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Using the quasipotential approach, we study exclusive semileptonic decays of heavy mesons taking 
into account relativistic effects. Because of a more complete relativistic description of the s quark, 
more precise expressions for semileptonic form factors are obtained. Various differential distributions 
in exclusive semileptonic decays of heavy mesons are calculated. It is argued that a consistent 
account of relativistic effects and a heavy quark effective theory motivated choice of the parameters 
of the quark-antiquark potential allow one to get a reliable value for the ratio Az(O)/A,(O) in the 
D -+ K”lvi decay as well as the ratio r(D + K*tvi)/I‘(D + Klvl). All calculated branching ratios 
are in accord with available experimental data. 

PACS number(s): 13.20.He, 12.39.Ki, 13.20.F~ 
I. INTRODUCTION 

Semileptonic decays bf heavy mesons provide an im- 
portant tool to investigate quark dynamics and to de- 
termine Cabibbo-Kobayashi-Makawa (CKM) matrix el- 
ements. Hadron dynamics is contained in form factors, 
which are Lorentz-invariant functions of q2, the square of 
the momentum transfer. These form factors cannot be 
calculated from first principles of QCD yet. Thus various 
potential models, sum rules, and lattice calculations have 
been proposed (l-61. Recently considerable progress has 
been achieved in describing heavy meson decays by the 
use of heavy quark effective theory (HQET) [7]. It has 
been found that in the limit of infinitely heavy b and c 
quarks their mass and spin decouple from the dynam- 
ics of the decay and the description of a process such 
a.8 B -+ Dlvl is strongly simplified. For D decays HQET 
predictions are less useful, because in this case symmetry- 
breaking corrections appear to be rather large. As shown 
in (81, the symmetry-breaking corrections may increase 
up to 30%. It is also important to note that, since B 

and D mesons contain light quarks, relativistic effects are 
quite significant and a consistent relativistic description 
of the heavy-light quark system is necessary. 

Our relativistic quark model (RQM) has some features 
that make it attractive and reliable for the description of 
heavy mesons. First, the the RQM provides a consistent 
scheme for calculation of all relativistic corrections and 
allows for the heavy quark l/mq expansion. Secondly, 
it has been found [9] that the general structure of lead- 
ing, next-to-leading, and second order l/mq corrections 
in the RQM is in accord with the predictions of HQET. 
The HQET and QCD impose some rigid constraints on 
the parameters of the long-range confining potential of 
ou model. This gives an additional motivation for the 
choice of the main parameters of the RQM and leads us to 
the conclusion that the confining quark-antiquark poten- 
tial in mesons is predominantly a Lorentz vector (with 
the Pauli term), while the scalar potential is anticon- 
fining and helps to reproduce the initial nonrelativistic 
potential. This model has been applied to calculations 
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of meson mass spectra [lo], radiative decay widths [ll], 
pseudoscalar decay constants [12], and rare radiative [13] 
and nonleptonic [i4] decay rates. Semileptonic decays 
of B and D mesons have been considered in our model 
in [15]. Here we refine OUT previous analysis with a more 
complete account of relativistic effects and HQET con- 
straints. We also consider exclusive decay spectra and q2 
dependence of form factors. 

In Sec. II we briefly describe the RQM. Section III is 
devoted to the calculation of form factors and semilep- 
tonic branching ratios and contains analytical expressions 
and numerical results for the differential distributions for 
decays into pseudoscalar as well as vector final states. We 
give our conclusions in Sec. IV. 

II. RELATIVISTIC QUARK MODEL 

Our model is based on the quasipotential approach 
in quantum field theory 1161. A quark-antiquark bound 
system with mass M and relativistic momentum p in 
the center of mass system is .described by a single- 
time quasipotential wave function *M(P), projected onto 
positive-energy states. This wave function satisfies the 
quasipotential equation 

[M-(p2+mf)~/2- (P” + wq *‘M(p) 

= g$v(p,q;M)Bt&l). (1) 
J 

The quasipotential equation (1) can be transformed into 
a local Schradinger-like equation [17] 

