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Remarks on monopoles in noncompact lattice QED 
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We investigate the conjecture that monopoles in nancompact lattice,.QED condense, and that 
this phase transition is responsible for the breaking of chiral symmetry. The comparison of analytic 
and numerical results shows that we have a quantitative understanding of monopoles in both the 
quenched and dynamical cases. We see no evidence of monopole condensation. 

PACS number(s): 11.15.Ha, 11.3O.Rd, 12.20.D~ 
I. INTRODUCTION 

In a series of papers [l-5] we have investigated strongly 
coupled QED, both on the lattice in the noncompact for- 
mulation and in the continuum using Schwinger-Dyson 
equations. The strong coupling region is of interest be- 
cause of the existence of a second order chiral phase tran- 
sition. This implies a continuum limit, and the interest- 
ing question is whether or not it describes an interacting 
theory. Our calculations of the renormalized charge Ed 
and fermion ma rn~ demonstrated that whenever mu 
goes to zero in lattice units (i.e., the ultraviolet cutoff is 

removed) then Ed goes to zero. This suggests that the 
theory is noninteracting in the continuum limit in ac- 
cordance with the general belief that nonasymptotically 
free theories are trivial. It is encouraging that the two 
approaches, namely, lattice and Schwinger-Dyson, agree 
with each other. Further support of this picture comes 
from other authors [6,7]. An interesting alternative ap- 
proach to simulating lattice QED may be found in [8,9]. 

However, this picture has been queried by Hands, 
Kocid, Kogut, and collaborators [lo-171, who investi- 
gated the behavior of magnetic monopoles near the phase 
transition. Using a new monopole “order parameter,” the 
cluster susceptibility xc, introduced by Hands and Wens- 

ley [18], they conclude that monopoles condense in the 
chirally broken phase. The occurrence of this proposed 
second order monopole phase ‘transition is important be- 
cause such a transition would imply that the lattice 
model “has a critical point which should map onto a con- 
tinuum model with real monopole excitations” [12,13]. 

This would cast doubt on conclusions about continuum 
physics drawn from lattice calculations, as monopoles are 
presumably absent in continuum,QED. Furthermore, be- 
cause dual superconductivity and charge confinement are 
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to be expected whenever mono~oles condense it is mo- 
posed that “unquenched lattice QED confines quarks in 
its strong coupling phase” [12,13]. This is in conflict with 
our picture [5] where we have found free electrons and 
msssless photons in the broken phase. 

In the strong coupling limit p --t 0, or the limit when 
we have a large number of flavors, the action is dominated 
by the fermion determinant, which is a compact object in 
the sense that it only depends on’ the compactified link 
variables eiA*, A,, being the gauge field. It was found 
that the compact U(1) Wilson action has a first order 
phase transition [19] which is driven by monopole con- 
densation [19,20]. Hence it is conceivable that monopoles 
play a role in the noncompact case as well. Indeed, sim- 
ulations with very large numbers of fermions [21] suggest 

that the phase transition becomes first order. 
In this paper we shall investigate the relevance of 

monopoles for the phase transition. We solve the 
quenched case analytically [22] and look at the dynam- 
ical fermion case numerically. We find no evidence of 
monopole condensation. 

The action for noncompact lattice QED with dynam- 

ical staggered fermions can be found in [l]. The elec- 
tromagnetic field is defined by F,,,(x) = A,A,(z) - 
A,A,(z), where A, is the lattice forward derivative. To 
define monopoles [19,18] we decompose Fpw into an inte- 

ger valued string field N,,” and a compact field f,,Ly which 
lies in the range (-r,r]: 

The Bianchi identity tells us that F,,u summed over any 
closed surface always gives zero. This does not apply 
to the NV” and f,,y fields separately. This allows the 
common definition of a conserved monopole current on 
the dual links: 

II. LATTICE MONOPOLES 

F,w = 2xN,w + f,w (2.1) 
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= -Z~,upoAJ’p& + b) (2.2) 

Each component of A’& can take the values 0, ~0, f2. 
Later on we shall be interested in the monopole sus- 

ceptibility. This is defined by [23] 

In the infinite volume limit further manipulations lead to 
the equivalent form 

We have used Eq. (2.4) for our measurements. If the 
monopoles condense we would expect &, to diverge. We 
shall also look at the monopole density p and string den- 
sity 0: 

p = &~IM&)I and u = $ c INw+)l (2.5) 
a.11 S,W<” 

At a phase transition p and g would show nonanalytic 
behavior. 

