > 0, rn: > 0, and rni > 0. ” see that 

near the fixed point, the cone closes up4 around the 
ray I, = 1~ = 0, meaning that if we do not tune the 
GUT parameters to lie in this ray, then the soft-breaking 
parameters at the electroweak scale will not satisfy the 
constraints. Then either electroweak symmetry will not 
break (rn; < .O), or the potential will not be bounded 
from below (rni < 0, leading to dimensional transmuta- 
tion at a scale much larger than the SUSY scale, and also 
to tanp N l), or an electromagnetically charged scalar 
will acquire a VEV. 

The contractions may also be seen analytically in terms 
of sum rules, which are particula,linear combinations of 
the electroweak-scale soft-breaking masses having only 
positive coefficients and chosen to, be independent of all’ 
the invariants. Linear combinations of the Xi with pos- 

4Actually, as evident from the figure, the cones close up be- 
fore they reach the ray I, = IZ = 0. This “premature focus- 
ing” is a property of the specific GUT boundary conditions 
and will be discussed below. 
itive coefficients can give such sum rules, for example, 
X, + Xb; These sum rules have the property that on 
one hand they are phenomenologically constrained to be 
positive (since &f > 0), but on the other h&d they 
are driVeti to zero by the RG equations as Xc increases. 
Schematically, we have, for our example, 

=Xtixb-exp(--$pdt) (X,+X&. (30) 

Since each of the mass terms in this equation should be 
positive, for large Xc they must each be made to evolve 
towards zero at low energies. Now, each mass term can 
itself be expressed as a sum of the X; and the Ii; since 
the Xi are exponentially reduced while the li remain in- 
variant, the soft masses can only evolve towards zwo ,if 
the various 1, are tuned to be small already at the GUT 
scale. In fact, the sum rules embody the same informa- 
tion as the planes in the constraint equations (25) and in 
Fig. 6. In particular,,there is a dominant sum rule corre- 
spending to the innermost set of planes which define the 
constraining cone; for the case of Fig. 6,, this dominant 
sum rule is rn; + $ (rn; + m$. It indicates which are the 
masses closest to saturating the constraints, and hence 
which are typically the lightest. Notice also that all the 
soft scalar Massey except the sleptons appear in the sum 
rule of Eq. (30), indicating, that essentially all these pa- 
ramete:s contract for large X0. ,The slepton masses also 
contract, according to another sum rule, but to a lesser 
degree. 

A vkry useful graphical way to describe the allowed do- 
main in the space of initial parameters is to project the 
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constraint planes onto the (hype)plane spanned by the 
various invariants. For the SO(10). scenario illustrated 
in Fig. 6 and described in detail below, the result is a 
set of lines in the plane of (I1/X~,Iz/Xc). To nor- 
malize the axes, we define a “typical soft scalar mass” 
Mo” t ~XG = iMmx2 + $Mms2, and use the more di- 

rect Lagrangian parameter Mx2 (see below) instead of 
12. The horizontal and vertical axes are thus shown in 
units of Mx’/M,Z and II/M:, respectively. Each line 
forms the boundary of the half-plane where one of the 
mf is positive. Figure 7 shows all eight lines, and empha- 
sizes the region allowed by the constraint equations (24) 
and (25), for three values of XG, and for various values of 
Xf/Xf. In general the allowed region is a polygon; for the 
PQ- and R-symmetric SO(10) case, it is usually a triangle 
bounded by the lines corresponding to the three masses 
which appear in the dominant sum rule rn;+: (m~+m~). 
Near an edge of the triangle, the corresponding mass pa- 
rameter is much smaller than all the others. The hatched 
region in Fig. 7(a) is where rni is - tanp - 50 times less 
than rn;, which is the favored scenario (as discussed in 
more detail below). Similar regions are indicated for the 
other triangles. 
C. Evolution and natural selection 

From the previous subsection, we conclude that if p 
and rn@ are chosen much smaller than the typical soft 
scalar masses so PQ and R are approximately valid, then 
we expect the allowed triangular area in the space of 
GUT-scale scalar masw to be small if XG > 0.7 and 
Xp = Xg (the focused case), and large otherwise. In fact, 
as we show below, both SO(lO)- and SU(5)-type bound- 
ary conditions on the scalar masses result in premature 
focusing: the triangles close up for finite XG values, not 
far above unity. Within the allowed triangle, therefore, 
a few particles-namely those which bound the triangle 
itself-are very much lighter than the rest. (In contrast, 
for AG + rn focusing all masses must become very light.) 

Now, if there is not much focusing, then all the scalar 
masses are comparable throughout most of the triangle, 
while in a narrow (- l/tan@) strip within that trian- 
gle rni is N l/tan@ times lighter than m$. Tuning the 
GUT scalar parameters to lie within this strip suppresses 
the large b -i sy amplitudes, and allows us to generate 
large tanp with no further tuning of B and without vi- 
TABLE III. The characteristics of exact and approximate Yukawa unification with SO(lO)-type 
boundary conditions on the scalar masses. For each of the six choices of X:/X: and Xc, four boxes 
are shown, corresponding to the presence of absence of approximate PQ and R symmetries (with 
p/Mo and M,I~~Mo shown respectively in square brackets). The first entry in each box is the 
aUowed area, the second is a typical spectrum, and the third lists the masses than can be decreased 
simultaneously with mz. See the text for further details. 
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TABLE IV. The characteristics of Yukawa unification with SU(5)-type scalar mass boundary 
conditions, in analogy with Table 3. 
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elating LEP bounds by taking p2 - M;j, - rn:/ tanp. 
If there is significant focusing, then within the small al- 
lowed triangle the particles which bound the triangle have 
masses, indicated collectively with rn;,,, which are much 

lighter than the others, so a hierarchy rn; L < rni x is 
invariably present. As we will see in Tab&s III and IV, 
rn2 and rni are always among the light masses, while 

?. mG IS always one of the heavy masses. Hence through- 

out the triangle the dangerous b --t sy amplitudes are 
somewhat suppressed, depending on the degree of fo- 
cusing. There is now no naturalness criterion to distin- 
guish between the following situations: either the GUT 
scalar parameters are tuned to lie within a narrow strip 
in this triangle, resulting in rn; N miltan@ N r& 
and requiring no further tuning of B since we can se 
lect p2 N Mf,, - mZZ - rni/ tanp and meet the LEP 
constraints; or the GUT scalar parameters are not ad- 
justed to be in the strip, so rn; N rni - rn:,=, but B 
must be tuned to - l/ tanp of its natural value because 
LEP requires us to select p2 N M;j, - rn; - rn;. To 
summarize: when the PQ and R symmetries hold at the 
GUT scale, if there is no focusing then they hold at the 
electroweak scale and the overall tuning need only be 
N l/ tanp; but if there is strong focusing then they can 
either hold or not hold at low scales, and in either case 
the need for tuning is greater than l/tan@ by the degree 
of focusing. 
Strictly speaking, the exactly PQ- or R-symmetric sce- 

narios are never allowed by LEP limits, so we should in 
principle always take /I and Mlp into account in evolv- 
ing the cone to low energies. But this would not quali- 
tatively change the discussion. Clearly, approximating /I 
or Ml,2 by zero is valid when there is no focusing and 
the symmetries are approximately valid at all scales. But 
even when there is focusing and some of the particles end 
up with small masses rno,~, introducing finite p or M,,, 
comparable to those Massey will only change the allowed 
triangle area and the light ma.s~es by order 1; in fact, if 
p or MI/Z are then increased beyond mo,&, the focusing 
is alleviated such that the new value of mo,~ is again 
comparable to p 01 Ml,,. 

If the PQ or R symmetries are not approximately valid 
at the GUT scale, the planes rn; = 0 which delimit the 
allowed volume are shifted, and the focusing is alleviated. 
(The exception is when p or Ml,, are too big in certain 
GUT scenarios-then the triangles once again close for 
finite values of X0.) Irrespective of focusing, the tuning 
is worse than - l/ tanp, its demonstrated schematically 
in Table II. However, we will reserve judgment on the 
breaking of PQ and R symmetries until after we have 
studied the SO(10) and SU(5) symmetry constraints in 
the scalar mass sector. 
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VII. GRAND UNIFIED SOFT MASSES 

A. SO(10) and SU(S) boundary conditions 

We now address the question of what values of ini- 
tial parameters arise ftom theories at the GUT scale. 
Since the idea of Yukawa unification is largely based on 
symmetry principles, it behooves us to consider the im- 
plications of those same symmetries for the various soft 
SUSY-breaking parameters. We have already employed, 
in our solutions to the RG equations, the assumption 
that gauge coupling unification is accompanied by gaug- 
ino mass unification, in order to reduce the number of 
independent gaugino rnms parameters to one. Let us 
now examine the implications of SO(10) or SU(5) sym- 
metries for the soft-breaking masses. As a special case, 
we comment briefly on the universal scenario. We also 
examine the threshold corrections due to a light right- 
handed neutrino. 

Consider fist the simplest SO(10) scenario, in which 
both light Higgs doublets originate from a single 10~ 

multiplet, or more generally any SO(10) model in which 
all the GUT fields from which the light doublets arise 
have degenerate soft masses. When SO(10) breaks, in 
general both D and F terms could split the scalar rnaase~ 
in a single SO(10) multiplet. D-term [38] splittings 
are generically present because the rank of the gauge 
group is reduced, but F-term splittings are more model- 
dependent and need not arise. For example, when SUSY 
breaking is communicated from a hidden sector only 
via gravitational interactions, the soft terms are very 
constrained [39]. This property leads, in the minimal 
missing-VEV models [40], to exclusively D-term split- 
tings. Therefore when we refer to SO(lO)-type bound- 
ary conditions we will only include D-term splittings, 
whereas more general F-term splittings will be encom- 
passed by the discussion of SU(5) boundary conditions, 
or when necessary by the completely general discus- 
sion. Accordingly, in SO(lO)-type mpdels the seven 
soft-breaking masses are determined at the GUT scale 
by only three soft-breaking parameters: the soft Higgs 
mass Mlofl, the third-generation soft squwk and slep- 
ton mass A&,, and a soft mass parameter Mx from a 
D term that is left over when the U(l)x symmetry in 
SO(10) is spontaneously broken. Recall that the rank 
of SO(10) is higher by one than that of SU(5) and of 
SU(3) 8 SU(2) 8 U(l)y, thus SO(10) > SU(5) @ U(l)x, 
where the generator of U(l)x is proportional to 3(B - 
L) + 4T3~. One common way to break this U(l)x and 
reduce the rank to that of the standard model is to in- 
troduce a pair of 16-dimensional Higgs representations 
having GUT-scale masses, 16~ and 163x, which acquire 
VEV’s in their ‘%R” ~components, thus preserving the 
SU(5) symmetry. When U(l)x breaks this way, its D 
term acquires a VEV proportional to the difference of 
the soft masses of the 16B and i&. This D term then 
contributes to the soft masses of the fields which cou- 
ple to U(l)x in proportion to their U(l)x charges. To 
quantify this contribution, we define a mass parameter 
Mx= = M&, - M& (31) 

(Note that this definition differs by a factor of 10 from 
the definition in ow previous work [16]. We chose the 
present definition because it is closer to the fundamental 
parameters of the grand-unified theory, and so is on the 
same footing as Mao,, and Mles.) It is the presence of 
Mx which allows,the up and down-type Higgs masses to 
be split at the GUT scale in almost any SO(lO)-unified 
scenario, and thus greatly facilitates proper electroweak 
breaking. 

