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Abelian dominance of chiral symmetry breaking in lattice QCD 
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Calculations of the c&al condensate (xx) on the lattice using staggered fermions and the Lancsos 
algorithm are presented. Four gauge fields are considered: the quenched non-Abelian field, an 
Abelian-projected field, and monopole and photon fields further decomposed from the Abelian field. 
Abelian projection is performed in the maximal Abelian gauge and in the Polyakov gauge. The 
results show that monopoles in the maximal Abelian gauge largely reproduce the chiral condensate 
values of the full non-Abel& theory, in both SU(2) and SU(3) color. 
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I. INTRODUCTION 

Since the Abelian monopole mechanism for confine- 
ment in QCD was first proposed [1,2], there have been 
extensive studies in the pure gauge sector of lattice the- 
ories 13-91. The effect of Abelian-projection in the quark 
sector was studied in [lo], where chiral symmetry break- 
ing and meson correlators were analyzed. Further stud- 
ies of the role of Abelian nionopoles in chiral symmetry 
breaking at finite temperature [ll], and in hadron spec- 
troscopy [12], have been made. These works have pro- 
vided evidence in support of Abelian monopoles as the 
mechanism of chiral symmetry breaking in &CD. 

In the present work, a systematic study of the role 
of Abelian projection and monopoles in chiral symme- 
try breaking is carried out in the confined phase at zero 
temperature. The chiral condensate is computed using 
four sets of gauge fields: the quenched non-Abelian field, 
an Abelian projected field, and monopole and photon 
fields further decomposed from ~the Abelian projected 
field. Abelian projection is performed in the maximal 
Abelian gauge and in the Polyakov gauge. We employ 
a different technique tb compute the chiral condensate 
than was used in Ref. [lo], where an extrapolation tb the 
chiral limit was made from nonzero quark mass: Here 
we use the spectral representation of the chiral conden- 
sate along with the Lanczos algorithm [13], which allows 
calculations to be done directly at zero mass. Most of 
the results presented here are for SU(2) color. Some i-e- 
suits of a first study of chiral symmetry breaking in the 
Abelian projection of SU(3) gauge theory are also given. 

The calculational method is described in Sec. II and 
results are presented in Sec. III. Using the Lanczos 
method at zero quark mass we find reasonable quantita- 
tive agreement between the chiral condensate calculated 
with the monopole part of the Abelian projected field and 
the quenched non-Abelian field for the SU(2) theory. Our 
present SU(3) simulation is not yet good enough to draw 
the same quantitative conclusion, but qualitatively, the 
same pattern emerges as seen in the SU(2) calculation. 
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This provides home evidence that the Abelian dominance 
idea can be extended to the SU(3) theory. 

Some of our results were presented in summary form 
in Ref. [14]. 

II. METHOD 

A. Chiral condensate on the lattice 

Chiral symmetry breaking is studied using staggered 
fermions, with the action 

where F, x are single-component fermion fields, qw(z) is 
the staggered fermion phase [15], m is the mass in lattice 
units, and the U’s are gauge field links. 

The chiral symmetry order parameter is calculated 
from the inverse of the fermion matrix’M of Eq. (1): 

(xx(m,v)) = ; WM-‘(W))> (2) 

where V is the lattice volume and the angular brackets 
denote the gauge field configuration average. This can 
be rewritten in a spectral representation [16] 

(3) 

where iX,‘s are the eigenvalues of the zero-mass fermion 
matrix (Dirac operator). The eigenvalues appear in com- 
plex conjugate pairs, and so only the positive half of the 
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spectrum needs to be considered as in the second part of 

Eq. (3). 
To correctly probe the physics of spontaneous chiral 

symmetry breaking, one should attempt to work in the 
limit of zero quark mass and infinite volume. The chiral 
limit m + II should be taken after V t co: 

where the spectral density function p(X) = $dn/dX is 

normalized to J,“dXp(X) = NC, the number of colors. 
Equation (4) relates chiral symmetry breaking to the 
small modes in the eigenvalue spectrum. So the task 
is reduced to finding the small eigenvalues of the fermion 
matrix at zero mass, r&h&than the entire spectrum. 
This can be done using the well-established Lanczos al- 
gorithm [13]. 