III. ANALYTIC RESULTS 

In (151 it is claimed that even in quenched noncompact 
QED there is “an authentic second order phase transi- 
tion” at which the magnetic monopoles condense. Be- 
cause in the quenched case the action is quadratic and 
the partition function Gaussian, we can derive analytic 
formulas for most quantities [22]. First let us note that 
the free energy is an analytic function of 0, a fact which 
is hard to reconcile with the existence of a phase tran- 
sition. Of course, this does not exclude singularities in 
nonlocal functions of the gauger field such as the chiral 
condensate. 

The simplest quantity related to monopole physics is 
the string density. The probability distribution for a sin- 

gle Fvu field is a Gaussian: 9(F) = ,-1/2f11/2e-@. 
The distribution is completely determined because we 
know the width (F’) = l/(2,@. This gives 

u(p) = %([N(F)I) = g Cerfc[(2n + 1)&2] (3.1) 
n=O 

On a lattice with volume V the width of the Gaussian 
is reduced to (F’),= (V - l)/(ZVp). Thus cr on a finite 
lattice can be bound by replacing 0 by pV/(V - 1) in Eq. 
(3.1). One sees that finite size effects are negligible even 
on rather small lattices. 

To find the monopole density p we need the probability 
distribution for the six F fields on the faces of a cube. 
The most general Gaussian form consistent with cubic 
symmetry and the Bianchi identity is 

!?(Fl, , Fe) = ,-5’261’2(a - b)3/2(a + b)/3”‘” 

xS(F1+ “’ + F6) 

x exp{-@a(Ff + ” + F,2) 

-2Pb(F& + FzFs + FPe)} (3.2) 

The outwardly directed “plaquettes” have been labeled 
so that F, and FT-, are on opposite faces. The pa- 
rameters a and b are fixed by the known expectation 
values (F;) = l/(20) and (F&) = -r/(20), where 
y = 0.215563.. on an infinite lattice. So a and b 
must take the values a = (1 + r)/[l%y(l - 2y)] and 
b = (1 - 5y)/[12y(l - 2y)]. The monopole density p(p) 
is 

P(P) = WI) = s_m_ dF*‘...dFG~(F,,...,Fs) 

xlN,+~..+%. (3.3) 

The ratio 40/p is useful for giving a picture of the 
monopole distribution, because it is the average length 
of string joining a monopole-antimonopole pair. At large 
@ this ratio is 1; there is always an antimonopole directly 
adjacent to every monopole. In the interesting region 
around p = 0.24, 40(p)/p(@) has only grown to x 1.4, 
indicating that monopoles and antimonopoles are on a 
short leash (i.e., are tightly bound). In Fig. 1 these for- 
mulas are checked against the Monte Carlo data [lS]. 
The agreement is excellent. 

To check that p is analytic for fl > 0 we expand p(p) 

as a series of the form 

about an arbitrary point 00. The coefficients cn are given 
by the integrals 

FIG. 1. The monopole density p and the 0 to p ratio as a 
function of/r for quenched QED. The symbols represent the 
data from Ref. [lS].together with our data, while the curves 
show the analytic results on an infinite lattice. 
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C” = P-“‘“(IM,I[a(F: + “‘+F:) 
+qF& + FZFS + F#4)]“)/n! (3.5) 

evaluated at /3 = PO. Using the fact that all the factors 
in the integrand are positive and that IN1 +. + Nel 5 2 
establishes the bounds 

o < c 
n 

< 1 (2n-t3)! +p-spn 

3n!(n+1)!4n iI 
(3.6) 

The coefficients c, must decrease at least as rapidly 
as this upper bound does, so we know that. the series 
Eq. (3.4) is convergent with a radius of convergence of 
(at least) /Jo. A convergent series expansion rules out 
the existence of any essential singularities in p. A simi- 
lar proof holds for correlation functions involving a finite 
number of f’s and N’s. 