In SU(5), of course, the two Higgs doublet superfields 
originate from different representations, 5~ and %,, so 
their soft SUSY-breaking masses are generically split. 
This is also the case in some SO(10) models, for exam- 
ple when the light doublets are mixtures of different GUT 
multiplets having different soft masses, or even when they 
both lie in the same SO(l0) multiplet but the soft terms 
are general enough to induce F-type splittings. Note 
that in this second case the Yukawa couplings are indeed 
exactly unified. For brevity, however, we will call any 
such boundary conditions on scalar masses SU(5) type. 
The seven soft masses in SU(5)-type models are deter- 
mined by four parameters: the two Higgs Massey Ms= 
and ME,, and the soft masses for the two representa- 
tions which contain the third-generation MSSM squarks 
and sleptons, Mg8 and Mm,. For comparison with the 
SO(10) case, we will recombine these four parameters 
into the same three combinations which occur in SO(10) 
plus an extra degree of freedom Msutsj, as follows: 

Mm,’ = ;(M,,’ + ME,‘), Mles2 E ;MI,,,’ + aME*“, 

Mx2 = $(Ms,’ - M5,‘) + i(M~o,’ - Mca2), and 

Msqq’ = ;(M.,,’ - ME,‘j + $(Mm,’ -ME,‘). [To 
reiterate: in an SU(5) context, the four quantities Mlox, 
J&~, Mx, and MS”(~) should be regarded just as conve- 
nient linear combinations of the underlying soft masses.] 

With these redefinitions we may write the seven soft 
masses at the GUT scale in either SO(10) or SU(5) as 

(Capital letters denote the parameter values at the GUT 
scale.) Their linear combinations Xi and 1; then take the 
form 
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A common assumption in much of the previous work 
on unified supersymmetric theories, and in particular 
in large tanp models (131, is a “universality” of soft 
SUSY-breaking scalar masses at the GUT scale. Un- 
der the universality assumption, MloR = Mla, while 
MX = MS”(~) = 0. We have not made this assumption 
because we do not expect it to hold at the GUT scale 
(whether or not it is a good approximation at the Planck 
or string scales) and because it requires [16] tremendous 
fine tuning of parameters to achieve proper electroweak 
symmetry breaking with large tanp. We will have more 
to say about this case in the discussion in Sec. VIIB. 

A much better motivated assumption is that the 
third-generation right-handed neutrino, that ‘is, the 
electroweak-singlet superfield which couples to vr, 
through a Yukawa coupling with Hv, has a Majorana 
mass MN smaller than MGUT. Theoretically, such a 
mass may arise5 from a high-dimensional operator in- 
duced at some scale M’ > MGUT (such as the string or 
Planck scale) and therefore be suppressed by a power of 
l/M’. Phenomenologically, a lower MN leads through 
the seesaw mechanism to a higher mass for the observed 
neutrinos, which may then explain various cosmological 
and astrophysical puzzles. In any case, as long as MN is 
not too fm below MGUT, its effects can be approximated 
by threshold corrections to the Yukawa couplings and to 
the soft SUSY-breaking scalar masses. If the SO(lO)- 
type boundary conditions XF = X$ E XG are valid, we 
can calculate the size of the corrections: 

The consequences will be discussed in the following sec- 
tion. 

B. SO(lO)-type GUT masses 

We iirst consider the symmetric, minimal SO(10) sce- 
nario: (PQ and R) symmetric in that p, A, B, and 
the gaugino masses are negligible relative to the vari- 
ous squark, slepton, and pseudoscalar masses; minimal 

‘This happens, for instance, in the absence of 126 + i% 
SO(10) Higgs multiplets and of R-odd gauge singlets. Note 
that in order to preserve the validity of perturbation theory 
it is better to avoid the 126 or bigger representations, since 
they contribute a large positive term to the gauge p-function 

PI. 
in that the two light Higgs doublets are contained in a 
10~ of SO(lO), so X:: = X2 (up to small threshold cor- 
rections); and SO(10) in that the soft-breaking masses 
are those that arise in a minimal SO(10) theory, hence 
M ~“(~1 s 0. Three independent dimensionful GUT-scale 
initial parameters specify the electroweak-scale conse- 
quences, and we choose them (as noted above) to be Mo” 
(= $‘~a,,~ + $Mmsz = $Xt” = fXb” = ix: G ix”), 

Mx’ (= ‘512) and 2Mlo,,’ - 3Ml~ ’ = I1. The third 
invariant is a linear combination of && and the first two 
invariants; it is not very constrained, since it is mostly 
associated with X,, which does not contract much. The 
fourth and last invariant vanishes identically by the 
SO(l0) symmetry. The evolution from the GUT scale 
to the electroweak scale, and the contraction of the al- 
lowed triangle towards small Mx and I1 as Xc increases, 
were illustrated in Fig. 6, or in projected form (in the 
space of Mx’/Mi and II/M:) in Fig. 7. Three features 
are worth noting 

(1) In the general case of seven independent initial soft 
mass parameters, we expect that the allowed region closes 
asymptotically as XG + co, when all four invariants must 
be set to zero to allow the three Xi to contract. Graph- 
ically, tbis means that the eight planes (or lines) corre- 
sponding to ?$(A = mz) = 0 and m:(A = lo5 GeV) = 0 
all cross at one hyperray 11,2,3,4 = 0 (namely the origin 
in the projected space). Instead, we see that in the sym- 
metric minimal SO(10) case the allowed region of param- 
eter space is bounded by the planes (or lines) rn; = 0, 
rn: = 0, and rna = 0 which cross prematurely, closing 
the allowed triangle for a finite value of Xc. The reason 
is that SO(10) boundary conditions are compatible with 
Il,z,a,4 = 0 only if all initial masses vanish, a trivial and 
uninteresting scenario. For nonvanishing MO, the restric- 
tive SO(10) boundary conditions can only be satisfied for 
sticiently small Xc. Just how small? Consider the sum- 
rule-like combination ms + $(m$ + rn:), which was cho- 
sen so that the invariant part is a negatwe definite quan- 
tity: (-211 - 712 - 1413 + 1414)/183 = -4/61Mi. The 
contracting part (-97X* + 216Xb + 7X,)/183 starts out 
positive, with a value 126/61M0, and contracts mono- 
tonically to zero as XG increases. H&ce the sum rni + 
$(m; + rn;) = (-97X, + 216X6 + 7X,)/183 - 4/61M,z 

must vanish for a finite XG. The critical value turns out 
to be XG N 1.2. Therefore in this minimal symmetric 
SO(10) case it is important that Xc is not only small, 
but in particular is well below - 1.2, for there to be a 
significant allowed region of parameter space. [If we wish 
to include the small contribution to this “sum rule” of the 
hypercharge D term, we can again find the proper com- 
bination of Massey in which the invariant part is negative 
and proportional to M,“. The result is 

but there is hardly any change in the conclusions.] 
(2) When the parameter space contracts, it does so 

around a nonzero value of Mx2/M,2. This highlights the 
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important role of the U(l)x D-term rna parameter in 
allowing both a negative rn; and a sufliciently positive 
rn;, even though the RG equations drive rn: down more 
than rn;. 

(3) Notice that the z+wed cone in the PQ- and R- 
symmetric SO(10) scenario of Fig. 6. is confined to the 
Mo” > 0 half plane. This result was used when dividing by 
Mo” to determine the allowed area in the projected space 
of Fig. 7. We have found that, in order to satisfy the low- 
energy constraints of Eqs. (25) and Eq. (24),‘@ must 
always be positive for all values of XG and X,“/Xf under 
consideration, and for SU(5) as well as SO(10) boundary 
conditions on the soft scalar masses, as long as the PQ 

and R symmetries hold. To meet the low-ener&y con- 
straints with negative Mo” inevitably requires very large 
values of ffiL”/Mil and sometimes of IM$/M,$; since 

these would require very delicate fine tuning of the GUT- 
scale parameters, we will assume A# > 0 for the remain- 
der of this paper. 

From Fig. 7 we can infer some properties of the uni- 
versality assumption when PQ and R are valid. The as- 
terisk (*) indicates the coordip+e (Mxz,I1) = (0, -Mo) 
corresponding to universal scalar mass boundary condi- 
tions at the GUT scale. Proper electroweak symmetry 
breaking occurs o&if XF and X2 are widely split, and 
then~ only for intermediates values of XG. Furthermore, 
to meet LEP constraints in the approximately PQ- and 
R-symmetric scenario, the value of XG must be tuned 
to achieve rni - ~7n~ < rn;. If on particular we 
set /2 - mg - m;/tanp and tune~Xo with a preci- 

sion - l/ tano to get rn; light enough, we end up with 
the minimally fine-tuned scenario at the lower-left car- 
ner of Table II. Thus the PQ- and R-symmetric universal 
case is allowed and only minimally tuned (via XG) if the 
Yukawas are widely split at the GUT scale. 

Figure 7 also illustrates the effects of threshold cor- 
rections due to a right-handed neutrino with a mass 
MN < MCUT. The verticall$ hatched triangles in Fig. 7 
shows the area allowed when MN - 1O1’ GeV. The - 5% 

correction t&the Yukawa~couplingS lowers Xp and so 
would reduce the allowed area, but the - 40% negative 
correction to M$ is far more significant and increases the 
area. The result is that ,the area remains - 0.1 even at 
XG N 1.0, comparable to that of the dark-shaded triangle 
[shown only in Fig. 7(c)] which would arise from,a typical 
- 10% threshhold correction to Xp/Xf. Notice, however, 
that the neutrino effect, in addition to being well moti- 
vated, also’favors a small Mx2 - 0; in~other words, the 
AM; shift can substitute for the shift produced by the 
U(l)x D term which was needed for proper radiative 
symmetry breaking. .A vanishing Mx2 could conceivably 
be achieved naturally by means of a symmetry. Finally, 
note that a light right-handed ne&no threshold is not 
sufficient to allow fwthe PQ- and R-symmetric universal 
case when Xp = X2. 

In Table III we display some charticteristics of the 
SO(10) scenario for various flues of X0 ,and of X2/X?. 
The heavy-dashed boxes correspond to the PQ- and R- 
symmetric case: the three on the left are for the minimal 
Higgs choice (Xf = XF), while the three on the right al- 
low for large Higgs mixing8 at the GUT scale (XF = 2X?). 
The top entry in each box gives the area of the allowed 
triangle using the coordinates of Fig. 7, namely Mx2/M,2 
and IJMZ. Also shown in some interesting cases are the 
larger areas that would result from a slight Yukawa split- 
ting (X2 = l.iXf) due to some slight mixing or thresh- 
old effect. Note that the area decreases rapidly as XG 
increases, indicating the aggravated need for fine tuning 
of the GUT-scale parameters. Of course, the value of the 
area depends on the choice of coordinates and the metric, 
which are $0 some extent a matter of taste. We use these 
particular coordinates because we expect them to be a 
priori of order unity, and so if the triangle area is much 
smaller than 1 then some tuning is apparently decessary. 
A crossed-out box indicates that the corresponding pa- 
rameter choice leads to a value for 66 incompatible with 
bottom-7 unification and the low-energy values for mb 
and rn, (though some of those boxes are nevertheless 
filled in for reference). 