B. Abelian projection on the lattice 

The lattice formulation of Abelian projection was de- 
veloped in [4,5]. The idea is to fix the gauge of a SU(N) 
theory so that a residual U(l)N-l gauge symmetry re- 
mains. The Abelian degrees of freedom are extracted 
by a subsequent~ projection U(z,p) = c(&p)u(z,p), 
where u(z,~) is the (diagonal) Abelian-projected field 
and c(z, p) the nondiagonal matter field. In general the 
gauge condition can be realized by diagonalizing some 
adjoint operator R: 

G(~)77.(z)G-~(z) * diagonal. (5) 

Several gauge conditions have been studied and it has 
been found that the so-called maximal Abelian gauge [5] 
most readily captures the long-distance features of con- 
finement (the relevance of other gauges to long-distance 
physics has been considered in 191). In SU(2) this gauge 
is realized by maximizing the quantity 

R = c tr [&C% P)d+(Z, P,] 1 (6) 
Z>P 

where ii(z,p) = G(z)U(z,p)G-l(z + p). We maximize 
R by an iterative procedure. We find a gauge transfor- 
mation G(z) that maximizes R locally, at given site 2, 
by keeping G(z+p) at neighboring sites fixed. Using the 
fact uaG = GtuQ (with the exception of diagonal gauge 
transformations) leads to an analytical solution for the 
local maximization of R: 
The global maximum of R is approached iteratively by 
repeatedly sweeping through the lattice, until G(s) is 
sUaciently close to the identity 

max I - ;TrG(z) 
{ I 

5 6 < 1, 6 - 10-G. (9) 

Maximal Abelian gauge in SU(3) is implemented by 
maximizing 

The maximization is done by going through the three 
SU(2) subgroups of SU(3). The gauge transformation 
within the first subgroup can be parametrized a~ 

90 92 + is71 0 
G,(z) = -92 + Gl 90 0 I (11) 

0 0 1 

with the constraint go” + gf + gi ~~1. R i,s maximized lo- 
cally at z, again by holding G1 at neighboring sites fixed. 
Under this local transformation, R can be expressed as 

where the sum over fi is implicit in the coefficients ce. 
The solution is obtained numerically, and this is facil- 
itated by introducing spherical coordinates on the unit 
sphere: g2 = sinBcos4, g1 = sin0sin4, go = COST. 
This procedure is repeated at a given site for the sec- 
ond and the third subgroups. The global maximum of 
R is approached by refieatedly sweeping through the en- 
tire lattice until a stopping criterion similar to Eq. (9) is 
satisfied. 

Once the gauge fixing is done, the Abelian-projected 
links are extracted. In SU(2) gauge theory, where the 
links can be parametrized by I?(z, c) = Q + iJ C, the 
Abelian projected links u are given by 

u = diag(e”$,e@), 4 = arctanel(T&). (13) 

In SU(3), the Abelian configurations are extracted ac- 
cording to 

_ 
u = diag(u1,uz,us), u&=exp iargu+p ) 

> 

04) 

where 

mod 2?r c (-?T,~T]. (15) 

The three phase fa@ors are constrained by u1ww = 1 
so that only two of them are independent. 
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C. Monopole decomposition 

It is well,known that there exist monopoles in a com- 
pact U(1) field. The Abelian-projected link u(z,~) = 
exp[i+,,(z)] can be resolved into a component due to 
monopoles by considering the Abelian field strength 
&(z), defined from plaquette phases in the usual way 

cb,&) = %4”(r) - a”&(~)? (1’3) 

where &J(z) = f(z + fi) - f(z). The flux due to an 
integer-valued monopole string fi,,, is identified from the 
field strength according to [18] 

dJp&) = 6:“(z) + 2mA&L (17) 

where @‘” E (-x,n]. The vector potential MY gen- 
erated by the monopoles is therefore given (in Lorentz 

g=w) by 

where the lattice photon propagator satisfies -t$c?,,D(z) 
= S.,o, withaLf = f(z)-f(r-b) [17]. The “photon” 
field & is identified with the difference 4,,(z) -by(z). 

