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Noncompact lattice QED is simulated for various numbers of fermion species Nf ranging from 
8 through 40 by the exact hybrid Monte Carlo algorithm. Over this range of Nf, chiral symmetry 
breaking is found to be strongly correlated with the effective monopoles in the theory. For Nf 
between 8 and 16, the chiral symmetry breaking and monopole percolation transitions are second 
order and coincident. Assuming power law critical behavior, the correlation length exponent for the 
chiral transition is identical to that of monopole percolation. This result supports the cdnjecture 
that monopale percolation “drives” the nontrivial chiral transition. For Nf between 20 and 32, 
the monopoles experience a first-order condensation transition coincident with a first-order chiral 
transition. For Nf as large as 40, both transitions are strongly suppressed. The data at large 
Nf(Nf 2 20) are interpreted in terms of a strongly interacting monopole gas-liquid transition. 

PACS number(s): ll.lS.Ha, 11.30.Rd 
I. INTRODUCTION 

The interplay of monopole and fermion dynamics has 
been studied both analytically and computationally in 
quantum field theory for some time. In the context of 
grand unified model building, the existence of monopole 
solutions of the field equations and the subsequent in- 

teractions of the monopole with the theory’s fermions 
has led to several interesting phenomena including the 
existence of exotic fermion condensates and the Callan- 
Rubakov effect [l]. The Dirac condition plays a crucial 
role in these discussions and in some cases it guarantees 
that qualitatively new, nonperturbative effects occur. 

It is, therefore, of some interest when monopoles play 
a role in a broader context. In particular, various models 
studied in lattice gauge theory afford new glimpses into 
monopole physics, since the second quantized field theory 
of monopoles becomes accessible. A classic example is 
the confinement-deconfinement transition in Abelian lat- 
tice gauge theory which is now understood to be driven 
by monopole condensation [2]. It came as some surprise, 
however, when effective monopola were discovered in 
noncompact lattice QED [3], and the percolation tran- 
sition of these objects was seen to be the same as four- 
dimensional bond percolation [4]. The lattice itself allows 
such objects to have finite action, but one would expect 

naively that they would decouple in the theory’s contin- 
uum limit. But this depends on the scaling properties of 
the monopole percolation transition. When noncompact 
lattice QED is coupled to fermions in the traditional, 
explicitly gauge-invariant fashion of Schwinger [through 
U(1) phases] one finds that the monopole percolation and 
the chiral symmetry transitions are coincident [5]. Even 
more tantalizing is the fact that the correlation length ex- 
ponents for both transitions also coincide, so monopoles 
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could survive the continuum limit of the chiral transition 
and the chiral transition itself may represent an interact- 
ing continuum field theory in four dimensions. Needless 

to say, it will prove extraordinarily hard to establish such 
a scenario purely numerically 161. 

It is the purpose of this paper to elucidate the inter- 
play of monopole and fermion dynamics in noncompact 
lattice QED by studying the system’s phase transitions 

as Nf, the number of fermion species, is varied. Since the 
fermion-monopole interaction strength is determined by 
the Dirac quantization condition, Nf is the only natural 
variable available. We are not in a position to make a 
quantitative study of each theory’s continuum limit. All 
our results will be of a semiquantitative or even qualita- 
tive sort. We think that they are interesting and have 
content, nonetheless. 0~ lattice sizes will be modest 
(typically 104) as will our bare fermion masses (typically 
of order 0.05 and greater in lattice units). It turned out 
that finite size effects are particularly large when Nf is 
large so that smaller bare fermion masses cannot be sen- 
sibly studied on lo4 lattices. This fact will also force 
our chiral symmetry-breaking studies to be done rather 
far from the chiral limit, and therefore they are not as 
quantitative as one might hope. 

Since this paper continues a large body of work dis- 
cussed in detail elsewhere, it will rely on definitions and 
formulas already presented [3-51. The reader should con- 
sult those references for background. Quantities such 
as the chiral condensate I$$), the monopole susceptibil- 
ity x, and the monopole percolation order parameter M 
should be familiar and will not be reviewed here. Equa- 
tion of state, scaling laws, and critical indices should also 
be familiar to the reader. Our notation will be the same 
as past publications. 

One of the goals of the present investigation is a bet- 
ter understanding of the physical significance of effective 
1513 01996 The American Physical Society 



1514 JOHN B. KOGUT AND K. C. WANG 12 
monopoles in noncompact QED. Since the gauge field 
piece of the action is purely Gaussian, it is surprising that 
effective monopoles can have any significance at all. How- 
ever, they are detected in gauge field configurations using 
the same operators invented to detect monopoles in pure 
compact U(1) theory [7], and they couple to fermions 
through U(1) phases. In the quenched limit, however, 
the monopoles do not interact among themselves (since 
the gauge field piece of the action ii Gaussian) and their 
transition is well described by percolation, a counting 
problem. Nonetheless, there is the intriguing possibil- 
ity that the percolation transition can induce nontrivial 
dynamics in the fermion sector in unquenched models if 
the two transitions coincide. We shall see that this per- 
spective has support from our simulations. The reader 
should note, however, that the simulation data obtained 
here can be used to test other scenarios describing chi- 
ral symmetry breaking in noncompact QED, and we hope 
that our extensive tables of measurements for various Nf 
will inspire such efforts. A crucial point in our work is 
that in models with different bare parameters, such as 
NY, where the chiral and monopole percolation transi- 
tions are coincident and second order, the chiral critical 
indices should be the same. It is not clear that this result 
on critical indices is easy to obtain in other scenarios. 

