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Vacuum wave function and mass gaps of U(1) lattice gauge theory in 2+1 dimensions 
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The nonperturbative coupled cluster method with the eigenvalue equations truncated in a scheme 
preserving the continuum limit is applied to Hamiltonian U(1) lattice gauge theory in 2+1 dimen- 
sions. The long wavelength vacuum wave function and mass gaps are calculated at orders 3,4,5, and 
6. The results show nice scaling behaviors. and the values at the sixth order are in good agreement 
with theoretical expectations. 
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I. INTRODUCTION 

In recent works [l, 21, a new nonperturbative method 
based on cluster expansion was put forward to study lat- 
tice gauge theory (LGT). The method consists of trun- 
cated eigenvalue equations with a specified truncation 
scheme that preserves the continuum limit. Our plan is 
to develop a systematic and effective analytical method 
to approach the scaling region. The (2+1)-dimensional 
[(2+1)D] SU(2) and SU(3) theories have ,been consid- 

,ered. As was expected, nice scaling behavior for the vac- 
uum wave functions and mass gaps was obtained by this 
method even in low order calculations. 

It is well known that SU(N) LGT in (2+1)D is super- 
renormalizable, and possesses a simple scaling property; 
that is, when the lattice spacing a goes to zero, 

Ma - const x g= as a + 0, (1.1) 

where g is the dimensionless coupling constant. Hence, 
it is meaningful to apply the method to other situations 
with more complicated scaling behavior so as to test its 
effectiveness. The compact U(1) model in 2+1 dimen- 
sions is confining for all values of the coupling constant 
[3,4]. When the lattice spacing a goes to zero, the lattice 
mass gap Ma is expected to decrease exponentially [4]: 
that is: 

as a-+0. (1.2) 

Monte Carlo simulations have been used to study the 
Hamiltonian version of this model [5]. .The results are 
consistent with Eq. (1.2). Some analytic investigations, 
which included variational researches [6-S], a block renor- 
malization group study [9], and series analyses [IO], also 
support the expected behavior. Therefore, this model, 
like SU(2) or SU(3) LGT in 3+1 dimensions, emerges as 
exponential scaling behavior in the weak coupling region, 
but it is much simpler than the latter. Hence, before we 
consider the (3+1)D theories, we first study the (2+1)D 
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U(1) theory. 
One of the major advantages of our method is that it is 

capable of giving the long wavelength vacuum wave func- 
tion with correct scaling property [1,2]. Since (2+1)D 
U(1) LGT is a confining theory, we expect that its MC- 
uum wave function has the same structure as that of 
SU(2) or SU(3) theory [see Eq. (2.10)]. The long wave- 
length expansion coefficient p. and p2 will show expo- 
nential scaling in the U(1) case. The consistency of the 
exponential scaling properties of these coefficients and 
those of ma.s~ gaps will provide further evidence of the 
effectiveness of OUT method. Another reason for which 
we study this model is that the method may be used to 
study spin systems in condensed matter [ll]. 

Our method is closely related to that of Refs. 112) and 
[13]. However, their truncation schemes violate the con- 
tinuum limit, so that good scaling properties have not 
been obtained in their calculations. 

This paper is organized as follows. In Sec. II, we in- 
troduce the truncation scheme and discuss the vacuum 
wave function. Section III is devoted to the calculation 
of the mass gaps. Our conclusions are presented in Sec. 
IV. 

II. THE VACUUM WAVE FUNCTION 

The Kogut-Susskind Hamiltonian in the model is 

where the index 1 denotes the links between sites, p la- 
bels the elementary plaquettes of the lattice, and a is the 
lattice spacing. Because of the confining property in this 
model, we suppose the form of the vacuum wave function 
is similar to that of SU(2) LGT [l, 21: that is, 

I 40) = au) I O), (2.2) 

where R(U) consists of Wilson loops or linked clusters 
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and the state 1 0) is defined as 

El 1 0) = 0. 

Defining a dimensionless operator 

(2.3) 

w=~H=~E:-~~(up+u~), (2.4) 
I P 

the ground state eigenvalue equation is 

~([-&,[E~,~ll + [&RIP%Rl) 
I 

-++ Up + U,‘, = wo, (2.5) 

where wog2/2a is the ground state energy. The funda- 
mental commutators are 

I&, &I = u,, [El,@] = -U,+. 

Using Eq. (2.6), we get 

(2.6) 

[El, [&,U,“]] =n2Ui’, [El, [GU:“]] = n’u:n, 

(2.7) 

[EI,UI][EI,UI] =U;‘,[E,,Ud[El,U:] = -U&‘: = -1. 