To calculate the susceptibility xrn from Eq. (2.4) we 
need to know the compact photon propagator (fif,). 
This can be found from the general two-“plaquette” dis- 
tribution @(Fi,F,) which is a Gaussian with parameters 
fully determined by the noncompact photon propagator 
[24]. [The argument is analogous to that used to fix the 
parameters in (3.2).] At finite p there is no divergence: 
x,,,(P) is a correlation function involving j’s (or N’s) for 
which the proof of analyticity applies. At p =~O, x,,, has 

the value ;r”. After 0 s 0.1 the curve drops exponen- 

tially in 0, 
From the results presented in this section pure non- 

compact QED would appear to be a counterexample to 
any proposed link between the cluster susceptibility xc 
of [18] and monopole condensation [12,13]. xc diverges in 
pure noncompact QED [15], but we have seen that there 
is neither monopole condensation nor confinement. 

IV. THE DYNAMICAL CASE 

We shall now investigate what happens if dynamical 
fermions are included. We have measured monopole 
properties on gauge configurations saved from [5]. 
P 
3 

FIG. 2. The monopole density as a function of the plaque- 
‘tte energy. The data are for four flavors of dynamical stag- 
gered fermions. The solid symbols represent our data, while 
the open symbols represent data from Ref. [1’7]. The curve is 
the analytic result for the quenched case on &n infinite lattice. 

If, as seems likely from the last section, the monopole 
properties are determined by very short distance fluctu- 
ations of the electromagnetic fields, we could expect that 
these properties are determined by the plaquette energy 
values, because the plaquette energy is a good measure 
of the fluctuation strength. Therefore we have plotted 
the monopole density against P - (l/12) &,,(Fj,) in 

Fig. 2 using data f?om Refs. [5,17]. Our results are given 
in Table I. We also show the analytic cwve calculated in 
the quenched case. We find surprisingly good agreement 
between the data and the analytic result, indicating that 
the inclusion of dynamical fermions does not change our 
previous conclusions. The data come from a wide range 

of bare masses, m=0.005-0.16, and plotting against P 
has brought them all onto a universal curve. In Fig. 3 we 
show the ratio u/p. Plotting against P has again brought 
measurements at different masses onto the same curve. 
In Fig. 4 measurements of monopole susceptibility x,,, 
are plotted against P and compared with the analytic 
TABLE I. The monopole density p, the string density C, and the monopole susceptibility xrn on a 1Z4 lattice with four 
flavors of dynamical staggered fermions. Also given are the plaquette energy values P = (l/12) ~r,,(F,‘v). 

B m P 
0.17 0.04 1.2832(6) 0:2087(Z) 0:0762 l(9) 

XVI 
2.729(107) 

0.02 1.2669(6) 0.2041(Z) 0.07395(S) 2.816(89) 
0.18 0.04 1.2022(6) 0.1865(3) ,0.06533(13) 2.371(150) 

0.02 1.1881(6) 0.1826(3) 0.06355(12) X813(146) 
0.19 0.04 1.1343(5) 0.1673(Z) 0.05662(7) 2.320(82) 

0.02 1.1194(5) 0.1626(2) 0.05459(7) 2.198(88) 
0.01 1.1106(S) 0.1603(3) 0.0535 5(11) 2.050(122) 

0.02 0.04 1.0739(3) 0.1493(Z) 0.0490 l(7) 2.110(85) 
0.02 1.0617(4) 0.1457(Z) 0.04745(6) 1.969(77) 
0.01 1.0548(6) 0.1437(Z) 0.04666(10) 2.095(121) 

0.21 0.04 1.0234(4) 0.1342(Z) 0.0428 9(6) 1.890(63) 
0.02 1.0133(4) 0.1314(Z) 0.04176(6) 1.806(64) 
0.01 1.0068(4) 0.1292(2) 0.0409 l(9) 1.899(89) 

0.22 0.04 0.9779(3) 0.1205(2) 0.03766(6) 1.595(56) 
0.02 0.9692(3) 0.1179(Z) 0.03670(5) 1.476(51) 
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FIG. 3. The c to p ratio as a function of the plaquette 
energy. The data are for four flavors of dynamical staggered 
fermions as given in Table I. The triangle is m = 0.04, the 
square is m = 0.02, and the circle is m = 0.01. The curve is 
the analytic result for the quenched case on an infinite lattice. 

result. Within the errors we find agreement with the an- 
alytic quenched result, and do not see any divergence of 
xrn. (The transition reported in [17] is at P x 1.025.) 