We shall see in the body of this paper that varying Nf 
over a wide range leaves the chiral and monopole per- 
colation transitions coincident within uncertainties. In 
these cases it is reasonable to investigate the possibil- 
ity that the two transitions are intimately related and 
share several aspects of their critical behavior. The coin- 
cidence of the two transitions is certainly dependent on 
the form of the lattice action used here. Recent work by 
Hands and one of the authors has demonstrated this in 
the context of quenched models with generalized actions 
[a]. In these toy models the relative positions of the two 
transitions could be changed by altering the bare action 
and effectively changing the relative importance of long- 
range photon exchange and short-range attraction. It 
would be particularly interesting to generalize this study 
to unquenched models. 

We begin with an overview of our results. For Nf equal 
2 and 4, we will rely on past, more quantitative studies 
[5]. The Nf = 8 and 16 simulations were done on lo4 
lattices, with selected simulations on 124, 144, and 164 
lattices to check for finite size effects. Accurate studies 
of the chiral condensate showed that only bare fermion 
masses greater or equal to 0.05 (in lattice units) are 
free of finite size effects. This result implies that some 
past studies of lattice QED at large Nf were not un- 
der quantitative control [9]. Data taken at bare fermion 
masses of 0.05, 0.06, 0.07, 0.08, 0.09, and 0.10, and at 
couplings ranging from p = 0.21 to 0.14 in steps of 
A.0 = 0.005, are consistent with the hypothesis that 
there is a chiral transition at PC = 0.17(l) with power 
law critical singularities. The critical indices for the chi- 
ral transition are consistent with those measured more 
precisely for the Nf = 2 and 4 theories previously. Mea- 
surements of the monopole percolation observables also 
indicate a second order phase transition at essentially 
the same coupling, & = 0.180(5), with critical indices 
characteristic of conventional four-dimensional bond (or 
site) percolation. The coincidence of the chiral and 
monopole percolation transitions has been noted before 
in the Nf = 2 and 4 theories 151. Even more intriguing 
than this is the fact that both transitions may share the 
same correlation length index V. Precise measurements 
of monopole percolation in four dimensions have strongly 
suggested the exact result v = $ [4]. Measurements of 
the chiral equation of state presented here for Nf = 8 
and elsewhere for Nr = 2 and 4 give the critical indices 
6 = 2.2(l) and y = 1.0(l). If we assume that the crit- 
ical point has power law singularities with conventional 
properties, then the critical indices should satisfy the hy- 
perscaling relations, and 6 and y determine all of them. 
The hyperscaling relations read 

2 - a = dv, 

2&.,6 - y = du, 

P mag=;(d-2+v), (1.1) 

v3mag iy=dlJ. 

Then the values 6 = 2.2 and y = 1 imply Pmss = 
0.83,~ = 0.67,a = -0.67,~ = 0.50, and A = &asS = 
1.83. The intriguing result of this exercise is that mea- 
surements of the chiral exponents and the hypothesis 
of hyperscaling predict that the correlation length ex- 
ponents u of both transitions are identical. This im- 
plies that the monopoles are relevant degrees of free- 
dom at the chiral transition and since they scale iden- 
tically, the monopoles should survive in the continuum 
limit of the chiral transition. It might be accurate to say 
that monopole percolation “drives” the chiral transition 
and the chiral transition defines an interacting, contin- 
uum field theory because it “inherits” the nonmean-field 
correlation length critical index v = $ from monopole 
percolation. We shall see in the text through-analysis 
of our measurements of the order parameter ($4) that 
this interpretation fits the computer simulation data very 
well. However, other hypotheses, such as the possibility 
that the chiral transition is described by a logarithmi- 
cally trivial Nambu-Jona-Lasinio model, might fit the 
data adequately as well. It would require considerably 
more computer power to separate the monopole picture 
of the transition from other possibilities just on the ba- 
sis of numerical fits. One reason for this difficulty is the 
fact that finite size effects grow large as Nf increases and 
small bare fermion nwsses close to the chiral limit cannot 
be simulated on lattices of practical proportions like lo4 
or even 164. For this reason the emphasis in this paper 
will be different, although elsewhere the Nf = 2 and 4 
models are being simulated on even larger lattices with 
even better statistics. 