The full superspectrum is completely determined, up 
to an overall scale, by choosing a specific point within the 
allowed triangle. For the PQ- and R-symmetric scenarios 
we are now considering, the middle of each box indicates 
the superspectrum that is typical near the light-m; por- 
tion of the triangle, shown as the hatched region in Fig. 7. 
[Recall that, while this region is - 50 times smaller than 
the triangle and hence by definition requires that much 
fine tuning, it leads to a hierarchical spectrum which is 
both phenomenologically allowed ancl requires no further 
tuning to ac+wz acceptable tanP and r(b + sr). Fur- 
thermore, far away from this region, mz is greater than 
p and rn% and hence is in conflict with LEP.] In most 
cases all the superpar+xs and the pseudoscalar Higgs 
have similar masses. However, when Xc is large and 
X,0 N Xf , the allowed triangle is small and therefore 
its ‘bounding particles, the pseudoscalar Higgs and the 
SU(2)-singlet bottom squawk, are somewhat lighter tl&n 
the other particles. And when XG is large but there is 
a, large topbottom Yukawa splitting, the SU(2)-singlet 
stop becomes relatively light. The last item in each box 
is the list of masses which can vanish simultaneously with 
mz: for the symmetric SO(10) case, they are always mz, 
mu and mg, as discussed above. In other words, we may 
choose parameters at the corner of the allowed triangle 
such that mu and mz are much lower than all the other 
superpartner niasses, or mg and rnz are much lower than 
the others. 

Figure 8(a) shows contours of fixed allowed area & 
functions of the size of the GUT-scale Yukawa coupling 
Xc and the amount of top-bottom splitting splitting 
Xp/Xf. The sharp bends occur when the n$ > 0 con- 
straint becomes more restrictive that the rn? > 0 con- 
straint, so the rate at which the triangle closbes is deter- 
mined by the evolutibn of rni, rni, and n$ rather than 
of rn;, rni and m$. Note the dramatic decrease in area as 

the maxi&d value of XG is reached for fixed Xf/XF-this 
is the premature focusing implied by SO(10) [and SU(5), 
as we shall se] boundary conditions on the scalar masses. 
The large-Xc, small-splitting region cl&rly requires very 
precise adjustment of the GUT-scale parameters. 
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SO(10): allowed area SU(5): allowed volume 

FIG. 8. Contours of constant allowed areas 
or volumes for SO(lO)- or SU(S)-type bound- 
ary conditions, respectively, assuming exact 
PQ and R symmetries. Notice that small 
X0 and large Xp/Xf values are favored, since 
they alleviate the premature focusing of the 
homogenous RG evolution. 
We next relax either the PQ or the R symmetry, or 
both, and once again ask for the allowed region in the 
parameter space of soft scalar masses. For fixed /I and 
Ml/z, the planes which delimit the allowed region are now 

shifted by fixed amounts .+ fi2 and ,-+ M;,,, so that they 
no longer intersect at the origin. We are actually most 
interested in the relative quantities g/Mo and Ml,zfMo, 
that is, the amount of PQ and R breaking relative to the 
other (soft scalar) mass parameters. So for fixed p and 
Ml,,, we should consider various slices of constant Mo in 
the scalar mass parameter space. (Such slices are in fact 
the projections shown in Fig. 7.) Small PQ and R break- 
ing corresponds to looking at large-Mo slices: at such 
large distances corn the origin, the small displacements 
of the planes are insignificant, and the allowed portion 
of the slice is essentially the same as in the symmetric 
case. Larger PQ and R breaking correspond to slices of 
smaller Mo, nearer the origin: the allowed portion of the 
slice may be large relative to the distance from the ori- 
gin, in which case there is no fine tuning, or the slice may 
not even inter&t the allowed region, in which case those 
values of p/M, and Mllz JMo are not allowed. 

We must also ensure that, within the allowed region, 6a 
is within the range allowed by bottom-T unification. ~[To 
calculate bs for a particular choice of pfM0 and M&Mo 
and a given value of a,(mz), we first determine the range 
of values of ma + rni within the allowed region of pa- 

rameter space, and then use Eq. (5); if any resulting 66 is 
acceptable, we allow that choice of p/Mo and M&M,p] 
In Fig. 9 we show the values of p/Mo and Mllz/Mo which 
lead to proper electroweak symmetry breaking (i.e., there 
is a finite allowed triangle) and acceptable bottom-7 uni- 
fication, for three representative values of X0, two values 
of a,(mz), and either Xp = Xf (shaded) or Xf = 2X? 
(hatched). Recall that Ml,2 is the gaugino mass at the 
GUT scale (which happens to roughly equal the IV-ino 
mass: rn~ = g$‘/g@fl,, ,N 0.85Ml,2) and MO is the 
typical scalar mass~also at the GIJT scale, while /I is 
evaluated at the electroweak scale. The allowed regions 
are all roughly “L” shaped. At their top and on their far 
right (when applicable), they are cut off by the require- 
ment of proper electroweak symmetry breaking, while on 
their lower-left and upper-right sides they are bounded 
by the limits on 66. 

Particular values of pfM0 and M&Mo are examined 
in more detail in Table III. Once again we consider three 
different values of Xc and either Xp = Xg or Xp = 2X:, 
which lead to the six major boxes of the table. Each 
is divided into four sub-boxes: the lower-left one is the 
symmetric case described above; in the lower-right one 
we break PQ, in the upper-left one we break R, and 
in the upper-right sub-box we break both the PQ and 
the R symmetries. (Note that these correspond spatially 
to the four corners of Fig. 9, as well as to Table II.) 
For each sub-box we have chosen an appropriate pair 
of [p/M,,, M&Mo] values from the allowed region of 
Fig. 9, and have indicated the allowed area of the tri- 
angle for those values. When choosing these v&es we 
avoided the boundaries of the allowed regions, because 
there the area is typically very small and hence (in some 
sense) unlikely. Clearly these choices are somewhat ar- 
bitrary, and there can correspondingly be some variation 
in the spectrum. Notice that when the allowed area is 
small in the symmetric case, raising p or Mllz has the 
expected effect of increasing the area (but recall the price 
one pays in E~EZ), since the focusing described above is 
alleviated. When either the PQ or R symmetries are 
approximately valid, it is still necessary to focus on the 
light-rnz part of the triangle (see Table II); when both 
symmetries are broken, much of the triangle is allowed 
by LEP and no part is selected by naturalness criteria, so 
we have arbitrarily chosen to look at its center. The mid- 
dle entry in each sub-box indicates as before the typical 
superspectrum for the appropriate region of the triangle. 
If the various squark, slepton, and pseudoscalwmasses 
for a given sub-box are all within roughly a factor of 2, 
we characterize them as “all comparable,” and otherwise 
we indicate which ones are significantly lighter;, mawas 
in parenthese are only marginally lighter (i.e., somewhat 
less than half the heavier masses). The bottom entry of 
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MdMo a,=.115 

FIG. 9. The regions of GUT-scale PQ and 
R breaking allowed by the constraints of 
proper electroweak breaking and bottom-T 
unification. The gray areas give the ranges of 
pfMo (where p is actually evaluated at a scale 
mz) and M,12fM~ assuming exact Yukawa 
unification, while the hatched regions assume 
Xp/X,G = 2. All assume SO(lO)-type scalar 
mass boundary conditions. 
each box shows once again the particles which can be- 
come light simultaneously with the 2’. If only one parti- 
cle is shown, the reason is that at the other vertex of the 
triangle the flat-direction mass rn: is negative at scales 
between lo5 and IO1 GeV, and hence,that vertex would 
lead to improper electroweak symmetry breaking. 

Returning for a moment to the universal scenario, we 
recall that if XF = Xg then the universal assumption is 
incompatible with even approximate PQ and R symme- 
tries. Indeed, when the Yukawa couplings are exactly 
unified the universal case requires a much bigger tun- 
ing [16]. The, reason is that when the scalar masses are 
universal the only sources of custodial breaking available 
for splitting rn& from rn% are the small effects of hyper- 
charge and X,. Moreover, in order to obtain rn& < rn% 
the gauginos must be very heavy. This can be represented 
by the low-energy relation rn% - rn; = E=M&, where 
ec is small positive coefficient representing the custodial 
breaking induced by hypercharge. Using this relation, we 
see that proper symmetry breaking, i.e., rn; < 0 < mg, 
requires tuning some parameter (Xc, p2, or M$,) to 

a precision of E,. Moreover, since rni = rn; + rni < 
ECM;,,, and since p - O(M,,,) to make rn; > 0 when 
the gauginos are heavy, we must tune B with a preci- 
sion eg N (fim~/mi)(l/ tanp) N &/tan@. Thus the 
overall tuning is at least - ec2/ tan@ - 1/tan2,& using 
the rough numerical approximation ec2 - 11 tan& Some 
more tuning is required to achieve an acceptably small 
rate for b + sy. And finally, with the large &, corrections 
that result from such a spectrum, the top mass is quite 
light and is therefore in conflict with the recent data on 
mt 1411. 
C. SU(S)-type GUT masses 

We can repeat the above analysis for SU(B)-type 
boundary conditions, that is, when the soft scalar 
masses need only be SU(5) Symmetric at the GUT scale. 
There are now four rather than three independent initial 
masses, and we will choose them to be Mo” (= ~MIo,,’ + 

Q&3, ’ = ~(M,,2+M~H2+M~~2)+~M~o~2], Mx2 [E 

~;(M~~Z-M~~~)+~(M~~~~-M~~~)], 2~~~~2-3~~~~~ 
[= Ms,’ + Mg,2 - $l&oaz - $fg,“], and Msu(s~z 

[c ;(MsH2 -ME,‘) + ~(Mms2 - ME,*)]. The allowed 
region in the three-dimensional projected space of ini- 
tial scalar mass parameters is now a volume bounded 
by planes, which in many cases is a tetrahedron [cor- 
responding to the allowed triangle in SO(lO)]. When 
the PQ and R symmetries hold, we find as for SO(10) 
boundary conditions that the asymptotically focused case 
XC --t OCI cannot be reached, since the four equations 
11,2,3,4 = 0 have no nontrivial solutions. Hence the al- 
lowed tetrahedroll closes for a finite X0 N 1.7, which 
can be seen by considering the evolution of the combina- 
tion mZ, + g(rn; + mg) + $miz = (-14Xt + 39X* + 
15X,)/34-6/34Mz (neglecting the small hypercharge D 
term). 

Table IV summarizes the consequences of imposing 
SU(5).type boundary conditions on the soft mass param- 
eters for various choices of XG and X:/X?, and for un- 
broken cr broken PQ and R symmetries, in analogy with 
Table III. This time it is the allowed volume, rather than 
the area, which is shown on the first line of a&sub-box; 
also shown are the sampled values of [p/Mo,M&Mt,]. 
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This volume is also plotted, as a function of XG and 
Xp/Xf, in Fig. 8(b). The choice of coordinates in the 
three-dimensional initial parameter space was as usual a 
matter of taste, so there is no objective way of comparing 
the allowed volumes in SU(5) with the allowed areas of 
SO(10). Qualitatively, however, it .seems clear from Ta- 
ble IV and Fig. 8 that SU(S)-type boundary conditions 
require less tuning, mainly because the additional degree 
of freedom Ms~(5~~ makes the Higgs splitting indepen- 
dent of the squark masses and hence more easily allows 
rn; < rn; without lowering rntE. The middle entry 

in each subbox describes the .typical spectrum near the 
rn; = 0 face of the allowed volume, ‘except for cases of 
broken PQ and R in which the spectrum is shown for 
a generic central point in the tetrahedron. The bottom 
entry shows which masses are allowed to vanish simul- 
taneously with mz; in general there are corners of the 
allowed region in which two of these may vanish along 
with mz, but which pairs may do so varies from case to 
case. Finally, notice that in some cases, such as XG = 1 
and A&,, = 0, the SU(5) entry shows that only rnA and 
rni may be light along with mz, whereas the SO(10) 
entry indicates that only mu and rn& may do so. The 
reason is that SU(5) allows the larger value p/Mo = 1 
indicated in that entry, for which indeed the sbottom 
cannot be made light but the stau can; at the smaller 
value ~/MO = 0.5 the SU(5) boundary conditions must 
and do allow the sbottom to be light, since they contain 
the SO(10) boundary conditions as a special case. 