Let 

☯Et, ☯El, Gill q ☺WGi), 

where G; is any Wilson loop. From Eq. (2.7), we know 
Gi is an eigenvector of the operator Dev. For example, 

De, W(~Y[W + 41’7 

= (4m2 + 4n2 - 2mn)[Up(z)]~[Up(z + Q)]“, 

where ei(i = 1,2) is a lattice vector with length a. 
In general, like the case of SU(2) theory, the term 

C[&, G;][El, Gj] will produce new graphs which con- 
tain more plaquettes than those in Gi or Gj Therefore, 
we expand R in order of graphs, 

R=RI+R~+Rz+..., w3) 

and choose 

with a coefficient cl,1 to be determined. RI is the lowest 
order term in R. The second order term is defined as 
a linear combination of all new graphs in Cl[E~,G1 + 

G$[El,G1 + Gi], which are different from G1(G$) and 
different from each other: 
where QJ, +, C~J are coefficients to be determined. 
Similarly, we can obtain the higher order terms in R. 
The order of a graph defined by this procedure is not 
always equal to the number of plaquettes in the graph. 
For example, the graph 

r- 0 
I 

belongs to the fourth order, although it contains only two 
p1aquettes. 

Since C,[El, GJ[El, Gj] C G;+j+ lower order terms, 
we have to truncate Eq. (2.5). It is expected that the 
contribution of very high order graphs to low energy ex- 
cited states is small. If the order in calculation were high 
enough, a different truncation scheme would give essen- 
tially the same result. However, it is difficult to include 
very high order terms in practical calculations. Then, 
an appropriate truncation scheme may soften the cutoff 
and lead to more rapid convergence to the scaling limit. 
Here, we adopt the continuum-limit-preserving scheme in 
Ref. [l]. In this scheme, the truncated eigenvalue equa- 
tion at order n is 

Comparing the coefficient of each independent graph on 
the two sides of Eq. (2.9), the values of C+ and wg can 
be fixed. The essential feature of this truncation scheme 
is that it preserves the form of the continuum limit. Ig- 
noring irrelevant constant terms, the continuum limit of 
a graph G, is 

G, = e2a4[A,TrF2 + B,,a2Tr(DF)Z +. ..I, 

where F is the field strength tensor, D the covariant 
derivative, and A, and B, are constants depending on 
the graph G,. It was proved [l] that for any two graphs 
G; and Gj, the continuum limit of the second term of 
Eq. (2.9) is 

~[EI, Gi][&, Gj] - -ke2a4Tr(DF)2, 
I 

where k is a constant depending on the graphs G; and Gj. 
For the above continuum limit to hold, all graphs gen- 
erated from that term must be included. Our truncated 
equation (2.9) satisfies the requirement and preserves the 
form of the continuum limit. It is expected that this 
scheme would lead to efficient approach to scaling. ” 

The long wavelength vacuum wave function is 

$(U)=Nexp -P0 
[ I 

d%i%/d%(l)iF)2]. 

(2.10) 
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(2.12) 

where Nl (Nz) is the number of oriented plaquettes 
U, (Vi) contained in the graph Gi,,, and (z:, ~2) (n = 

1,. , iV1) and (zk, $,J (mu = 1,. . , &) are the coor- 
dinates of the center points on plaquettes &(z,) and 
Uz(zm), respectively. Using Eq. (2.12), we can do all 
calculations on a computer. 

Equation (1.2) leads to 

in the scaling region. 

(2.13) 

Hence (in the scaling region) 

that is, 

2ln(gAi,,c;,,) = 2111 s + c,;. (2.14a) 

Similarly 

;,I+~) = ;ln(-s) ++ (2.14b) 

Let 

&, z 2In(gAi&,,), p’z s ;l, (-F) 

In the continuum limit, ~0, p2, cl, and c2 should be con- 
stants, which means that the curves of ~10 and & against 
$ will be straight lines in the scaling region. 

We solve Eq. (2.9) with n=3, 4, 5, and 6. The mm- 
bers of graphs in these cases me 13, 66, 356, and 2456, 
respectively. Figures 1 and 2 give the results. We see 
that & shows good scaling in the interval $ E [0.8,1.6] 

at order 6. F’rom this curve, we get 

c2 = 5.09(6), 2 In lloM - = -6.94(6). 
A 

(2.15a) 
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FIG. 1. The third to sixth order results of the coefficient 
fib of the vacuum wave function as a function of l/g’. The 
curve at sixth order shows nice scaling behavior. 