We consider the Nf = 12,16,20,24,32, and 40 mod- 
els here, and measure (&) and monopole observables to 
see if the correlation between these observables persists 
at all Nf. We shall see that while the character of the 
transitions changes qualitatively as Nf increases, the two 
transitions remain strongly correlated, To avoid finite 
size effects we were forced to simulate a relatively large 
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bare fermion mass m = 0.10 on IO4 lattices. Therefore, 
many of our conclusions are just qualitative. Luckily, 
qualitative changes were seen in the data as Nr varied 
so the study remained useful. We found that as Nr was 
increased from 8 to 24, the chin1 and monopole perco- 
lation transitions both shifted to stronger critical cou- 
plings but they remained coincident and apparently sec- 
ond order. However, at Nf z 24 and m = 0.10, both 
transitions displayed jumps suggesting first-order behav- 
ior. (The reader should be careful not to overlook our 
caveats expressed above in these remarks-simulations 
at smaller m and larger lattices are really necessary to 
make such statements.) At Nf = 24, the chin1 con- 

densate ($11) and the monopole percolation order pa- 
rameter M display “discontinuous” jumps between cou- 
plings ,0 = 0.08 and 0.085. Increasing Nf even further 
to 32 simply enhances the sizes of the apparent discon- 
tinuities. The fact that the character of the transition 
for Nf between 8 and 24 is different from that for Nf 
between 24 and 40 is supported by measurements of the 
monopole concentration (density). For small Nf, where 
the monopole transition is percolation, the concentra- 
tion of monopoles is expected to be small and smooth 
through the transition. The simulations show this clearly. 
However, our simulations at Nf = 24 and especially 
Nf = 32 show that the concentration jumps “discon- 
tinuously” at the chin1 transition, strongly suggesting 
a first-order transition between a dilute “gaseous state” 
of monopoles and a fairly dense “liquid” state. For ex- 
ample, at Nf = 32 the monopole concentration jumps 
from -0.10 at 0 = 0.055 to 0.34 at /3 = 0.050. Since the 
transition shows up in the monopole concentration, it is 
accurate to call it a “condensation” transition. Since c 
= 0.34 is a substantial density (the maximal value of c 
is slightly under one-half), it is very tantalizing to view 
the transition as a first-order gas-liquid transition. Ap 
parently increasing Nf affects the monopole core energy 
and/or the monopole-monopole interactions and thereby 
induces a gas-liquid transition. It would be interesting 
to complement the computer results with some analytic 
calculations. 

Of course this physical picture of the transition needs 
further substantiation. One element of it that we could 
test here was the expectation that if fermion-induced 
forces were affecting the monopole dynamics and lead- 
ing to a gas-liquid transition, then if Nf were taken truly 
large, free monopoles would never appear in the system. 
In fact, we conlirmed this point at Nf = 40. The simula- 
tion showed that the monopole concentration and the 
monopole percolation susceptibility and the monopole 
percolation order parameter all remained strongly sup- 
pressed and flat as the coupling varied. The chiral con- 
densate was similarly suppressed. However, the plaquette 
showed strong dependence on the coupling 0 suggesting 
that a transition remains in the model with a divergent 
specific heat, but it is unrelated to the monopole or cbi- 
ral properties of the model. The small values of M and c 
indicate that the monopoles remain bound in tight pairs 
for all coupling 0. Under these circumstances one would 
not expect them to induce chin1 symmetry breaking and 
our simulations are consistent with that fact. 

The phase diagram (Nf vs 0) that we are advocating 
here agrees qualitatively with that of Azcoiti and collab- 
orators [lo]. Their work emphasizes the theory’s specific 
heat, while ours emphasizes monopole and chin1 dynam- 
ics. We believe that these are two views of the same 
physics, and the qualitative features we are interested in 
and can deal with fairly reliably, are identical. 

The body of this paper is organized as follows. In Sec. 
II the Nf = 8 theory is discussed in detail. In Sec. III we 
turn to the Nr = 12,16,20, and 24 data, and show that 
the Nf = 24 data displays monopole condensation. In 
Sec. IV we turn to the Nr = 32 and 40 data which show 
that for truly large Nf the monopole and chin1 activities 
in the theory are strongly suppressed. 

II. THE N, = 8 SIMULATION 

We used our hybrid Monte Carlo code for noncompact 
QED to explore the eight flavor, Nf = 8, model just as 
we studied the Nf = 4 case more quantitatively in an 
earlier publication. The reader should consult our exten- 
sive Nf = 2 and 4 studies for details of the algorithm and 
the definitions of various chiral and monopole observables 
[3-51. Since. this paper is looking for qualitative trends 
TABLE I. Chin1 condensate, Nf = 8, L = 10. 