Recall that in the PQ- and R-symmetric SO(10) anal- 
ysis, in which Msup)’ = 0, we were interested in the 
dependence of the allowed area on X0 and Xf/Xc, as 
depicted in Fig. 8(a). The analogous contour plot of the 
allowed SU(5) volume is shown in Fig. S(b). One could 
also ask for the volume allowed when the SO(10) scalar 
mass boundary conditions are perturbed in the SU(5) 
direction to the same extent that the SO(10) Yukawa 
coupling, boundary conditions are relaxed: namely, re- 
strict IMsupj2/Mol 5 XF/Xf - 1 (and then normalize 

the volume by dividing it by Xf/Xf - 1). The answer is 
very simple: up to a normalization factor of order unity 
(due to the arbitrary definition of unit area and ,unit vol- 
ume), the contour plot of this restricted allowed volume 
is similar to that of the allowed area in pure SO(10). We 
learn that, as we saw in the particular example of a light 
right-handed neutrino, small scalar mass splittings and 
small Yukawa coupling splittings affect the allowed area 
to a similar extent. 

Figure 10 shows to what extent the PQ and R symme- 
tries may be broken. As in Fig. 8, we outline the ranges 
of /L/M, and M&M,, which lead to a nonvanishing al- 
lowed volume in the space of initial scalar masses and to 
acceptable bottom-7 unification, for different choices of 

k> e/xg, and a,(mz). The permissible ranges extend 
to small fi and MI,, even when a fairly large &, is re- 
quired, because within the SU(B)-allowed volume one can 
find corners where m$ N rn; - rn; - /? - M;,, < Mo” 

so 6, is quite large. 

VIII. COSMOLOGICAL BOUNDS 

The stability of the lightest supersymmetric particle 
(LSP, which we denote by x) can lead to serious cosmo- 
logical bounds on the parameters of the MSSM. In this 
section we discuss these bounds in the large tano sce- 
nario. 

As a first constraint, the LSP has to be both electri- 
cally and color neutral [42], otherwise it would have been 
found in searches for exotic isotopes. This is typically not 
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FIG. 10. The allowed regions of PQ and R 
breaking at the GUT scale, in analogy with 
Fig. 9. 



3 UNIFIED MINIMAL SUPERSYMMETRIC MODEL WITH LARGE.. . 1575 
a problem for us. As we have seen, in the most interesting 
large tan/3 scenarios, either p or i!a’,,, or both are con- 
siderably smaller than all the other SUSY parameters. 
In these regions of parameter space the LSP can only be 
a neutralino or a chargino. By a numerical study of the 
4 x 4 neutralino mass matrix, we find that for tan@ > 1 
and with the LEP bounds on p and M,p the LSP is al- 
ways a neutralino. In the limit 1~1 + IMl,21 > mz, this 
property can be easily checked by performing a pertw- 
bative diagonalization of the mass matrix. 

The second constraint arises corn the LSP relic mass 
density p,, which must not exceed the critical density 
of the universe today pc = (1.88 x 10-29gcm-3)h2. We 
devote the rest of tbis section to this issue. We base 
our discussion on Ref. [43], where the lightest neutralino 
relic density was studied but without an emphasis on 
the parameter regions discussed in our paper. Recently 
the LSP abundance in the large tan@ scenario was also 
partially discussed in Ref. [31], and where our analyses 
overlap there is qualitative agreement. 

The contribution of x to the present Oh2 (where Sl G 
p/pc) is determined by how fast the LSP annihilates when 
it is nonrelativistic. In practice, C&h2 is roughly inversely 
proportional to the annihilation cross section oxx at a 
freeze-out temperature TF - rn,/20 [44]. In our case the 
composition of x and its annihilation properties depend 
crucially on p and Ml,,. Thus the PQ and R symmetries 
provide once again the right language for classifying the 
different situations. 

Let us first consider the approximately PQ-symmetric 
and R-asymmetric scenario rnz N p < Myz. In this case 
the LSP is predominantly a Higgsino. For rn, > mw 
the annihilation into W pairs proceeds with full gauge 
strength via t-channel chargino exchange. The rate is 
easily sufficient to emure that C&h2 < 1. For rn, i 
mw, one has to rely on annihilation into standard-model 
fermion pairs via s-channel vector boson exchange. Now 
the strength of the x couplings to the 2 plays a role, as 
does coannihilation both with the second-lightest neu- 
tralino x’ and with the lightest chargino x+ (in this case 
via s-channel W exchange). Define & = ~~ +c &pi, where 

%d are the neutral components of the Higgsino dou- 
ble&s. The mass-eigenstate fields for the LSP x and the 
second-lightest neutralino x’ are given by 

x=x++0 
(45) 

(The plus and minus signs obviously depend on our con- 
ventions.) The isospin quantum numbers of @, and 

np, are such that the vertices Zi+jL+ and 2x-&- van- 

ish, while &+i- has full gauge strength. For large 
Ml,,, Eq. (45) implies that the xx2 vertex is sup 

pressed by CJ (n~i/pM~,~) = 0 (mz/Mllz) relative to 
the xx’.?? vertex. A similar discussion applies to the 
coupling xx+W, which is not suppressed in this limit. - . 
l!tithermore, the splittings rn, - rn,, and rn, - rn,+ 
‘For quantitative estimates we used the formulas of Ref. [43], 
where only the effect of coannihilation with ,xJ was included. 
We expect that accounting also for coannihilation in the 
charged channel [46] will lower the final value of a,, and 
therefore strengthens our conclusion that there the relic LSP 
abundance is sufficientlv small. 

vanish like ni&/M+, so x, x’ and x+ are all present 
just before the LSP freezes out, and coannihilation is 
important [45]. Thus for ultraheavy gauginos the self- 
annihilation rate u(xx --t ff) is negligible but coanni- 
bilations o(xx’ + f.?? and u(xx+ + UC,. .) are impor- 
tant, since the mass splittings are very small. The 
result’ is that S&h2 < 1 1431. As Ml,, is lowered be- 
low - 400 GeV, the Zxx vertex becomes important and 
self-annihilation becomes dominant, leading once again 
to S&h2 < 1. At intermediate values of the gaugino 
mass, C&h’ reaches a maximum nmax - 10%. So the 
PQ-symmetric case does not suffer from an overdensity 
of LSP’S. 

As we lower Mllz down to - mz we recover the max- 
imally symmetric_ case. Now the LSP contains sizable 
portions of both h+ and h-, and the Zxx vertex has es- 
sentially full gauge strength. As a result fi2,h2 is always 
well below 1. 

Finally, let us study the effects of raising p to ar- 
rive at an R-symmetric and PQ-asymmetric scenario 
mz - Mllz << p. Now the LSP is predominantly a B-ino 

(the hypercharge gaugino): x - k. We will collectively 
denote the squark and slepton masses and also rn,, by the 
single mass parameter mo. In the limit p - mo + cc the 
LSP is totally decoupled and Q2,h2 is extremely large: 
all cross sections for B-ino annihilation vanish at least 
like n$/m~ or like l/($ tan’p). Clearly this poses a 
potentml problem for this scenario. For a quantitative 
study of the possible annihilation rates, it is useful to 
integrate out the heavy fields and obtain an effective La- 
grangian Lx, for the B-ino B and the SU(2) gauginos 

El, I = 1,2,3. We write 

cC,,=L1+L2+L3+L4 (46) 

in two-component notation as 
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where D is the covariant derivative acting to the,right, Yr 

and mp are respectively the f sfermion’s hypercharge and 
- - 

mass, W = W1~1 and 7r are the Pauli matrices. Ic1,2,4 
are obtained by integrating out the Higgsinos and the Hd 
Higgs doublet, while & arises from integrating out the 
sfermions. The dots represent higher derivative terms. 
We have approximated rn& N rni. Notice that ic., in- 
troduces also an 0(1/~?) overlap between the LSP and 

the Fs. The overall contribution of Icq to the LSP anni- 
hilation amplitudes is O(l/#). In fact the amplitude at 
O(l/#) gets contributions also from virtual B-ino and 
W-ino diagrams. 

Let us start from the PQ- and R-symmetric scenario 
and increase JL above - mz. Then, for intermediate 
values of p, the LSP annihilation cross section is deter- 
mined by & and t4, since all other terms above are 
either suppressed by a large scalar mass (rn?, rn;) or by 

l/ tanp. Focusing on & and &, we notice that the lead- 
ing 0(1/p’) contribution to the amplitude is only in the 
p wave. This contribution is determined by the first term 
in &, and its pwave character is easily seen by using the 
equations of motion in the limit of massless fermion8 (It 
is accurate to neglect fermion masses since we suppose 
x to be below the top threshold in the R-symmetric sce- 
nario.) This fact is of some importance since the LSP’s 
freeze out in the nonrelativistic regime in which pwave 
cross sections suffer a further suppression - T~/rn,. For 
rn, < mw, the LSP’s annihilate into fp pairs via Z- 
boson exchange, at leading order from the first term in 
&. We find that the relic density &h2 exceeds 1 already 
for p > 200-300 GeV (depending on how close mx is to 
$z~). The situation does not improve when rn, > rnw,z 
and all the bosonic channels WW, ZZ, Zh, and hh,are 
open and dominant. There are two contributions to these 
channels: a pwave term C= - l/p4 from the first term in 
Lz, and an s-wave term cd - 1 /ps from the second term 
in & and from virtual gaugino diagrams involving the 
first terms in & and Lc4. (As already stated we use Lz to 
explicitly display the suppression of s-wave processes, a 
fact also observed in Ref. [43]. For quantitative estimates, 
we calculated 0. by returning to the partial wave ampli- 
tudes given in Ref. 1431.) In the limit rn, > mz, vp is 
dominated by final states with zero helicity (longitudinal 
vector bosons and scalars). The amplitude in this case 
is readily given by the annihilation into Goldstone and 
Higgs bosons from the first term in Lz via the equivalence 
theorem. For the purpose of our qualitative discussion we 
only kept this leading term. (We expect the complete re- 
sult not to be drastically different in the region rn, N mz; 
in fact we checked this explicitly for xx --t WW by using 
the formulas in Ref. [43].) Using these estimates for vaIp 
we find, again, that C&h2 > 1 for /L 2 250 GeV. We 
are thus led to the interesting conclusion that we cannot 
essentially move away from the PQ- and R-symmetric 
scenario towards the PQ-asymmetric one, if all the other 
superpartners and the pseudoscalar Higgs are very heavy. 
Nonetheless the moderate fi - 200-300 GeV scenario is 
interesting, since in this case the LSP could account for 
all the dark matter and give fi = 1. 

When p exceeds - 300GeV some other particle 
(namely the pseudoscalar Higgs or some sfermion) has 
to be lighter in order to avoid an overdensity of LSP’s. A 
quick inspection of the above effective Lagrangian shows 
that, by lowering rn: or some rn;, only the annihila- 

tion into fj can be significantly affected [the amplitude 
into bosons from LI is O(l/tanfl)]. This process can 
be mediated by (I) t-channel f exchange via Cs, or (II) 
s-channel pseudoscalar Higgs exchange via LI. In case 
(I) the amplitude is p wave and the effective vertex is 
N l/m>. Supposing a sfermion f is relatively light, we 

get the following estimate for the B-ino-like LSP relic 
density: 

where Yf is the fermion hypercharge (so Yp = l/3) and 
cf is the dimension of the f multiplet (so 1‘0 = 6). Thus, 
leaving all the other fine tunings untouched, an accept- 
able 0 requires an additional tuning rn; to at least an 

order of magnitude below its natural scale. The ampli- 
tude for case (II) behaves like l/lm& but is in the s 
wave. In this cake only the final states bb and 77 are rel- 
evant (the lighter fermions are suppressed by the small 
Yukawa couplings). We estimate 

(52) 

(We are being a little sloppy in the above equations by ne- 
glecting rni terms in the sfermion and pseudoscalar Higgs 
propagators, but the conclusions would not be changed 
much by a more careful computation.) Notice that even 
though the above 0 scales like rn& the result is compa- 
rable to that in Eq. (51). This is partially due to the 
s-wave enhancement. We see once again that if p is in- 
creased from its minimally allowed value, then some mass 
parameter (rni in this case) must be made light to meet 
cosmological bounds. Typically, such a requirement en- 
tails some further tuning of some GUT-scale parameters. 