III. NUMERICAL RESULTS 

The Lanczos algorithm 1131 is carried out in double pre- 
cision to find the eigenvalues of the f&ion matrix. To 
test our implementation of the algorithm, the full spectra 
of an S4 lattice and a 124 lattice at p=2.3 in SU(2) were 
obtained for one configuration. In SU(2) one knows a pri- 
ori that every eigenvalue is doubly degenerate sp that the 
number of single positive eigenvalues must be V/2. Fur- 

thermore, they satisfy the closure relation ZIP1 Xi = V. 
We found exactly 2048 single positive eigenvalues for the 
@ lattice and 10 368 for the 124 lattice, and the closure 
relations were satisfied to a few parts in 10’. This indi- 
cates that we can determine the spectrum accurately. 

A. Results for SU(2) 

A heat-bath Monte Carlo algorithm was used to gen- 
erate quenched gauge field configurations using the stan- 
dard Wilson plaquette action, with periodic boundary 
conditions on a 144 lattice at fiz2.2, 2.3, 2.4, and 2.5. 
Antiperiodic boundary conditions were used for fermions 
in all directions. Other boundary conditions were also 
tried, and our results showed little change. Gauge fixing 
was done with the help of overrelaxation [19] which re- 
duced the number of iterations by a factor of 3-5. About 
500 iterations with overrelaxation were required for a 
stopping criterion 6 - 10e6. 

In Fig. 1 we show the raw data for the spectral density 
function p(X) obtained from 70 configurations at each P 
value. The results clearly show a nonvanishing signal 
of p(X) at all p values, although finite volume effects: 
FIG. 1. Spectral density functions calculated at four dif- 
ferent p values for three types of gauge configurations: 
the non-Abelian SU(2) configurations, the Abelian-projected 
configurations in the maximal Abelian gauge, and the 
monopole configurations further decomposed from the 
Abelian-projected configurations. 

manifested as a sudden depletion near X = 0 1201, begin 
to set in at p=2.4 and 2.5. To extract a value at X = 0, we 
fit the distributions by a straight line p(X) = p(O)+p’(O)X 
in an interval [A,., X,,]. The interval is chosen so that 
it’excludes those eigenvalues near X = 0 that are strongly 
influenced by finite volume effects and those that cause 
p(X) to depart from linear behavior. It is expected that 

kni” - E3/V where t is .some length scale governed by 
the gluon dynamics [20]. The value X,, is chosen to be 
as large as possible while preserving both the stability 
and the quality of the fit. Under these conditions, we 
find that the fit is quite stable over a relatively wide 
interval. Figure 2 shows the results ,of such a fit for the 
eigenvalue interval [0.015,0.05]. The fitted values for p(O) 
and p’(O) and the extracted chiral condensate (xx) are 
given in Table I in lattice units. The errors quoted are 
statistical and are obtained using the jackknife method. 
Since the eigenvalue spectrum is ‘doubly degenerate, the 
quoted numbers for p(X) are only half of the true value, 

FIG. 2. Fitted spectral density functions in the interval 
[O.OlS,O.OS] in SU(2). 
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TABLE I. The extra&&values for (xx) on the 144 lattice 
from the straight line fit p(X) = p(O) + @‘(0)X in thk interval 
[0.015,0.05]. At each /3 value, the first row is for the full SU(2), 
second row maximal Abelian, third row monopole. Numbers 
in parentheses are statistical errors in the final digit(s). 

/r 40) P’(O) -(Xx) 
2.2 0.0307(4) 0.253(10) 0.1930) 

0.0466(5) 
0.0303(5) 

2.3 0.0154(4) 
0.0243(5) 
0.0170(5) 

2.4 0.0058(S) 
O.OllO(7) 
0.0066(7) 

2.5 0.0018(3) 
0.0047(5) 
0.0028(4) 

0.052j14j 
0.107(14) 

0.158(11) 
0.116(13) 
0:072(13) 
0.052(21) 
0.080(19) 
0.080(X) 
0.033(09) 
0.045(13) 
0.048(12) 

0.293(3j
0.190(3)
0.097(3)
0.153(3)
0.107(3)
0.036(4)
0.069(4)
0.041(5)
O.Oll(2)
0.030(3)
0.017(3)

so that the extracted (xx) = -Znp(O). The value of 
(xx) in the full SU(2) theory and in the maximal Abelian 
gauge projection are consistent with those obtained in 
Ref. [lo], where an extrapolation to the chiral limit was 
made from nonvanishing quark mass. The interesting 
feature here is that the monopole configuration average 
has a condensate that is even closer to the full theory than 
the Abelian projected fields. On the other hand with 
the photon configurations either no or very few small 
eigenvalues are found. Hence we conclude there is no 
chiral symmetry breaking from these configurations. 