Plm 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 
0.200 0.1066(5) 0.1396(7) 0.1677(7) 0.1947(6) 0.2148(7) 02368(S) 0.2545(7) 0.2739(7) 
0.195 0.1139(7) 0.1468(Q) 0.1778(S) 0.2056(7) 02270(S) 0.249(l) 0.269(l) 0.2835(7) 
0.19 0X46(6) 0.160(l) 0.1903(S) 0.2160(7) 0.2388(S) 0260(i) 0.280(l) 0.2958(7) 
0.185 0.1370(7) 0.173(l) 0.2036(S) 0.2290(8) 0.252(l) 0.274(l) 0.293(l) 0.3098(S) 
0.18 0.147(l) 0.188(l) 0.2179(S) 0.247(l) 0.268(l) 0.288(l) 0.305(l) 0.3232(S) 
0.175 0.167(l) 0.209(l) 0.236(l) 0.261(l) 0.286(l) 0.304(l) 0.319(l) 0.3364(Q) 
0.17 0.181(l) 0.219(l) 0.256(l) 0.279(l) 0.302(l) 0.321(l) 0.335(l) 0.352(l) 
0.165 0.203(l) 0.242(l) 0.274(l) 0.300(l) 0.322(l) 0.335(l) 0.353(l) 0.369(l) 
0.16 0.232(l) 0.265(l) 0.297(l) 0.320(l) 0.340(l) 0.358(l) 0.371(l) 0.382(l) 
0.155 0.262(l) 0.293(l) 0.323(l) 0.341(l) 0.360(l) 0.377(l) 0.386(l) 0.399(l) 
0.15 0.291(2) 0.319(l) 0.344(l) 0.364(l) 0.380(l) 0.394(l) 0.407(l) 0.417(l) 
0.145 0.324(2) 0.349(l) 0.371(l) 0.386(l) 0.405(l) 0.416(l) 0.425(l) 0.434(l) 
0.14 0.355(2) 0.377(l) 0.398(l) 0.412(l) 0.424(l) 0.435(l) 0.444(l) 0.452(l) 
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TABLE II. Chirai condensate, Nf = 8, L = 12. 

Plm 0.03 0.05 

0.200 0.1123(5) 0.1723(8) 

0.190 0.1280(8) 0.1916(S) 

0.185 0.1388(7) 0.2030(6) 

0.180 0.1516(7) 0.2185(6) 

0.175 0.1657(7) 0.2344(8) 

0.170 0.1824(8) 0.2520(7) 

0.160 0.229(l) 0.2949(9) 
0.150 0.289(l) 0.345(l) 

0.140 0.355(l) 0.396(l) 

and is a contribution in a long series, we will not repeat 
formulas, definitions, and past observations. Rather, our 
emphasis will be on results, plots, and an emerging phys- 
ical picture. 

To gain some understanc&g of the chiral transition 
at m = 0.0 we measured (@J) for bare fermion m&ses 
ranging from 0.03 to 0.10 and couplings /? = l/e’ ranging 
from 0.20 to 0.14. The data are shown in Table I. Several 
hundred trajectories of the hybrid Monte Carlo code were 
required to achieve the statistical accuracy indicated in 
the table. Since the lattice size is relatively small, 104, 
we niust be careful about finite size effects in the data, 
especially at small values of m. Therefore, we did lim- 
ited simulations on 124, 144, and 164 lattices. The data 
is shown in Tables II-IV. Comparing Tables I and II, we 
see evidence on the weak coupling side of the chiral tran- 
sition, fi = 0.20-0.18, for numerically significant finite 
size effects for the lowest fermion mass, m = 0.03. Over 
this range of parameters, (&) is relatively suppressed on 
the smaller lattice, which is the expected finite size/finite 
temperature effect. However, comparing Tables I-IV we 
see that the finite size effects are within our statistical 
error bars at m = 0.05, except perhaps at the weakest 
coupling p = 0.200. Therefore, in the analysis that fol- 
lows only the lo4 data for m ranging from 0.05 to 0.10 
will be used. 

We will assume that the chiral transition is well- 
described by a second order phase transition with power 
law singularities. Other hypotheses could be tried here 
and some would probably be fairly successful since our 
data covers only relatively large m values and every fit- 
ting hypothesis is accompanied by ,several free parame- 
ters. We will pursue the power law hypothesis here be- 
cause it is simple and because it is definitely appropriate 
for monopole percolation 141. Given this, the data should 
satisfy the equation of state (EOS) 

TABLE III. Chiral condensate, Nf = 8, L = 14. 

Plm 0.05 

0.185 0.2032(4) 

0.180 0.2188(4) 

0.170 0.2356(5) 
TABLE IV. Chiral condensate, Nf = 8,L = 16. 