Which annihilation channel is more likely? Assuming 
SO(10) boundary conditions on the scalar masses, Table 
III shows that the only particles that can be made very 
light (i.e., comparable to mz) are the pseudoscalar Higgs 
and the sbottom, while for SU(5)-type boundary condi- 
tions Table IV adds the stau to this list. Hence efficient 
fermion production through sfermion exchange [case (I)] 
requires making mg N 100GeV or rni - 200GeV [un- 
der SU(5)-type conditions]. Efficient fermion production 
through pseudoscalar Higgs exchange [case (II)] need not 
require rn~ to be quite as light (depending on p), but 
recall that lowering rn~ also increases the need to tune 
B in order to generate large tan@. So both channel are 
roughly equally unlikely. There is, of course, the possi- 
bility that the iirst- or second-generation sfermions are 
light-their initial values need not be related to those 
of the third generation, and their evolution is essentially 
decoupled from the third generation and Higgs sectors- 
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in which case they could remedy the difficulties with the 
R-symmetric, PQ-asymmetric scenario. 

We conclude that whenever /I is small, whether the 
gauginos are light or heavy, the cosmological density 
of the LSP is well below critical. In the large p but 
light gaugino case, LSP annihilation is unacceptably sup- 
pressed if all the other superpartner and pseudoscalar 
Higgs masses are large. The annihilation rate can be suf- 
ficient if some of those masses are lowered, either through 
fine tuning of rnA, rna, or rn+, or perhaps by appealing to 
the yet-unspecified first two generations of squarks and 
sleptons. Needless to say, the course nature has chosen 
will be definitively revealed by future measurements of 
the superspectrum. 

IX. CONCLUSIONS 

In this paper we have studied some of the consequences 
of large third-generation Yukawa couplings in the min- 
imal supersymmetric extension of the standard model, 
subject to various grand unification assumptions. We 
have focused our attention on the two cases X: = X; = 
Xp and X:: = Xf N X2 imposed at the GUT scale 
- 1016GeV, but most of the conclusions are qualita- 
‘tively unchanged if these conditions are instead enforced 
at the Planck or string scales, and a few general features 
remain even if one only assumes th&X, N X6 - Xt at 
some very high scale. For example, the need to tune some 
parameters to at least one part in fifty (- mt/mb) is a 
generic consequence of LEP bounds and the structure of 
the MSSM Lagrangian. This is also perhaps the most 
bothersome conclusion: as long as the top and bottom 
Yukawa couplings start out comparable at the GUT scale, 
.there is no way to both explain the top-bottom mass hier- 
archy naturally (in the technical sense) and avoid tuning 
rni << ms2 But if this one bitter pill is grudgingly 
swallowed, the remaining,features of the large tano sce- 
nario are intriguing. Let us assume for the moment that 
there is no theoretical bias about physics at the GUT 
scale other than the existence of a GUT. Then, if we ask 
that an SU(3), x U(l),,-invariant vacuum as well as the 
experimental rate of b + ST are to be typical rather than 
unlikely outcomes of the GUT-scale parameters, and fur- 
thermore that the prediction for mblmT agree with its 
experimental value as extracted using QCD sum rules, 
then the following occurs. 

(I) The Lagrangian at the GUT scale should display 
approximate PQ and R symmetries. 

(II) The value of the unified Yukawa coupling should 
either be & ZT 0.6 - 0.7 if the Yukawa couplings are 
exactly unified (Xf = Xp E XG), or be Xc 2 0.8 if the 
Yukawas are significantly split (for example, 2X; = Xf = 
X0). 

(III) If the Yukawa couplings are exactly unified, the 
soft SUSY-breaking scalar masses at the GUT scale 

should be SU(5) but not SO(10) type, while if the 
Yukawas are split then they can be of either type. 

(IV) Threshold corrections to the SU(3), gauge cou- 
pling at the GUT scale must be significant and negative 
relative to the SU(2)xU(l)y couplings. 
All of these features have phenomenological, testable 

consequences. We expect the following. 
(I) Light charginos and neutralinos, which may furnish 

tantalizing signals at LEP II and would definitely be seen 
at the LHC, and large masses for the squarks and sleptons 
(at least of the third generation), the pseudoscalar Higgs 
and the charged Higgs bosom [see Eq. (22)]. 

(II) Either a top mass between 160 and 170 GeV if the 
Yukawa couplings are exactly unified, or mt 2 175 GeV if 
they are significantly split at the GUT scale; the Yukawa 
splitting at A&UT is reflected in the superspectrum, for 
example in a light stop, or better yet in the mass combi- 
nation (Xt - X,)/(X, + Xa) defined using Appendix A, 
which is very sensitive to both Xp/X: splitting and to 
the departure from SO(10) boundary conditions on the 
soft scalar masses (see the next point). 

(III) A large value for the (almost) invariant combina- 
tion 14 = &+&+Qn$- $n$-$mi2+fmt2, at least 

if the Yukawa couplings are exactly unified, since SO(lO)- 
type boundary conditions have vanishing &u(5)’ = -4. 

(IV) A value of a,(mz) N ,115 somewhat below the 
central gauge unification prediction. 

In particular, if feature (I) is actually borne out by 
future discoveries, that is, if rn; < ms2 (where ms 
is a typical soft-breaking scalar mass) is transformed 
from an unnatural assumption to simply an experimen- 
tal fact, then the large tan@ scenario is as natural as 
the small tan/3 conventional one. The two offer very 
different explanations of the top-bottom mass hierarchy. 
But the large tanp scenario offers a more robust test of 
the bottom-T unification hypothesis, since if X6 and X, 
are order 1 at the GUT scale they should be much less 
subject to perturbations by other operators. In other 
words, the conventional scenario suffers from uncertain- 
ties in bottom--r unification from physics at remote scales, 
while with large tanp the uncertainties are at low ener- 
gies and hence are imminently accessible. As a result, 
only for large tan@ is there a tight relationship between 
mt, me, rn,, and t,he superspectrum. 

It is important to note that some of the above pre- 
dictions strongly depend on the allowed range for the 
bottom mass. The uncertainty in this rna% is dominated 
by our estimate of the theoretical error in the QCD sum 
rule extraction. If, for example, we would know that 
rn&~) < 4.15 GeV, then the top mass would be at least 
170 GeV for exact Yukawa unification or at least 180 GeV 
for split Yukawa couplings, and the former would be dis- 
favored because of the tuning mandated by its large Xc. 
The upper bound on a.(mz) would also be strength- 
ened, ,and would rely less on fine-tuning arguments. Of 
course, the experimental uncertainty on a,(mz) must 
be reduced to convincingly test these predictions. But 
it is conceivable that in the next decade we will know 
the superspectrum well enough to calculate L% and the 
logarithmic threshold corrections; if we can also extract 
the bottom mass to O(a;) and measure the top mass to 
within a GeV, then precision tests of Yukawa unification 
at the GUT scale would be within our reach. 

After this work was essentially completed, the Collider 
Detector at Fermilab (CDF) and D,0 collaborations at 
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Fermilab announced the long-awaited discovery of the 
top quark [41]. The PQ- and R-symmetric scenario we 
have advocated predicts a top mass that agrees very 
well with the values determined by these experiments: 
whereas we predict 160GeV < mt 5 190GeV (using 
the approximate fixed-point value as an upper bound), 
CDF measures mt = 176 f 8 f 10 GeV, while Dfl makes 
the less precise determination mt = 199’fy f 22GeV. 
The argument can of course be reversed: the measured 
value of the top mass lends further support to a PQ- and 
R-symmetric Lagrangian. As the uncertainty in mt is 
reduced, it will serve as an increasingly powerful test to 
distinguish the various scenarios we have considered. 

How did we arrive at the most likely set of parame- 
ters? As sketched in Table II, if the hierarchy vu > ‘UD 
and the suppression of r(b + sr) are to be obtained 
most naturally, the PQ and R symmetries should be 
approximately valid but without making the typical su- 
perpartners too heavy nor the charginos and neutralinos 
too light: the most desirable superspectrum hierarchy 
is pfmo N m%fmo - l/7. [In highly focused situa- 

tions, such as SO(10) with X2 = Xf > 1, there can be 
two mass hierarchies, but since such situations are always 
more fine tuned they are not presently relevant.] From 
Fig. 3 and Table I, we learn that the resulting value of 
66 (- 5%) is compatible with bottom-7 unification only 
if (la) Xc > 0.6 and mt 2 160GeV for a. N 0.115 or 
(lb) XG > 1 and mt 2 180GeV for a, N 0.125, if the 
Yukawa couplings are exactly unified; or (2) XG > 0.8, 
mt > 175 GeV, and a. - 0.115 if the Yukawa couplings 
are significantly split at the GUT scale. Then turning 
to Fig. 8, we conclude that case (la) can be saved from 
further tuning by allowing SU(5) scalar mass boundary 
conditions and keeping XG below roughly 0.7, but case 
(lb) would always require large tuning because of its 
large XG. The approximately unified case (2), on the 
other hand, can be naturally obtained by either SU(5)- 
or SO(lO)-type scalar mass boundary conditions. Scenar- 
ios (la) and (2) are therefore the two we have proposed 
as the most likely in the absence of more specific model- 
building biases. 

What GUT models would yield these preferred scenar- 
ios? Our original motivation for studying unified Yukawa 
couplings was provided by the minimal SO(10) scenario, 
in which both light Higgs doublets lie in the same 10x 

multiplet. This is the case, for example, in the simplest 
implementation of the Dimopoulos-Wilczek missing VEV 
mechanism 1401 for solving the doublet-triplet splitting 
problem. In such models, the soft SUSY-breaking pa- 
rameters which remain after integrating out the heavy 
GUT sector can be rather constrained. This is indeed the 
case when SUSY breaking is communicated to the GUT 
sector only via gravitational interactions with a hidden 
sector. Consequently, the structure of the soft terms is 
tightly linked (see, for example, Ref. [39]) to the GUT su- 
perpotential. It can then be shown that the only source 
of Higgs splitting for minimal missing VEV models is the 
D terms, so the SO(lO)-type scalar mass boundary condi- 
tions hold. Therefore, to allow the tieedom of SU(S)-type 
boundary conditions favored in scenario (la) above while 
preserving the unified Yukava relations Xf = Xg = XF, 
more general soft terms would be required. With such 
terms, as may be produced when there is moduli field- 
dependence of the GUT superpotential couplings [47], it 
may be possible to induce additional, F-type splittings 
between the MSSM, particles. If scenario (la) were sup- 
ported experimentally, it would thus shed some light on 
the mechanism which breaks supersymmetry. On the 
other hand, when the Yukawa couplings are split at the 
GUT scale, as in the second favored scenario above, the 
tuning can always be made minimal by using the PQ and 
R symmetries. Split Yukawa couplings would be com- 
pletely expected in SU(5) models or as a consequence of 
string theory, but they could also arise in SO(10) mod- 
els when the light Higgs doublets originate in several 
SO(10) multiplets. Note that even with universal GUT 
scalar masses the fine tuning can be minimal (that is, 
- l/ tanp) if Xp/Xf is significantly greater than unity. 