For purposes of comparison, we also performed Abelian 
projection at /3 = 2.5 using a different gauge-fixing con- 
dition: the PolyakoV gauge, in which the Polyakov loop 
is diagonalized according to Eq. (5). The result is shown 
in Fig. 3. We see that the Abelian and the monopole field 
spectral density functions are almost an order of magni- 
tude larger than those of the full theory. In Ref. [lo], a 
similar result for (j$ is found using the field-strength 
gauge. 

FIG. 3. Spectral density functions calculated in the 
Polyakov gauge at fl=2.5 for three types of gauge configura- 
tions: non-Abelian SU(2)(*), Abel&(O), and monopole( 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4. Spectral density functions calculated at four differ- 
ent /3 values in SU(3). 

B. Results for SU(3) 

The gauge field configurations were generated using 
the Cabibbo-Mainari [ZO] pseudo-heat-bath method on 
a ti4 lattice at /3=5.5, 5.6, 5.7, 5.8, and lo4 lattice at fl = 
5.9. Configurations are selected after 4000 thermalization 
sweeps from a cold start, and every 500 sweeps thereafter. 
Figure 4 shows the spectral density function obtained 
from 44 SU(3) gauge field configurations for &5.5, 66 
configurations for @=5.6, 150 configurations for &5.7, 
and 37 configurations for +5.8. 

We performed Abelian projections on the S4 lattice 
at 0 = 5.7 and lo4 lattice at p = 5.9. Gauge fix- 
ing in SU(3) is time consuming. On average about 
500 iterations with overrelaxation are required for 6 = 
1 - $r[G,(z) + G&) + G+)] to converge to 10V5. 
After configuration averaging, the three phase factors in 
Eq. (14) give equal contributions to the chiral conden- 
sate. So the total is obtained by first calculating with 
one phase and then multiplying by 3. This saves a factor 
of 3 in computer time. Figures 5 and 6 show the data 
obtained for p(X). For the S4 lattice at 0 = 5.7, 150 con- 
figurations were used, and 100 configurations for lo4 at 

.oo ’ I 
.OO .02 

Y 
.06 .08 

FIG. 5. Spectral density function in the SU(3) case on the 
54 lattice at fi=5.7. 
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FIG, 6. Spectral density function in the SU(3) case on the 
104 lattice at fl=5.9. 

p = 5.9. We see that a similar pattern emerges in SU(3) 
as in SU(2): For small eigenvalues, the Abelian and the 
monopole contributions give spectral densities that are 
close to those of the full theory. It was also confirmed 

that photon configurations give negligible contributions. 

IV. CONCLUSION 

We have calculated chin1 symmetry breaking on the 
lattice in the quenched approximation and Abelian pro- 
jection. Unlike the previous study [lo], the Lanczos 
method is used to calculate eigenvalues of the fermion 
matrix and hence the chiral condensate directly at zero 

quark mass. Furthermore, in this work, a decomposition 
of the Abelian-projected field into monopole and pho- 
ton pieces was made. For SU(2) gauge theory it was 
found the monopole part of the Abelian field, projected 
in the maximal Abelian gauge, yields chin1 condensate 
values which are quite close to those obtained with the 

full non-Abelian fields. In contrast, the photon piece of 
the Abelian-projected field gives no condensate. 

A calculation was also done using Abelian fields pro- 
jected in the Polyakov gauge. This yielded an eigenvalue 
density and hence a chin1 condensate about an order 
of magnitude larger than the non-Abel& calculation. 
This is consistent with what was previously found in field 
strength gauge in Ref. [lo]. 

Some calculations were also done in an SU(3) theory. 
Qualitatively, a similar pattern is seen as in the SU(2) 
calculation. In the region of small eigenvalues (which is 
relevant for chiral symmetry breaking), the Abelian and 
monopole fields give spectral densities which are quite 
close to that of the full non-Abelian calculation. This 

provides a positive indication that the idea of Abelian 
dominance can be extended to the SU(3) theory. 
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