PI, 0.05 

0.185 0.2043(3) 

0.180 0.2184(3) 

0.170 0.2340(4) 

where 6 and &,,ag are the usual critical indices and Afl = 
PC-p, and this form of the EOS has been used extensively 
elsewhere. ~Equation (2.1) simplifies at the critical point 
and reduces to the scaling law of the order parameter 
($4) as the symmetry-breaking field m is tuned on: 

(&) = Ad, p = & (2.2) 

We found that Eq. (2.2) is a particularly effective way 
to determine b and & which then can be used in the 
EOS to find the universal scaling function f and the crit- 
ical index flmas away from the transition. In Fig. 1 we 
plot -l/l&+) vs -l/In(m) for the data of Table I 
(m 2 0.05). For infinitesimal m and ($$), these lines 
should be straight with the slope f at 0 = &, and they 
should pass through the origin. We see that this hypoth- 
esis works well at & = 0.17 in Fig. 1 for m = 0.05-0.10. 
The lower masses are subject to finite size effects, as dis- 
cussed above, and must be discarded. The slope of the 
& = 0.17 line in Fig. 1 gives S = 2.2(l). Power law fits 
of the p = 0.17 data to Eq. (2.2) are excellent indicating 
that the numerical evidence for the power law hypothe- 
sis is perfectly consistent with the numerical data. Such 
fits produce estimates of the constant A in Eq. (2.2). A 
is predicted to be very close to one, so that it does not 
affect the curves and 6 estimate in Fig. 1. (The reader 
can verify that A is consistent with unity by reading the 
vertical axis of Fig. 2 when fl is set to &, zero on the 
horizontal axis.) One can also estimate 0, and 6 by plot- 

FIG. 1. -l/in(m) vs - l/ln@$) plot showing critical 
behavior at p = 0.17. 
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ting ln(&) vs In(m) and looking for the best linear fit 
for various p. This method, which is independent of the 
constant A and was used in the Nf = 2 and 4 cases also, 
produces PC = 0.17 and b = 2.23(14). 

We also took the data in Table I and fit them to the 
simple EOS 

m = w+w6 + B(P - Pc)(!G). (2.3) 

Using the m = 0.05,0.06,0.07, and 0.08 data, a sta- 
ble fit was found and the parameters 6 = 2.30(16), 
& = 0.164(4), C = 0.935(76), and B = 5.90(19) were 
predicted. These results are consistent with the results 
obtained above by more elementary, transparent meth- 
ods. We did not use the lower mass data (m = 0.03 
and 0.04) in this fit because of the finite size effects dis- 
cussed above. Neither did we use the higher mass data 
(m = 0.09 and 0.10) because they lie outside the scaling 
region, as one can observe visually in Fig. 1. 

We note that the result 6 = 2.2(l) is consistent with 
the results found at Nf = 2 and 4, assuming power law 
singularities at the critical point. Those data also gave 
the susceptibility index y = 1.0(l) which, by the hy- 
perscaling relation ornag = r/(6 - l), predicted pmse, = 
0.83(7), the magnetic critical index. This motivated us 
to try the EOS equation (2.1) with pmag = 0.83. The 
result is shown in Fig. 2. The data fall on a universal 
scaling function f rather well, although the quality of 
the data and the resulting universal curve are not com- 
parable to our Nr = 2 and 4 results which came from 
larger lattices and smaller values of m. However, if we 
compare the EOS for Nf = 8 in Fig. 2 to the analogous 
figures in the Nf = 2 and 4 publications, we see that 
even the universal function f as well as the critical in- 
dices S and flmag are consistent in their independence of 
Nf. One interpretation of this result is that monopole 
percolation drives each transition, as discussed in the in- 
troduction above, and fermion feedback does not affect 
the percolation critical behavior as long as Nf is not too 
large. More evidence for this scenario will be presented 
below when monopole observables are presented and an- 
alyzed. There is no doubt, however, that other more 
mundane explanations of these systematics could be pre- 
sented. For example, it could be that all the Nr # 0 
theories are logarithmically trivial and have the scal- 
ing properties of Nambu-Jona-Lasinio (NJL) models. If 
FIG. 2. Equation of state for Nf = 8 theory. 

this hypothesis is true, the reason for the deviation of 

6 =*d L&nag from their mean-field values of 3 and l/2, 
respectively, is the presence of scale-breaking logarithms 
in the NJL equation of state. The limited accuracy of 
our Nf = 8 makes it pointless to pursue alternative fits 
here-given a few new parameters as would occur in NJL 
fits, this could certainly be done. Rather, we shall inves- 
tigate just qualitative features of the models with higher 
Nf and accumulate additional evidence for strong corre- 
lations between the chiral and monopole activities in each 
model. This will then provide “supporting, circumstan- 
tial evidence” for the monopole-driven chiral transition 
physical picture we are developing. 