[ 
F - &] Q&f(P) = J$$v(P,q;M)By(q), 

(2) 

where the relativistic reduced mass is 
1391 0 1996 The American Physical Society 
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.‘A.% -= 
llR= El-i-& 

M4 - (my - my 
4M3 ’ 

(3) 
E = M2--m$+mf 

, &= 
M2--mf+mz 

1 
2M 2M ’ 

EI + Ez = M, 

and the square of the relative momentum on the mass 
shell is 

b2(M) = [M2 - (ml + -#Y$” - (ml - mN ( (4) 

where ml,2 are the quark masses. 
Now it is necessary to construct the quasipotential 

V(p, q; M) of the quark-antiquark interaction. As is well 
known from QCD, in view of the property of asymptotic 
freedom the one-gluon exchange potential gives the main 
contribution at short distances. With increase of the dis- 
tance the long-range confining interaction becomes dom- 
inant. At present the form of this interaction cannot 
be established in the framework of QCD. The most gen- 
eral kernel of the qq interaction, corresponding to the 
requirements of Lore& invariance and of P and T in- 
variance, contains [l&19] scalar, pseudoscalar, vector, 
axial-vector, and tensor parts. The analysis carried out 
in (10,181 has shown that the leading contributions to the 
confining part of the potential should have a vector and 
scalar structure. On the basis of these arguments we have 
assumed that the effective interaction is the sum of the 
one-gluon exchange term and the mixture of long-range 
vector with scalar potentials. We have also assumed that 
at large distances quarks acquire universal nonperturba- 
tive anomalous chromomagnetic moments and thus the 
vector long-range potential contains the Pauli interac- 
tion. The quasipotential is defined by [IO] 

V(p,q;M) = a,(~)~z(-~)[$~,o,~(k)~~~~ 

+V:n,WWz,p + Vc%&] 

X~1W2(---9)! (5) 

where a, is the QCD coupling constant, D,, is the 
gluon propagator, y,, and u(p) are the Dirac matrices 
and spinors, k = p - q, l?,, is the effective vector vertex 
at large distances: 

r,(k) = -/p + ~qX’, (6) 

and n is the anomalous chromomagnetic quark moment. 
The complete expression for the quasipotential ob- 

tained from (5) and (6) taking into account the rela- 
tivistic corrections of order v”/c’ can be found in [lo]. 
In the nonrelativistic limit vector and scalar confining 
potentials reduce to 

V:,& = (1 - 44~ + B), VLA-, = 4-4~ + B), (7) 

reproducing V~~,$(~) = V& + V& = Ar + B, where 
E is the mixing coefficient. 

All the parameters of our model, quark masses, the pa- 
rameters of the linear confining potential A and B, mix- 
ing coefficient E, and anomalous chromomagnetic quark 
moment 6, were originally fixed from the analysis of me- 
son masses [lo] and radiative decays [ll]. The quark 
masses, mp,= 4.88 GeV, m,= 1.55 GeV, m,= 0.50 GeV, 
mu,d= 0.33 GeV, and parameters of the linear potential, 
A= 0.18 GeV2, B = -0.30 GeV, have standard values 
for quark models. The value of the mixing coefficient 
of vector and scalar confining potentials E = -0.9 has 
been chosen primarily from consideration of meson ra- 
diative decays, which are rather sensitive to the Lorentz 
structure of the confining potential [ll]. The universal 
anomalous chromomagnetic moment of quarks, n = -1, 
has been fixed from analysis of the fine splitting of heavy 
quark&a 3P~ states [lo]. 

Recently, in the framework of the R&M, the l/mg 
expansion of the matrix elements of weak currents be- 
tween pseudoscalar and vector heavy meson states has 
been performed 191. It has been found that the heavy 
quark symmetry (in the case of infinite mu) relations 
are reproduced in the RQM without any adjustment of 
the model parameters. The constraints emerge only in 
case heavy quark symmetry is violated, i.e., for finite 
mq. The particular structure of lfm~ corrections up to 
the second order predicted by HQET can be reproduced 
in the RQM only with some specific values of n and E. 
The analysis of the first order corrections [9] allowed one 
to fix n = -1, while from consideration of the second 
order corrections the result has been obtained that the 
mixing parameter E should be E = -1. Thus HQET, and 
hence &CD, imposes strong constraints on the parame- 
ters of the long-range confining potential. The obtained 
value of E is very close to the previous one, determined 
phenomenologically from radiative decays [ll], and the 
value of n coincides with the result obtained from the 
mass spectra [lo]. Therefore there is an important QCD 
and HQET motivation for the choice of the main param- 
eters of our model: E = -1, n = -1. 