If we do espouse some particular class of models, we 
may be willing to accept a scenario which requires tuning 
to better than one part in fifty. For example, the sim- 
plest SO(10) scenario with D terms as the only GUT 
source of Higgs doublet splittings requires roughly an 
extra order of magnitude in tuning. But theoretically 
it is appealing for its simplicity, and its tuning can be 
somewhat mitigated by the, phenomenologically favored 
light right-handed neutrino (which for large tanfl does 
not impair bottom-T unification [15,19,20]). Moreover, if 
a model were sufficiently predictive to specify the GUT- 
scale boundary conditions in terms of few unknown pa- 
rameters or even none, then the conditions we have spec- 
ified for proper electroweak symmetry breaking would 
either be fulfilled-in which case the model ,would not 
be fine tuned but rather remarkably predictive-or not 
fulfilled, in which case it would be ruled out. We do not 
know of any such models at present; until a candidate 
is found, we can only offer arguments of naturalness to 
point us in the right direction. 

If we are willing to sacrifice some naturalness, then also 
the PQ or R symmetries may be relaxed. Note that relax- 
ing both would lead to a large 6a and hence a light top, 
in contradiction with the recent measurements of CDF 
and Dfl; therefore the typical SUSY-breaking scalar mass 
must be significantly above rnz. Also, without these sym- 
metries other flavor-changing neutral current processes 
beyond b + sy may be problematic. In any case, the 
requirement of proper electroweak breaking does not sig- 
nificantly favor one symmetry over the other. Cosmo- 
logical upper bounds on the relic LSP density, however, 
favor a spectrum that is only PQ symmetric over one 
that is only R symmetric. This is of benefit to models 
(see, for example, Ref. [48]) in which the p problem is 
solved by generating p radiatively from gaugino masses 
or A terms, typically leading to @ - aMl,z. On the other 
hand, with light gauginos and large p the predominantly 
B-ino LSP annihilates inefficiently and “overcloses” the 
universe. To reconcile the predicted LSP relic abundance 
with the measured age of the universe, one of the super- 
partners or the pseudoscalar Higgs must be tuned light, 
or else PQ symmetry must be partially restored by low- 
ering /I down to 200 - 300 GeV. Of course, at the edge 
of the allowed range for these parameters, the LSP is a 
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prime candidate for the dark matter. 
There are many aspects of the Yukawa-unified MSSM 

beyond the question of naturalness. In Appendix A we 
give the exact, semianalytic solution to the complete bne- 
loop RG equations for the third generation and the Higgs 
sector. Understanding their behavior tinder various as- 
sumptions and boundary conditions was a prime topic 
in our study. Sections VIIB and VIIC addressed the 
relationship between these boundary conditions and the 
superspectrum, and presented the ranges in which p and 
Ml,? must fall to allow proper el.&oweak symmetry 
breaking. The eff&s qf a light (relative,to A&UT) right- 
h&led neutrino threshold were e&ined and found 
helpful.to symmetry breaking,~s+le it is known that Fhey 
haye negligible impact on b : 7 unification, at large tanp. 
The process b -+ sy, was reexamine& and the possibil- 
ity of capz&tioy between various diagrams ~enhanced 
by lar& tanb were identified. Finally, y+@ous,iss.ues se- 
garding ~pr?pcr electrqweak br+ing were r@sed and re- 
wived: the &o flat directions which could destabilize the 
scalar potential, and the scales at which they could pose 
a danger; th: constraints on the trilinear A parameters 
even for third-generation sfermions due to. the hierarchy 
rni < ,ms2’i.:+nd similar constraints on the trilinear p 
couplings which are often neglected. 

The implications of a hierarchy in the Higgs expecta- 
tion values rather than in the third-generation Yukawa 
couplings are surprisingly rich. Many aspects df the 
MSSM are qualitatively changed by this assumption, and 
the phenorixnological consequences of these changes are 
clear and accessible:to the next generation of accelerator 
(and perhaps dark matter) experiments. Therefore the 
large tan’fl scenario offers a qualitatively diff&&t alter- 
native to the often-used small tano “standard”~‘super- 
symmetric model. We have used criteria of naturalness 
to’distinguish between the vtiious options for achieving 
large tanp. Admittedly, these criteria have also revealed 
$h+t all larger tan@ models appear to require some fin: 
tuning ,of the,~GvT-scale paranikters w,bic+ may not be 
needed for small tan@. !n &he: respects, ho+ver,&ch 
as bottom-?- unification, Yukawa unification has hi.+nct ~.,,. ,, 
advantages over the conventional paradigm. And in the 
near future, most questions of naturalness will be re- 
placed by solid experimental data, which will be the final 
arbiter of all tanP scenarios, large and small. 

Note added in proof. After this work was submitted, 
-on& of us (RX’.) continued [49] the investigation into the 
possible boundary conditions for soft terms at the GUT 
scale. Two results are relevant for the present work: first, 
if SUSY breaking originates from a strictly hidden sector 
through the Kahler potential,, then the boundary condi- 
tions presented in our work can be relaxed (i.e., further 
splitting Of the soft mass&s is allowed) only if the gauge 
group at the GUT scale is enlarged; second, more general 
SUSY-breaking scenarios (parametrized in Ref. [SO]) can 
split the 16 matter multiplet even in an SO(10) model 
without affecting Yukawa unification. 
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APPENDIX A: SOLVING THE RG EQUATIONS 

The on&loop, RG equations for the parameters of 
the MSSM are recounted below. We use the notation 
d = -&2 d 

‘ir - G where p is the mass scale, as well as 

rn: = ,727~~; = &2$ and rni = m$+& = /4+2$ 
where rn% = & + fi2 and rn& = & + fiz are the up- and 
down-type Higgs-boson mass parameters in the scalar po- 
tential. The soft SUSY-breaking parameters run accord- 
ing to 
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where 

and S = &+Sz+S3 where S, = -&-&2mi2+m;+ 

m~+m~2-mE2andS~,~=-2mr,E2+m~,-2fm- Z+ BI.2 
rniJ - rn& 22. S evolves according to k.5 = blgfS, 

and therefore satisfies the useful relation 

-b,&qfS= [l-y]Sc. (A4) 

The gaugino Massey are given by M; = Mllz(g:/g$) 
where Mllz and gG are the unified GUT-scale gaugino 
mass gauge coupling, respectively. The p parameter in 
the superpotential runs according to 

d 
.&/A = (-3x: -3x; - x2 7 + $7; + 39;) $J. (A5) 

Finally, the evolution of the gauge couplings is given by 
&gf = big: where bl = -3315, bz = -1, and b3 = 3 [note 
that we always use g1 normalized as an SU(5) coupling], 
while the Yukawa couplings evolve according to 
.&A; = (-3x; - 4Xf + ;gf + 3g;p:. 

We now present the solution to the RG equations for 
the dimensionful parameters in terms of integrals over 
the dimensionless ones, namely the gauge and Yukawa 
couplings. Notice that p renormaliz~s multiplicatively, in 
fact by a factor of order unity, and that it does not enter 
into the RG equations of the other mass parameters. For 
this reason, we may just as well treat pat the electroweak 
scale aS the fundamental parameter, and thus we will not 
need to refer to its GUT-scale value or its RG evolution. 

The RG equations for the A parameters take the form 

,Q$=~~+~ d 
1/Z 11, 

where 

The solution is given in terms of the “time’‘-ordered ex- 
ponential of the integral of the matrix El, 

which satisfies 2% = H ‘?L It may easily be computed 
numerically or estimated analytically. For example, with 
a GUT scale of 2.5 x lOl@GeV and ac N l/24, it is 
approximately given by 

(A7) 

648) 
XE: = XE: = 0.6 : A:: = A:: = 1.0 : 2x:: = A:: = 1.0 : Y $ = ” g= 
0.239 -0.056 0.005 0.115 -0.042 

-0.061 0.278 -0.048 -0.048 0.160 
0.029 -0.290 0.610 

H 
0.039 -0.273 

” B-= 

0.007 
I( 

0.103 -0.041 0.003 (Ag) 
-0.050 -0.073 0.372 -0.048 
0.430 0.034 -0.267 0.670 
The trilinear couplings are then related to their GUT- 
scale values and to the gauging mass at the GUT scale 
via 

I 

r . . 
A = 31Ac + Ml/231 W’d,&’ (Al’4 

rG 
The coefficient of & is typically an order of magnitude 
smaller than that of Mlp in the solutions for At and AI,, 
so we will often assume that Aq are essentially deter- 
mined at the electroweak scale by the gaugino masses. 
In the maximally symmetric case, both M,p and & 
are negligible, while without the R symmetry the MI/Z 

contribution is large and small effects due to & do not 
Liter any conclusion substantially. (Of course, one could 

imagine a scenario with & much larger than the gaug- 
ino mass and tuned to a particular value, for example, 
to force At + 0 and thus suppress the rate for b --f sy, 
but we will not pursue this further. Such a tuning is 
implicitly included in ea+,,.) We include approximate 

numerical expressions for A’ at the end of this appendix. 
The RG equations (Al) for the soft-breaking masses 

are now easily solved by noting that on their right-hand 
sides there are only three homogeneous driving terms, the 
XC, for seven mass parameters. By taking linear combi- 
nations of the seven masses, specifically, 
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or 

2 

( > f 
EM,Z 6412) 

we may write the RG equation of 2 in the form 
$(;) =(f;)(:)-(;)h$S 

+(; ;)($)+($f;,z (Al3) 

where C& = (-$&A, -+, &) and e and + may be 
expressed in terms of gf/g& using Eqs. (Al). The solu- 
tion to these equations is straightforward [recalling also 
Eq. (A4)): 
(A14) 

Assuming once again unification at the above values pf the GUT scale and a~, and ignoring the Ao contribution, 
yields for the coefficient vector of Mt,, N 1.6m& 

M-1 

Xf = AZ: = 0.6 : = 1.0 : 

7.32 
7.64 

-1.83 
-18.17 

0.46 
2.73 

-0.46 

= 

5.87 
-5.61 
4.63 
4.75 

J \ -0.46J 

6.19 
-5.25 

4.53 
5.11 1. (Al5) 

5.27 
0.13 
0.52 
Finally, the RG equation for B, 

$B = I&. ii+ GBM,,, (-416) 

where 2~ = (-3X:,-3X;,+) and GB = ($9; + 

3d)/s& is solved by simply integrating over the gaugino 
and A contributions: 

Under the same unificatibn assumptions as before, we ob- 
tain for X2 = Xf = 0.6: B = Bc - (0.36,0.33,0.08)& - 
I 

1.031t4~,~; for ;: = X:: = 1.0: B = BG - 

(0.41,~.36,0.11)A~-1.25M~,z; and for 2X? = Xt: = 1.0: 