Next, we accumulated monopole percolation data for 
the Nf = 8 theory on a lo4 lattice at various m. The data 
for x, the monopole susceptibility, and M, the monopole 
percolation order parameter, are presented in Table V. 
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We see that the peak of the susceptibility x occurs at a 
coupling between 0.175 and 0.180 for m = 0.03, and it 
moves to slightly weaker coupling, 0.19, as m increases to 
0.10. Our estimate of fie = 0.17 for the chin1 transition 
refers, of course, to the m = 0 chin1 limit. So, within 
uncertainties because of finite size effects, the chin1 and 
monopole percolation transitions are coincident, as we 
found with better numerical control for Nf = 2 and 4. 
There it was demonstrated that monopole susceptibility 
calculations can be done reliably at lower m values than 
ln($$) calculations because the position of the peak in 
x suffers from smaller finite size effects. It is important 
to determine if the peaks in 2 on the lo4 lattice are in-. 
dicative of a real transition. To obtain some evidence 
for this result and to measure some critical indices, we 
repeated the measurements summarized in Table V on 
104, 124, 144, and X4 lattices at m = 0.05. The data are 
given in Table VI. We see that the peaks grow with L and 
they occur at a size-independent value of the coupling p. 
According to finite size scaling, the peak heights should 
grow as 

Xmax(L) N p”.h”.” (2.4) 

where y,,,,,n and vmo,, are the susceptibility and corre- 
lation length exponents for the monopole transition. In 
addition, the order parameter at the coupling pmax where 
x peaks for each L should scale to zero as 

M[&,(L)] - L-@-“lu~,“. (2.5) 

We test these scaling predictions in Fig. 3 and find that 
the data supports power law scaling with the indices 

rm&on = 2.25(3), 

P,&m,n = 0.875(80). (2.6) 

These are exactly the critical indices of ordinary fow- 
dimensional percolation. Four-dimensional percolation 
indices satisfy hyperscaling relations and Eq. (2.5) then 
predicts vmon = a. This is the correlation length scal- 
ing index discussed in the introduction. Its coincidence 
with the correlation length exponent of the chin1 transi- 
tion is crucial to the monopole-percolation-driven chiral- 
transition physical picture. 
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FIG. 3. Scaling plots, Eqs. (2.3) and (2.4), of monopole 
percolation quantities for Nf = 8 theory. 

In summary, our lo4 numerical results are compatible 
with the idea that the Nf = 8 chiral transition is phys- 
ically indistinguishable from the Nf = 2 and 4 chin1 
transitions. If we assume power law critical singularities, 
then the physical picture of monopole percolation driving 
the chiral transition is also defensible because the cou- 
plings of the transitions coincide as do their correlation 
length indices. 

III. MONOPOLE CONDENSATION AT Nr = 24 

We next increased h’f in our hybrid Monte Carlo code 
and simulated the Nf = 12,16,20, and 24 models on lo4 
lattices with m = 0.10. A relatively large bare fermion 
mass was chosen to control finite size effects. The rela- 
TABLE VI. Monopole observable scaling, N, = 8. 

PIL 10 12 14 16 

X M 

d(3) 
M x M X M 

0.20 0.0267(2) 
0.19 48.OC61 0.058f11 
0.185 66(i)' o.l05(3j 83(l) 0.076(2) 104(Z) 0.061(l) 
0.18 50(2) 0.266(6) 75(3) 0.228(S) 107(3) 0.197(4) 142(4) 0.180(3) 
0.175 42(3) 0.409(4) 40(3) 0.415(4) 40(2) 0.412(2) 
0.17 11.9(4) 0.575(Z) 

0.16 2.89(4) 0.773(l) 

0.15 0.937(S) 0.886(l) 
0.14 0.359(4) 0.945(l) 
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P 

FIG. 4. Chiral condensate ($$), monopole percola- 
tion order Parameter M, and average plaquette P for
Nf = 12 and 16 theories. 

tively large symmetry-breaking field will smooth out the
chiral transition and make quantitative investigations im- 
possible. However, qualitative changes in the dynamics 
of the model will be seen. The reader should under- 
stand, however, that we cannot predict the precise Nf 
values where qualitative changes occur. More simula- 

t oNf=24 
rl 
QQ’+?> 

i +M 

0.10 0.R 0.14 0.16 0.188 

FIG. 5. Same as Fig. 4 except Nf = 20 and 24. 
+ 
N,=Z4 

0 P 
v <gT$> 

‘1 + M 

c 
0 c 

FIG. 6. Same as Fig. 4 except Nf = 8 and 24, but the 
monopole concentration c is shown as well. 

tions at smaller bare fermion masses on larger lattices 
will be needed for that. 

The simulation d_ata for the average plaquette P, the 
chiral condensate (@,!J), and the monopole percolation or- 
der parameter Mare shown in Fig. 4 for NY = 12 and 16. 
The transition region between small ($+) (or M), and 

I 0 

N,=8 

? I I I 
0.08 0.10 O.l2/3 c 

FIG. 7. Monopole percolation susceptibility plots for 
N, = 8 and 24. 

0 

D 
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TABLE VII. N, = 8 data. 