V. DISCUSSION 

In this work we have investigated monopoles in non- 
compact lattice QED. In the quenched case we have de- 
rived analytic formulas and can prove that there are 
no singularities in the quantities we have looked at. 
The,same formulas (with no adjustable parameters) also 
describe the dynamical case when quantities are plot- 
ted against the plaquette energy, which measures the 
strength of the electromagnetic field. Thus we have ar- 
rived at a quantitative understanding of monopoles in 
both the quenched and dynamical cases. 

The cluster susceptibility of Hands and Wensley [IS] is 

FIG. 4. The monopole susceptibility xrn as a function of 
the plaquette energy. The data symbols are the same as in 
the previous figure. The curve is the analytic result for the 
quenched case on an infinite lattice. 
where n is the number of dual sites in a cluster linked to- 
gether by monopole world lines, g,, is the number of clus- 
ters of size 12, and n,,,= is the size of the largest cluster. 
On an infinite lattice this susceptibility would diverge 
at the point where infinite clusters first appear, and has 
therefore long been used to find percolation thresholds 
[it is essentially the S(p) of [26] or the xf of [27]]. It 
is, however, not clear what connection this susceptibil- 
ity has to monopole condensation or charge confinement. 
Since xc is not a Green’s function, a divergence of xc 
does not imply an infinite correlation length and so does 
not indicate a second order phase transition. Thus it can 
mislead if it is used to locate phase transitions. 

The connection between monopole percolation and 
monopole condensation is not obvious, so we have tested 
the proposed link by applying conventional measures of 
monopole condensation [19,23]. These tests do not dis- 
play any signal at the percolation threshold. 

It is not surprising that when the monopole density be- 
comes large (p 2 0.15) percolation takes place. However, 
percolation is not necessarily connected with condensa- 
tion or with any other field-theoretic or thermodynamic 
property of the’ theory. Indeed, it is rather easy to find 
examples where the percolation threshold and the “au- 
thentic” phase transition are at different couplings. One 
example is the Ising model of higher dimension, where 
the percolation threshold lies at higher 0 than the phase 
transition [25]. The three-dimensional (3D) Ising model 
with a magnetic field h has percolation thresholds at fi- 
nite h even at fl = 0 where there is certainly no phase 
transition. Randomly distributed sites on a cubic lattice 
percolate when the concentration reaches x 32% [26]. 
This concentration is reached when h e ztO.38. Despite 
the occurrence of these percolation thresholds there are 
certainly no phase transitions at nonzero h in the Ising 
model. Therefore a cluster susceptibility can give “false 
positives” if used as an order parameter to detect phase 
transitions. 

It is worth noticing that in dynamical noncompact 
QED xc diverges in places where there is no phase tran- 
sition. The chiral phase transition takes place only at 
m = 0, while at finite m quantities such as (xx) and 
P are smooth functions of 0, as can be seen from the 
fact that all authors make successful fits to (nx) with 
functions which are analytic for all nonzero m. However, 
xc diverges not only at m = 0 but for all m including 
m = co, (see Refs. [16,17]). (Even if the phase transition 
extends to small m - 0.025 as tentatively suggested in 
Ref. [9] the essential point is not changed, as the percola- 
tion threshold extends all the way tom = CD.) That (RX) 
is smooth at the percolation threshold where xc diverges 
suggests that these quantities are unrelated. Another ex- 
ample of a divergence in xc with no corresponding singu- 
larity in (~2) is given by the quenched theory, in which 
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the percolation threshold lies 
and (2~) shows no sign of a 
Dercolation threshold. 

within the broken phase, 
second singularity at the 

In conclusion, the papers [lo-171 on monopoles in non- 
compact QED do not establish that monopoles are rele- 
vant in the continuum limit of the lattice theory or that 

confinement takes place at strong coupling, and so do 
not invalidate the picture of the chiral phase transition 
presented in Refs. [l-5]. In dynamical QED we have al- 
ready checked [5] that the potential is Coulombic and the 
photon does not acquire a mass. This is also inconsistent 
with confinement at low p. In particular, we consider 
that the measurements of the strength of the Coulomb 
force and of the beta function in the neighborhood of 
the critical point [2,5] are relevant to the question of the 
triviality of QED. 
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