III. EXCLUSIVE SEMILEPTONIC DECAY 

A. Form factors and decay widths 

For the semileptonic decay B + A(A*)ly of the pseu- 
doscalar meson B into the pseudoscalar (vector) meson 
A (A*) the differential width can be written as 

dF(B + A(A*)h) = & 1 A(B --t A(A*)Izq) 1’ d/2, 
B 

(8) 

where 

i = A, 1, vi, (9) 

ps is the four-momentum of the initial meson, pa is the 
four-momentum of the final meson, and pl and p, are the 
four-momenta of the lepton and neutrino, respectively. 

The relevant transition amplitude looks like 
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FIG. 1. Lowest order vertex function. 

A(B + A(A* = (A(A*)IuIIH.RIB) = +L,H’; 

(10) 
where 

Her zz G”Jfl 
Jz 

hdrO”JbtoW (11) 
and I&, is the CKM matrix element connected with the 
b + a transition. 

The leptonic L, and hadronic H,, currents are defined 
by 

L, = T7Jl - 75)% (12) 

H, = (.+*)I~~,$ - 7dblB); 03) 

the initial meson B has the quark structure (bq) and the 
final meson A (A*) has the quark structure (a$. 

The matrix element of the hadron current. can be ex- 
pressed in terms of Lorentz-invariant form factors. 

(a) For the O- + O- transition B + Alq, 

(A(PA)IJ,VIB(P~)) 

= f+(d(P.4 +mL + f-mPB --PALi (14) 

(b) for the O- + l- transition B --f A*lvl, 

(A*(P~>W,VIB(PBH 

V(q2) 
=‘it&+M~ 

qI”,&‘“(PA +psyyPB -pa)“; (15) 

(A*(PA,~)IJ,AIB(PB)) = (MA + MdAd8)e; 

- MT$B (e*Pe)(Pa + PB)p 

+M$t;B (e’piT)(pe -Pa)@; 

(16) 
FIG. 2. Vertex function with account of the quark inter- 
action. Dashed line corresponds to the effective potential (5). 
Bold line denotes the negative-energy part of the quark prop- 
agator. 

where 4 = pS -pa, J,” = (q,,b) and J,” = (87p7sb) are 
the vector and axial parts of the weak current, and e, is 
the polarization vector of the A’ meson. 

Since 4 = pl + p,, the terms proportional to qy, i.e., 
f- and A3, give contributions proportional to the lepton 
masses and do not influence significantly the transition 
amplitude, except for the case of the heavy, 7 lepton, and 
thus will not be considered. 

The matrix element of the local current J between 
bound states in the quasipotential method has the 
form [20] 

(AlJ,$)lB) = / ~~A(P)~,(P,~)~&)> (17) 

where r,+(p,q) is the two-particle vertex function and 
@ A B are meson wave functions projected onto the 
pos\tive-energy quark states. 

In the case of semileptonic decays JG = Jhadraniw = 
J” - JA is the weak quark current and in order to calcu- 
la% its’matrix element between meson states it is neces- 
sary to consider the contributions to I’ from Figs. 1 and 
2. The vertex functions obtained from these diagrams 
look like 

rZ”(P>q) =.G(P~Y,(~ - %)%(%)(~+(Pz - qz), 

P-9 

and 
AL-)(k) 
lYP> 9) = f4Pl)%(PZ) [Yl,(l - 73@.) + Eb(pl)7YV(P2 - qz) 

+v(Pz - q2) E 
a 
where k = p1 - A, k’ = ql + A, A = pi -pa, E(P) = 

(~2 + P~)‘/~, and 

*(qp) = 4P) - (m7” + rO?p) 

2&(P) ’ 
As one can see, the form of relativistic corrections result- 
ing from l$’ (p, q) is explicitly dependent on the Lorentz 
structure of the quark-antiquark potential. 