P P mJ) M 

0.21 0.961.(2) 0.2550(S) 21.:(2) 0.046(l) 0.11:4(2) 
0.205 0.972(2) 0.2643(S) 27.0(3) 0.060(l) 0.1093(2) 
0.20 0.983(21 0.2739(7) 34.7f6) 0.088(Z) 0.1163(2) 

0.195 0.993(2j 0.2835(7j 45.4(9j o.l25(3j o.l232(2j 

0.19 1.005(Z) 0.2958(7) 52(2) 0.221(6) 0.1309(2) 
0.185 1.023(2) 0.3098(S) 38(2) 0.383(6) 0.1396(3) 
0.18 1.040(2) 0.3232(S) 20(Z) 0.535(5) 0.1482(2) 
0.175 1.110(2) 0.3364(g) 8.3(9) 0.652(3) 0.1573(2) 
0.17 1.151(2) 0.352(l) 3.7(l) 0.747(2) 0.1682(2) 
0.165 1.180(2) 0.369(l) 2.11(3) 0.810(l) 0.1791(2) 
0.16 1.196(2) 0.382(l) 1.33(2) 0.859(l) 0.1900(2) 

0.155 1.271(2) 0.399(l) 0.78(l) 0.899(l) 0.2033(2) 
0.15 1.310(2) 0.417(l) 0.50(l) 0.9270(6) 0.2163(2) 

0.145 1.372(2) 0.434(l) 0.32(l) 0.9483(4) 0.2299(2) 
0.14 1.464(2) 0.452(l) 0.21(l) 0.9639(3) 0.2451(2) 

large (&!J) (or M) shifts toward stronger coupling and the 
transition somewhat sharpens. The shift toward stronger 
coupling is a consequence of dynamical fermion screening 
and has been seen in many contexts before. In Fig. 5, we 
show the same plots for Nr = 20 and 24. Now there are 

suggestions that for each Nf, the order parameters (&) 
and M jump at the same coupling from smaller to larger 
values. This is particularly persuasive for Nf = 24 where 
we see signs of discontinuities at fl = 0.0825(25). Perhaps 
this qualitative effect is more visual in Fig. 6, where the 
Nt = 24 and Nf = 8 data for m = 0.10 are plotted 
and we have added the monopole concentration (den- 
sity) “c” to the list of observables. The chin1 condensate, 
monopole concentration, and average plaquette each ap- 
pear to jump for p = 0.0825(25). Certainly, for strong 
coupling, 0 < 0.0825, their slopes are much greater than 
their slopes at weak coupling, 0 > 0.0825. By contrast, 
the same set of observables are smooth in the plot of 
the Nf = 8 data. Of course, there is a transition in the 
Nf = 8 data, but it does not show up clearly at relatively 
large values of m, except in the monopole percolation ob- 
servables M and x. In fact, we plot the monopole perco- 
lation susceptibilities x for the Nf = 8 and 24 theories at 
m = 0.10 in Fig. 7. Strong peaks are seen for both the 
Nf values with the width of the Nf = 24 peak consider- 
ably reduced, again indicating the relative sharpness of 
the Nf = 24 transitions. 

Perhaps the clearest indication that the dynamics of 
the Nf = 24 model is qualitatively different from that 
- 1.0 

blt=32 

- 0.8 

- 0.6 

c 

<W 
M 

-0.4 

FIG. 8. Same as Fig. 6 except Nf = 32 and 40. 

of the Nr = 8 case, comes from the monopole concen- 
tration. As seen in Tables VII and VIII, of Nf = 8 and 
Nf = 24 data at m = 0.10 on lo4 lattices, the monopole 
concentration “jumps” in the Nf = 24 case while it is 
perfectly smooth through the percolation transition in 
the Nf = 8 case. This suggests that the monopoles are 
condensing in the Nf = 24 theory and the ground state 
for 0 < 0.0825(25) is a monopole condensate, perhaps 
resembling the strong coupling, confining vacuum of the 
compact U(1) lattice QED model. Since the monopole 
concentration is small for p > 0.0825(25) and jumps to 
a distinctly larger value for p < 0.0825(25), we may be 
seeing signs of a first-order gas-liquid monopole conden- 
sation transition. Note that the percolation order param- 
eter M and its susceptibility x are near their kinematic 
extremes on the strong coupling side of the transition (at 
p = 0.07, say) and even the monopole concentration c 
is a substantial fraction of its extremal value (which is 
just under l/2). These properties of M, x, and c will be 
seen equally clearly in the Nf = 32 model which will be 
TABLE VIII. Nf = 24 data. 

P P (iw M 
0.12 0.799(l) 0.183(l) 11:2(l) 0.019(l) 0:0730(2) 

0.11 0.845(l) 0.193(l) 14.8(2) 0.029(2) 0.0847(2) 
0.10 0.915(l) 0.211(l) 2&l(3) 0.053(2) 0.1002(2) 
0.095 0.955(l) O.ZZZ(l) 34.2(7) 0.088(3) 0.1089(2) 
0.09 1.019(l) 0.238(l) 50(2) 0.197(7) 0.1211(3) 

0.085 1.097(l) 0.258(l) 26(3) 0.476(7) 0.1356(3) 

0.08 1.336(2) 0.329(l) 1.36(3) 0.853(2) 0.1794(5) 
0.07 2.77(l) 0.516(2) 0.0076(5) 0.9983(2) 0.3354(S) 
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TABLE IX. N, = 32 data. 