B = BG ; (0.43,0.28,0.07)& - 1.08MIp. 
The various integrals involving the gauge and Yukawa 

couplings may be approximately evaluated analytically, 
since the evolution of the g; is known and simple while 
the X; may be approximated in various ways, in particular 
near the fixed-point regime. However, for our purposes 
the semianalytic forms presented above are sufficient. To 
get a feel for the results, we can evaluate the integrals 
numerically. Using the same unification scale and gauge 
couplings as above, inserting the initial conditions dic- 
tated by W(5) symmetry, and setting At,*,7 = AG at the 
GUT scale but neglecting (for ewe of presentation) the 
small contributions of AG to th& soft-breaking masses, 
we obtain the following (approximate) explicit solutions: 
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g = A:: = 0.6 : 

rn; = 5.45 Mf,, - 1.29 Mm,’ + 1.41 Ml,&2 + 0.38M; - 0.11Msup~2 -.2$, 

rni = -5.23 M;,, + 1.25 MI,,,’ - 1.50 MI&’ + 0.05 Msu~5~2 + 2pz, 

rni2 = 4.77 M,zl, - 0.24 MI,, ’ + 0.53 MI,,,’ + 0.09 M; + 0.01 Msucsj2, 

rn; = 4.87 M;;, - 0.21 Mm,’ + ti.58 MOB,’ - 0.29 M; - 0.51 Msuc;j2, 

rn; = 5.28 Mf,, - 0.22 MI,,, ’ + 0.56 Mm,’ + 0.10 M; + 0.23Msu~q2, 

mi2 = 0.15 hf:,, - 0.17 Mm,,’ + 0.66 MIS,’ + 0.12 M; + 0.36 Msucsjz, W-4 

mz2 = 0.53 M;,, - 0.08 M,,, ’ + 0.83 MIB,’ - 0.31 M; - 0.64Mqqz, 

At=o.19A~+2.2M,/z, Aa=‘0.17A~+2.3M~,~, A,=0.35AG-0.13MI,2, 

B = Bc - 0.76A~,- l.OMI,zr p = 0.65~~; 

xf = A:: = 1.0 : 

m2, = 5.87 M;,, - 1.20 Mm,’ + 1.61 Mm,’ + 0.38 M; + 0.05Msut5j2 - 2$, 

rni = -5.61 M;,, + 1.14~?4~~,, ’ -’ 1.72 MIS,= + 0.0~,&~q2 + 2p2, 

mf2 = 4.63 M;,, - 0.27 MIoN2 + 0.45A’hs2 + 0.09 M; - 0.05 Msupj2, 

rni = 4.75 M;,, - 0.23 Mn,,’ + 0.54 MI@,’ - 0.29 Ms - 0.47 Msuc5)‘, 

rn; = 5.14 M$ - 0.25 MI,,,’ + 0.50 Mm,’ + 0.10 M; + 0.23 M;u~5~2, 
,~. 

rni2 = 0.17 M,zl, - 0.23 MmH2 + 0.54Mmsz + 0.12M; + 0.41 Msuc5j2, (Al% 

mx 2-O - .54M,zl, - 0.12M10,~ + 0.77M1~~~ - 0.31 M; - 0.62~su(s~z, 

At=0.08Ac+2.0MIp, AI,=O.O~A~+~.OM~,~, A,=0.20AG-&22MIlz, 

B = BG - 0.88A~ - 1.2MIlz, p = 0.43~~; 

,. ,, 

2x: = XE: = 1.0 : 

rn; = 6.19 M;j, - 1.15 MmH2 + 1.69 M& + 0.38 M; + 0.03 Msucsj2 - 2;u2, 

rn;‘= ~5.25 M= 1,~ + 1.24 Mmx2 - 1.53 M!e,’ - 0.07Msu~q2 + ?/?; 

nq= = 4.53 M,zl, - 0.28M10~’ + 0.44 Mla,’ + 0.09 Mg - 0.04 Msucsj2, 

z 
m; = 5.11 M;,, - 0.18 Mm,,’ + 0.64 Mles - 0.29 Mx - 0.54 Msutsj2, 

mg = 5.27M;,, - 0.23 Mm,,’ +0.54 MI&’ + 0.10 M; + 0.19 Msuc5j2, 

mi2 = 0.13 M;,, - 0.15 MI,, ’ + 0.70 MIS,” + 0.12 M; + 0.34M~~&~2, C-42”) 
i mt2 = 0.52 MI,, - o.07MmH2 + 0.85Mms2 - 0.31 M; - 0.65 Msuc5j2, 

At = 0.07Ac + 1,9M,;,, Aa = 0.25AG +2.4MIlz, A, = 0.44AG -O.OlM+, 

B = BG - 0.78A~ - 1.1 MI,,, p = 0.57~~. 
APPENDIX B: THE FLAT DIRECTION .& 

In tbis appendix we discuss ,in more detail the con- 
straints implied by the flat direction 42 of Sec. VIA. As 
discussed in that section, at high enough scales (A’> 
Ahigh) the, direction may be stabilized by nomenornial- 
&able operators regardless of the sign of rn;. At a 
lower scale, such operators are ineffective, and a mg- 
ative rni leads to an instability unless the ‘linear term 
(rnz’ + rni + rni) I $$z 1 E rn; I$& I ii the ,p2& PO- 

tential is significant at such a scale. We need to estimate 
the scale AI, down to which this li&r term may be 
ignored, and therefore above which m;(h) > 0 must be 
enforced. 

If m;(A) > 0 for all i between A&uT and ms, there 
is no i&ability. If mg(A) < 0 for some A > Ahigh, the 
dangerous minimum in the potential is only at field v+ 
ws 4z ‘< AQ~ (by constrtiction df Ahigh), so tom see if 
it is a true minimum we must run to lowers scales., If 
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m;(A) < 0 when we reach A = A,,ig,,, then .the true 
minimum is at 42 N Ahigh and leads to unacceptable 
symmetry breaking. If mz(hh;,h) > 0, there is no dan- 
gerous minimum at that scale, and we should continue 
running to lower scales. If m;(A) gets to zero at a scale 
Ac above the scale A.I,,~ (to be determined below) so the 
linear term in the potential may be ignored, we must min- 
imize the full one-loop effective potential along the flat 
direction [34]. At one-loop order we parametrize the flat 
direction by a field 4~ with zero anomalous dimension, 
so (KJ = 4w” -I” and (L) = $&“, where zu,~ are 
wave-function renormalization coefficient functions satis- 
fying the RG equations aln z,,,L/aln(&/A) z yxyu,~. (NO- 
tice that (H~J) # (L) because the D-flatness condition 
which determines the VEV’s of H, and L is corrected 
by one-loop wave-function renormalization%) Then in 
leading-ln(&/A) approximation the full one-loop effec- 
tive potential (neglecting the linear term) is completely 
determined by the RG equation for rni calculated using 
Appendix A: 
At the scale Ac, where rn; = 0, the above poten- 
tial has the well-known Coleman-Weinberg minimum at 
(42) N Ac. Moreover the vacuum energy at that mini- 
mum is - -Am;A& which is parametrically much be- 
low the usual electroweak vacuum energy -O(m;/g2). 
If Ac and therefore ($2) get too low, the linear term 
rnzl&/Xal in the potential dominates, and the un- 
wanted minimum disappears. To get a rough estimate 
of when’ this happens, we just add the linear term to 
Eq. (Bl) and again minimize at A = Ac. We find that 
the dangerous minimum is eliminated because of the lin- 
ear term when Ac 5 $@(m;/Am;)/l/& Thus, m;(A) 
must be prevented from vanishing only above scales of 
order 

where the quantities on the right-hand side are evalu- 
ated at Ac and Q is a cgmbination of gauge and Yukawa 
coupling strengths. The above is just an estimate. For 
instance, two-loop RG effects and finite parts in the one- 
loop potential modify the numerical prefactor on the 
right-hand side by order of 1. Moreover, notice that along 
& there is a hierarchy between the scale of SU(2) break- 
ing (- (H,)) and that of color breaking (- (Q)). There- 
fore we expect the one-loop corrections to rn;, which 
we have not included in our estimate, to be! of order 

al=((Q)/k) N al=(l/4. 

APPENDIX C: APPROXIMATIONS IN THE 
EFFECTIVE POTENTIAL 

Throughout the paper our analysis has been based 
on the one-loop-RG improved tree-level scalar potential 
Vo(A). In this appendix we discuss the possible relevance 
of a more accurate treatment which would include the 
full one-loop effective potential, one-loop threshold cor- 
rections and two-loop running of the soft SUSY-breaking 
parameters. We will show that all these refinements can- 
not change the basic conclusions of our study. 
Let us first discuss the use of the one-loop effective 

potential. This becomes necessary when the tree-level 
potential is almost flat (or even unbounded) along some 
direction in field space. Then the quantum correction 
stabilizes the potential at large field strength. Minimiza- 
tion of the potential then yields a vacuum expectation 
value for thit field of order the renormalization scale A 
at which the potential becomes flat (dimensional trans- 
mutation) (341. (Of course we are assuming that at very 
high energy scales the tree potential is bounded from be- 
low.) In our study, as discussed in Sec. VIA, we need only 
worry about the two flat directions 41 and $2. Hence the 
full one-loop effective potential is only relevant for those 
parameter ranges when rn: or rn; become very small, 
namely very near the rn: = 0 or rn; = 0 planes, in the 
space of GUT parameters. Thus a more correct and in- 
volved calculation would only change the margins of the 
allowed parameter space but could not significantly alter 
any conclusions. 

The remaining improvements are given by (i) GUT- 
scale thresholds, (ii) SUSY-scale thresholds, and (iii) 
two-loop running. The first type of effects are model- 
dependent and have essentially been encompassed by our 
discussions of the various boundary conditions. Let us 
then turn to the effects of the superpartner thresholds 
on the allowed (usually triangular) regions of SO(10) pa- 
rameter space-the extension to more general initial pa- 
rameters will be obvious. The l&t question is where 
to stop the running. In the plots in Fig. 7 the run- 
ning has been stopped at A = mz, even though in 
the typical scenarios the superpartners decouple closer 
to 1 TeV. A more exact analysis would then add one- 
loop threshold corrections to the various mass param- 
eters. (In the notation of Ref. [36], such threshold ef- 
fects would appear as terms in t.he one-loop effective po- 
tential.) These corrections are roughly proportional to 
ams ln(ms/mz), where ms collectively denotes the low- 
energy values of the MSSM mass parameters and ~1 is 
the appropriate gauge or Yukawa coupling strength. In 
the absence of strong premature focusing [for example, 
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AG well below 1.2 in the SO(10) scenario], when all the 
superpartner masses are comparable, the effect on the 
triangle plots is just to move the triangle boundaries by 
an amount which is roughly O[aln(ms/mz)] times the 
size of the triangle itself. The size of the allowed region 
in the GUT parameter space is only slightly changed, 
and the same arguments we have made can be applied 
to the slightly shifted GUT parameter ranges. If there 
is strong prem&ure focusing-that is, if XG is just be- 
low its maximal value, the allowed region of parameter 
space is very small, and some particles have masses rn:,= 

well below the rest of the superpartner Massey rn&- 
then the threshold corrections could be significant when 
am&, ln(rni,H/mz) N rn; L. But their only relevant ef- 
fect would be to slightly shift the maximal value of XG, 
so once again no conclusions are qualitatively altered. 
Notice that it was crucial to establish that the correc- 
tions are proportional to the electroweak-scale values of 
the masses, which can be much smaller that the GUT 
dues when any focusing is relevant. The effects of two- 
loop running, however, are in general proportional to the 
value of the masses at higher scales: we expect correc- 
tions N aA@ to the low-energy values of the maes (re- 
call that A40 is a typical soft mass at MGUT). When Xc 
is large and AF = Xg, the low-energy masses in the al- 
lowed regions of parameter space are focused to small 
values rn;. When the focusing is strong enough that 
rni - aM;, some effects of two-loop running are large. 
For example, a value of XG which leads to a small but fi- 
nite allowed triangle with one-loop running could lead to 
vanishing allowed area using two-loop running. So when 
there is large focusing the more exact upper bound on 
XG could shift somewhat-but because of the fixed-point 
evolution of Xt at large XG, the corresponding values of 
mt will not change much. We therefore expect that all 
OUI conclusions are robust. 
111 H. Georai and S.L. Glashow, Phys. Rev. Lett. 32. 438 
1 

(1974). _ 
. 

[2] H. Georgi, in Particles and Fields, edited by C.A. Carl- 
son, AIP Conf. Proc. No. 23 (AIP, New York, 1975). 

131 J.C. Pati and A. Salam. Phys. Rev. D 10. 275 (1974). 
i4j R.N. Mohapatra and J:C. &ti, Phys. Rev. D il, i558 

(1975); G. Senjanovit and R.N. Mohapatra, ibid. 12, 
1502 (1975). 