Our previous analysis of the semileptonic B + D(D*) 
and D -+ K(K’) transitions [15] was based on the as- 
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sumption that we could expand (19) up to the order 
pZ/m2 with respect to both b and a quarks. This assump- 
tion proved to be quite adequate in the case of B + Dlvt 
where both b and c quarks are heavy. However, the final 
s quark is not heavy enough. It would be more accurate 

not to expand I$‘(p,q) at all, but one should do it in 
order to perform one of the integrations in (17). Our 
statement is that more reliable results for semileptonic 
D --t K decays can be obtained by using a p’/c:(p) ex- 
pansion instead of p2/mZ in (19). 

It is also necessary to take into account that the wave 
function of the final A meson ‘X!A+,~(~) is connected with 
the one in the A rest frame Q~,o(p) as follows (201: 

where D’/2(R) is the well-known rotation matrix and 
RW is the Wigner rotation. 

The meson functions in the rest frame have been cal- 
culated [21] by numerical solution of the quasipotential 
equation (2). However, it is more convenient to use an- 
alytical expressions for meson wave functions. Examina- 
tion of the numerical results for the ground state wave 
functions of mesons containing at least one light quark 
has shown that they can be well approximated by the 
Gaussian functions 

*M(p) = Q&P) = ($$4exP (-&) , 
(21) 

with the deviation less than 5%. 
The parameters are 

flB = 0.41 GeV, OK = 0~. = 0.33 GeV, 

/3,+ = 0.36 GeV, 00 = 0.38 GeV, /3~. = 0.44 GeV 

(22) 

In the B meson rest frame Eqs. (14)-(16) can be writ- 
ten in the three-dimensional form. 

(a) For the O- + O- transition B + Alvr, 

@(PA)IJ~IB(PB)) 

= f+@)(& + Ea) + f-(s’)(% - EA), (23) 

(A(P~)IJ”IB(PB)) = [f-(,x+? - f+(&lA, (24) 

(b) for the O- --f l- transition B + A*lvi, 

(A*(PA>W,VI%Q)) 
vbi? 

=‘MA++M~ 
EO”po~*Y(PA + PB)+3 -Pa)” = 0, 

(25) 

~MB 
(A*(PA~~IJ”IB(PB)) = iMa + MB V(i? [&*A1 > (26) 

(A*(PA>W:IB(PB)) 

= d; A&+% + MB) (~ 

-A&‘) MAyMB (MB + EA) 

+A&?) MAyMB (MB - W) > (27) 
(A*(P~>~)~J~JB(PB)) = .bb?)(MA + MB)~ 
-AZ; MB 

MA+MB 
+M?) + Ad?)l> (28) 

where ep = (0,e) is the polarization vector of the A’ 
meson in its rest tiame and Z,, is the vector obtained 
from e,, by the Lorentz transformation La: 

zr = Lae,. 

The components of .Zp look like 

(2% 

eA Eo=--, G.=e+ ACAd A 
MA MAPA + MA) 

=e+e”oEA+MA. 

(30) 

Equations (23), (24), and (25)-(28) determine the form 
factors f+, f-, and V, Al, AZ, and AS, respectively. 

Substituting the vertex functions (18) and (19), tak- 
ing account of wave function transformation (20) and 
quasipotential equation (l), in the matrix element (17) 
and using Eqs. (23), (24), and (25)-(28) we get the fol- 
lowing expressions at the q2 = q2 me2 = (M~-M~)~ point: 

f+(%L,! = f!“(? max I+ &ff...(q:,) 

+(1 - 4fy&L), (31) 

(32) 

Adq,i,,) = Am) + ~&S)d,sx) 
+(l - .)A@)(q’ ) 2” nle.x , (33) 

w.LJ = wQ,L) + .4%2 

+(I - E)q?‘@ ) max > (34) 

(1) (2) (2) where fy!“, f$,v> A,,,,, A,,,,, A,,,,, V(l), and V$ 
are given in Appendix A. In (31)-(34) indices (1) and (i) 
correspond to the diagrams in Figs. 1 and 2, and S and 
V correspond to the scalar and vector potentials of quark 
interaction. 