P P 6w 
8.2$4) 

M 
0.09 0.7366(6) 0X24(4) 0.0024(S) 0:052(l) 

0.08 0.8100(7) 0.1586(4) 9X8(5) 0.0102(9) 0.061(l) 

0.07 0.934(l) 0.1687(5) 11.90(S) 0.0218(9) 0.073(l) 
0.06 1.276(2) 0.1867(6) 20.2(3) 0.045(l) 0.092(l) 
0.0575 1.509(2) 0.1954(9) 29.2(9) ,0.061(4) 0.100(l) 
0.055 1.692(l) 0.2070(7) 41.7(9) 0.146(6) 0.110(l) 
0.0525 2.151(l) 0.2339(7) 17.4(9) 0.509(6) 0.130(l) 

0.05 4.639(4) 0.509(l) 0.0048(2) 0.9989(l) 0.335(l) 

0.045 5.315(4) 0.516(2) 0.0047(2) 0.9989(l) 0.342(l) 

0.04 6.127(2) 0.513(2) 0.0048(2) 0.9989(l) 0.343(l) 
0.03 8.305(5) 0.517(l) 0.0045(2) 0.9989(l) 0.344(l) 
discussed further below. The monopole activation energy 
is proportional to $ = 0 and it is relatively small here~ 
compared to the small Nf models. As the coupling is in- 
creased through 0.0825(25), a first-order monopole con- 
densation transition into a monopole liquid is triggered 
where a relatively dense monopole ensemble is produced. 
It would be interesting to study the monopole dynam- 
ics through correlation functions in this condensed state 
and compare them to similar simulations in pure compact 
QED. 

IV. MONOPOLE AND CHIRAL SUPPRESSION 
AT N,=40 

In this survey of Nf, we next turned to the Nr = 32 
model. The data is presented in Table IX (for m = 0.10 
and lo4 lattices, as usual) and it is plotted in Fig. 8. 
Jumps are seen in all observables for Nf = 32 at a cow 
pling /3 = 0.05125(125). On the strong coupling side of 
the transition, M, (&), and c are saturated. The aver- 
age plaquette has also jumped at p = 0.05125(125), and 
is growing rapidly in the strong coupling phase. A first- 
order monopole condensation transiton is very apparent. 

We finally increased Nf to 40 in order to see the ef- 
fects of extreme fermion screening. Table X and Fig. 
8 resulted-the monopole and chiral observable are al- 
most completely suppressed. Throughout the entire 
range of couplings @$) remains near its weak coupling 
value. Both of the percolation observables, x and M, are 
strongly suppressed and are slightly smaller at /3 = 0.01 
than those at 0 = 0.02. The average plaquette P rapidly 
increases over this range of 0, however, probably indica- 
tive of a persistent specific heat anomaly, as discussed 
more quantitatively by Azcoiti and collaborators [lo]. 
Our interest in this result is again the strong correlation 
between the monopole and chiral observable. The fact 
that they are both deeply suppressed, even while the av- 
wage plaque& indicates considerable “disorder” in the 
ground state, is supportive of the physical picture which 
contends that the effective monopoles are essential in the 
model’s chiral dynamics at all Nf. 

V. CONCLUDING REMARKS 

In this survey of Nf, we have found that chiral and 
monopole dynamics are strongly correlated in every case. 

A. Small N, 

The monopole transition is a second-order percolation 
transition without condensation. If the chiral transition 
is assumed to be characterized by power law singulari- 
ties, satisfying hyperscaling, then it was coincident with 
monopole percolation and the correlation length indices 
of the two transitions were identical. 

B. Intermediate Nf 

The monopole transition becomes a first-order conden- 
sation phenomenon. The chiral transition is coincident 
and also first-order. 
TABLE X. Nr = 40 data. 

P P (W 
0.05 3.042(4) 0.1522(S) lo:(l) 0?12(1, 0:063(l) 
0.04 4.275(4) 0.1567(4) 11.9(l) 0.024(l) 0.069(l) 
0.03 '7.648(5) 0.1672(4) 15.2(2) 0.036(l) 0.075(l) 

0.02 11.956(6) 0.1686(5) 15.9(2) 0.037(l) 0.089(l) 
0.01 23.207(7) 0.1692(5) 15.5(2) 0.034(l) OSll(2) 
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C. Large NI 

The monopole and chin1 observables are strongly sup- 
pressed, and there is no transition in any of these quanti- 
ties. The average plaquette is rapidly varying as a func- 
tion of coupling nonetheless. 

In summary, it may be worthwhile to pursue in more 

detail some aspects of the dynamics found here. The 
nature of the chiral transition for small Nf is a primary 
goal, since it may define an interacting field theory which 
is strongly coupled at short distances. The nature of the 
field theory and the role of effective monopoles in it would 

be interesting to understand. The monopole condensate 
at intermediate Nf and its “liquid” properties would be 
interesting to clarify through correlation functions. 
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