The scaling behavior of gk is not as good as pb This 
is not surprising, because ~2 corresponds to higher order 
than /1,, in the long wavelength expansion of v/j(V). Since 
the scaling is improved gradually from the third order to 
the sixth order, it is possible to get better scaling for ~2 
at higher orders. Taking c2 = 5.09, then, from Fig. 2, we 

FIG. 2. The third to sixth order results of the coefficient 
pa of the vacuum wave function as a function of l/g’. 
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estimate 

M -6.39. (2.15b) 

III. MASS GAPS 

In this section, we compute the mass gaps. The 
method is similar to the one in Ref. [l]. We take the 
glueball wave function as 

1 ?/I) = F(U)eR(“) IO). (3.1) 

F(U) contains various Wilson loops with the appropriate 
symmetry. Like R(U), F(U) is expanded according to 
the order of graphs: 

F(U) = Fl+ Fz + . ‘. (3.2) 

The nth order truncated eigenvalue equation is 

) 

GE A&, (3.3) 
id 

where Awg2/2a is the glueball mass. We only do the 
calculation for the antisymmetric and symmetric lowest- 
lying excited states of the model under a parity trans- 
formation, denoted by MA and MS, respectively, in the 
following. The lowest order term in Eq. (3.2) is chosen 
to be 

Higher order terms can be determined by the same 
method as in R(U). Using Eq. (1.2), we deduce 

ln(iv&?gZ) NhC+Cz- gi> 

ln(A4;aZg2) - In c; - c2 1. 
92 

In Figs. 3 and 4, we present results of ln(Mja’g’) and 
ln(Mia2gZ) against 5 Tom the third order to the sixth 

order. The it4.4 curves show clearly the tendency to 
converge to the scaling limit. From the scaling window 
l/g2 E [0.8,1.2], we obtain 

c2 = 5.0(2), 1nc;l = 5.9(2). (3.4) 

The agreement of c2 determined from the mass gap MA 
and that from fro [Eq. (2.15a)] is very impressive. These 
c2 values are also in reasonable agreement with the results 
in Rebs, (7-101. 
FIG. 3. The third to sixth order results of the mass gap 
Ma as a function of l/g’. The curw at sixth order shows 
scaling behavior. 

The scaling behavior for MS is still not obtained in 
the sixth order approximation. One reason for the better 
scaling of MA over that of MS is that, because of sym- 
metry, 1 4.4) is automatically orthogonal to the vacuum 
state 1 &), but 1 tis) is in general not orthogonal to I&) 
in an approximate calculation. Hence, MS is determined 
much less accurately than MA. The second reason, which 
may be the more important one, is that theoretical con- 
sideration predicts MS = 2A4.4, so that the symmetric 
state (MS) is not a compact glueball state, but it is com- 
posed of two free antisymmetric states. In order to obtain 
a good scaling behavior for MS, we must go to higher or- 

0 0.5 1 1.5 2 2.5 

c32 

FIG. 4. The third to sixth order results of the mass gap 
MS as a function of l/g’. 
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der to see this composite structure. We think that this 
problem may be resolved in higher order calculations. 

Using Eqs. (2.15) and (3.4), we get more concrete re- 
sults: 

POMA = 0.59(5), iaM;: cs -0.48, and c;’ = 365(73). 

Because MS does not show scaling behavior at the sixth 
order, the calculated ratio ADS 

““h 
is not a constant in the 

weak coupling region. Nevert eless, from Figs. 3 and 
4, e is near 2.0 in that region, which is in reasonable 

agreement with the result in Ref. [9]. 

IV. CONCLUSIONS 

In summary, we have applied the truncated eigenvalue 
equation method [l, 21 to (2+1)-dimensional U(1) LGT, 
and calculated the long wavelength vacuum wave func- 
tion and the mass gaps. Our main results are 

F =3.11(9)x 1O-2g exp 2.54(3+ ( 1) asg+o 

(4.1) 

and 

as g2 + 0 (4.2) 

The p0 result has not been reported in the literature. 
The Ma result is to be compared with those obtained by 
other methods, which are the following 

(a) A variational estimate with 

Ml2 = 500(30) sz-exp(-“~~‘“‘), 
by Heys and Stump [7], and 

520(10) 
M;a= = shexp(-4y), (4.4) 

by Dabringhaus, Ristig, and Clark [8]. 
(b) A block renormalization-group investigation with 

PI 

M;a’ = 
145(15) 

92 = exp 

-4.1(2) 

c-1 g2 

(c) A series analysis with [lo] 

(4.5) 

(4.6) 

As for MS, the results in above references are not so good 
as MA (perhaps with the exception of Ref. IS]). This may 
be explained by the composite structure of the MS state. 

Besides, we also obtain 

/LOMA = 0.59(5) and @zMj a -0.48. (4.7) 

We obtain nice scaling behavior at order n = 6. Com- 
paring with this, n = 3 or 4 is sufficient in the case of 
2+1 dimensional SU(2) and SU(3) LGT [1,2]. This shows 
that more complex configurations are needed to consider 
in the case of exponential scaling. 
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