[5] M. V&man, Acta Phys. Pol. B 12, 437 (1981); L. Ma- 
iani, in Proceedings of the Summer School on Particle 
Physics, Gif-sur-Yvette, France, 1979 (Natl. Inst. Nucl. 
Phys. Part. Phys. Paris, 1979), p. 1; E. Witten, Nucl. 
Phys. B188, 513 (1981). 

[6] H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett. 
33, 451 (1974); S. Dimopoulos, S. F&by, and F. Wilczek, 
Phys. Rev. D 24, 1681, (1981); S. Dimopoulos and H. 
Georgi, Nucl. Phys. B193, 150 (1981); L. Ibaies and 
G.G. Ross, Phys. Lett. 105B, 439 (1981); M.B. Ein- 
horn and D.R.T. Jones, Nucl. Phys. BlU6, 475 (1982); 
W.J. Marciano and G. Senjanovic, Phys. Rev. D 25, 3092 
(1982). 

[7] U. Amaldi et al., Phys. Rev. D 36, 1385 (1987); G. Costa 
et al., Nucl. Phys. B297, 244 (1988). 

[8] P. Langacker and M.-X. Luo, Phys. Rev. D 44, 817 
(1991); U. Amaldi, W. de Boer, and H. Fiirstenau, 
Phys. Lett. B 260, 447 (1991); J. Ellis, S. Kelley, and 
D.V. Nanopoulos, ibid. 260, 131 (1991); F. Anselmo, 
L. Cifarelli, A. Peterman, and A. Zichichi, Nnovo Ci- 
mento 104A, 1817 (1991); W.J. Marciano, Anna Rev. 
Nucl. Part Phys. 41, 469 (1992). 

[9] M. Chanowita, J. Ellis, and M.K. Gaillard, Nucl. Phys. 
BlS5, 66 (1978). 

[lo] L.E. Ib&e.ez and C. Lopez, Phys. Lett. 126B, 54 (1983); 
Nucl. Phys. B233, 511 (1984); H. Arason et al., Phys. 
Rev. Lett. 67, 2933 (1991); L.J. Hall and U. Said, Phys. 
Lett. B 271, 138 (1991); S. Kelley, J.L. Lopez, and D.V. 
Nanopoulos, ibid. 274, 387 (1992). 

[ll] L.E. Iba?& and G.G. Ross, Phys. Lett. llOB, 21.5 
(1982); K. Inoue, A. Kakuto, H. Komatsu, and 
S. Takeshita, Prag. Theor. Phys. 68, 927 (1982); 71, 
413 (1984); J. Ellis, ?.V. Nanopoulos, and K. Tamvakis, 
Phys. Lett. 121B. 123 (1983); L.E. Ibaiiez, Nucl. Phys. 
BilS, 514 (1983): -’ 

1121 L. Alvarez-Gaurn&. J. Polchinski. and M.B. Wise. Nucl. 
Lm-1 

Phys. B221, 495 (1983). ’ 
1131 G.F. Giudice and G. Ridoffi, Z. Phys. C 41, 447 (1988); 

M. Olechowski and S. Pokorski, Phys. Lett. B 214, 393 
(1988); P.H. Chankowski, Phys. Rev. D 41,2877 (1990); 
M. Drees and M.M. Nojiri, Nucl. Phys. B369, 54 (1992); 
B. Ananthanarayan, G. Laaarides, and Q. Shafi, Phys. 
Lett. B 300, 245 (1993); Arason et al. [lo]; K&y, Lopez, 
and Nanopoulos [lo]; V. Barger, M.S. Berger, and P. 
Ohmann, Phys. Rev. D 47, 1093 (1993); M. Carena, 
S. Pokorski, and C.E.M. Wagner, Nucl. Phys. B406, 59 
(1993). 

1141 M. Carena, M. Olechowski, S. Pokorski, and C.E.M. 
Wagner, Nucl. Phys. B426, 269 (1994). 

[15] L.J. Hall, R. R&tar;+ and U. Sarid, Phys. Rev. D 50, 
7048 (1994). 

[16] R. R&ta+ U. &rid, and L.J. HalI, in Proceedings of the 
Second IFT Workshop on Yukawa Couplings and the Ori- 
gins of Mass, Gainesville, Florida, 1994 (unpublished). 

[I71 B. Ananthanarayan, G. Lazarides, and Q. Shafi, Phys. 
Rev. D 44, 1613 (1991). 

[I81 S. Chaudhury, S.W. Chung, G. Hackney, and J. Lykken, 
in The Albuquerque Meeting, Proceedings of the Meeting 
of the Division of Particles and Fields of thk APS, Albn- 
q~erque, New Mexico, 1994, edited by S. S&de1 (World 
Scientific, Singapore, 1995); also J. Lykken (private con,- 
munication). 

[IQ] F. Vissani and A. Yn. Smirnov, Phys. Lett. B 341, 173 
11994). 

[ZO] A. Br&n&, H. Mnrayama, and R. Rattazai, Phys. Lett. 
B 335, 345 (1994). 

[21] A.E. Nelson’ and’L. Randall, Phys. Lett. B 316, 516 
(1993). 

[22] R. Hempfling, Phys. Rev. D 49, 6168 (1994). 
[23] E.C. Poggio, H.R. Quinn, and S. Weinberg, Phys. Rev. 

D 13, 1958 (1976); M.A. Shifman, A.I. Vainshtein, and 
V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 
(1979); B. Guberina, R. Meckbach, R.D. Peccei, and R. 
Riickl, ibid. B184, 476 (1981). 



53 UNIFIED MINIMAL SUPERSYMMETRIC MODEL WITH LARGE.. 1585 
[24] .I. Gasser and H. Leutwylw, Phys. Rep. 87, 77 (1982). 
[25] N: Polonsky, in Physics from Planck Scale to Electroweak 

Scale, Proceedings of the Workshop, Warsaw, Poland, 
1994, edited by P. Nath et al. (World Scientific, Singa- 
pore, 1995), p. 438; M. Carena, S. Dimopoulos, C.E.M. 
Wagner, and S. Raby, Phys. Rev. D 52, 4133 (1995). 

[26] R. Garisto and J.N. Ng, Phys. Lett. B 315, 372 (1993); 
M.A. Diaz, ibid. 322, 207 (1994); F.M. Borzuma& Z. 
Phys. C 63,291 (1994). 

[27] CLEO Collaboration, M.S. Alam et al., Phys. Rev. Lett. 
74, 2885 (1995). 

[ZS] R. Rsttazzi and U. Said (in preparation). 
[29] S. Bert&ni, F. Boreumati, A. Masiero, and G. Rid&i, 

Nucl. Phys. BS63, 591 (1991); M. Misiak, Phys. Lett. 
B 260. 161 (1991); R. Barb&i and G.F. Giudice, ibid. 
309, 86 (1993). " 309, 86 (1993). " 

[SO] F. Zwirner, in Physics and fiperiments with &near Cal. [SO] F. Zwirner, in Physics and fiperiments with &near Cal. 
lidew, Proceedings of the Workshop, Saariselkii, Finland, lidew, Proceedings of the Workshop, Saariselkii, Finland, 
1991. edited bv R. Orava. P. Eerola. and M. Nordbere 1991. edited bv R. Orava. P. Eerola. and M. Nordbere 
(Wo;ld Scientific, Singapdre, 1992), ‘Vol. I, p. 309, ati: 
references therein. 

[31] M. Olechowski and S. Pokorski, Phys. Lett. B 344, 201 
(1995); F.M. Borzumati, M. Olechowski, and S. Pokorski, 
ibid. 340, 311 (1995). 

[32] A. Lleyda and C. Muiioz, Phys. Lett. B 317, 82 (1993). 
1331 G. Costa, F. Feruglio, F. Gabbiani, and F. Zwirner, Nucl. 

Phys. B286, 325 (1987). 
1341 S. Coleman and E. Weinbere. Phvs. Rev. D 7. 1888 
’ ’ (1973); S. Weinberg, ibid. ‘7, 2887 (;973). 
[35] H. Komatsu, Phys. Lett. B 215, 323 (1988). 
[3$] G. Gamberini, G. Rid&i, and F. Zwirner, Nucl. Phys. 

BSSl, 331 (1990). 
[37] S.M. F&re, D.R.T. Jones, and S. Paby, Nucl. Phys. 

B222, 11 (1983); J.-P. Derendinger and CA. Sway, ibid. 
B237, 307 (1984). 

[38] M. Drees, Phys. Lett. B 161, 279 (1986); J.S. Hag&n 
and S. Kelley, Nucl. Phys. B342,95 (1990); A.E. Faraggi, 
S. K&y, and D.V. Nanopoulos, Phys. Rev. D 45, 3272 
(1992); Y. Kawamura, H. Murayama, and M. Yamaguchi, 
Phys. Lett. B 324, 52 (1994); Rattaesi, Sarid, and Hall 
PS]; H.C. Cheng and L.J. Hall, Phys. Rev. D 51, 5289 
(1995); C. Kolda and S. Martin, Report No. UM-TH-95- 
08 (unpublished); R. Hempfling, Phys. Rev. D 52, 4106 
(1995). 

[39] Y. Kawamura, H. Murayama, and M. Yamaguchi, Phys. 
Rev. D 61. 1337 (1995). \ 

[40] S. Dimopoulos and F. ‘Wilczek, ITP Santa Barbara Re- 
port No. UM HE 81-71, 1981 (unpublished); and Pro- 
ceedings Erice Summer School, edited by. A. Zichichi, 
1981 (unpublished); K.S. Babu and S.M. Barr, Phys. 
Rev. D 48, 5354 (1993). 

[41] Dfl Collaboration, S. Abachi et al., Phys. Rev. Lett. 74, 
2632 (1995); CDF Collaboration, F. Abe et al., ibid. 74, 
2626 (1995). 

[42] S. Wolfram, Phys. Lett. SZB, 65 (1979); C. B. Dover et 
al., Phys. Rev. Lett. 42, 1117 (1979); P. F. Smith et al., 
Nucl. Phys. B206, 333 (1982). 

[43] M. Drew and M. M. Nojiri, Phys. Rev. D 4’7, 376 (1992). 
1441 B. W. Lee and S. Weinberg, Phys. Rev. Lett. SD, 165 

(1977). 
[45] K. Griest and D. Se&l, Phys. Rev. D 43, 3191 (19%). 
1461 S. Mizuta and M. Yamaguchi, Phys. Lett. B 208, 120 

(1993). 
[47] V. Kaplunovsky and J. Louis, Phys. Lett. B 306, 269 

(1993). 
[48] L.J. Hall, lectures given at Winter School in Theoretical 

Physics, Mahabaleshwar, India, 1984 (unpublished); in 
Indian Winter School, 1984 (unpublished). 

[49] Il. Rattazzi, Rutgers University Report No. RU-95-45, 
hep-ph/9507315 (unpublished). 

[50] S. K. Soni and H. A. Weldon, Phys. Lett. 126B, 215 
(1983). 


	I. INTRODUCTION
	II. TOP MASS: PREDICTION
	III. b-- sy
	IV. ELECTROWEAK SYMMETRY BREAKING
	V. GENERATING A HIERARCHY
	VI. CORRECT SYMMETRY BREAKING
	VII. GRAND UNIFIED SOFT MASSES
	VIII. COSMOLOGICAL BOUNDS
	IX. CONCLUSIONS
	ACKNOWLEDGMENTS
	APPENDIX A: SOLVING THE RG EQUATIONS
	APPENDIX B: THE FLAT DIRECTION .&
	APPENDIX C: APPROXIMATIONS IN THE