Now our concern is to find the q2 dependence of the 
form factors. The components of axial and vector GUI‘- 
rents can be expressed in terms of two functions FI(A) 
and &(A), A = pi -pa: 

J:(A) =&(A)> (35) 

JV(A) = A ;rAIFI(A), (36) 

J,+(A) = $=&A), (37) 

JA(A) =e’Fz(A). (38) 

The functions F1 and Fz arise from the lower and the 
upper components of Dirac spinors; 
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and are equal to 

F,(A)= 2m@ 
dq+A)+m, 

(40) 

(41) 

Near 92 = q;, they can be written as 

F,(A) = 
&(l + A’/M;)l/’ 

(1 + AZ/m: + ,/‘m) I” ’ 
(42) 

&J2 (I+ $y2. 

(43) 

The dependence of the form factors on the momentum 
transfer is fixed by extrapolating their behavior near the 
q2 = $,, (A = 0) point over the kinematically allowed 
region: 

f+(A) = ~+W(API(A), 
At(A) = &(O)r(A)Fz(A), 
-&(A.) =Az(O)W)F,(A), 
J’(A) = W)W)F,(A), 

where 

Introducing the variable 

7J.l G v*ug = 
Mfj+M;-qz 

~M..,MB ’ 

(44) 

(45) 

(46) 

(47) 

(43) 

(49) 

where +JA and vg are meson velocities, and taking into 
account that 

A2 = (PB - ~4)’ 

= CM; + M; - i?’ 
4M; 

-M;=Mj(w’-l), 

we can rewrite (44)-(47) in the form 

(50) 

(51) 

(52) 

(53) 

(54) 

Substitution of the Gaussian wave functions (21) in (48) 
results in 

I(4 = exp ( 
2&M ur-l 1(l), -p& + p&, w + 1 

) 
(55) 
where &QM = (z,) is the mean value of light quark 
energy inside the meson. In our model &QM corresponds 
to the HQET parameter x = M - mg, which determines 
the energy carried by light degrees of tieedom, and is 
found to be [9] &9~ = 0.54 & 0.03 GeV. 

In the limit of infinitely heavy b and a quarks the w 
dependence of Eqs. (51)-(55) is determined by the Isgur- 
Wise function of our model, 

t(w) = (-&)*“exp (-%s) (56) 

and the ratios of form factors satisfy all constraints im- 
posed by HQET (71. 

Using (31)-(34) and (Al)-(AlO) we have calculated 
form factors for the B + D(D*)lvl, D -+ K(K*)lu,, 
and D. + ‘plvc exclusive decays. First, these form fax- 
tom were calculated at the q2 = q:, point by using the 
wave functions obtained by the numerical solution of the 
qua&potential equation (211. Then they were extrapo- 
lated to qa = 0 with the (51)-(55) dependence. The 
theoretical uncertainty in the calculation of the form fac- 
tors at q2 = q;, results fkom the terms of order v”/c” 
and does not exceed 1% for B + D and 4% for D + K 
decays. The main theoretical errors in the form factor 
values at q2 = 0 as well as in the decay widths come 
from the q2 dependence of the form factors (51)-(55), 
which has been obtained by analytical approximation of 
the wave functions by Gaussians (21). The analysis has 
shown that the total theoretical uncertainty of the RQM 
calculations for form factors and decay widths is less than 
10% for D + K and 7% for B + D semileptonic decays. 

The results obtained in our model for D + K(K*)lvl 
are compared with appropriate experimental data and 
various model predictions in Table I. The new values of 
the form factors for D + K(K*)lvr are somewhat larger 
than our previous results 1151 because of a more con- 
sistent relativistic treatment of the s quark and a slight 
change in the value of the mixing coefficient e. Note that, 
while most other quark models agree with the experi- 
mental determination of V(O), but fail to predict A,(O) 
and/or AZ(O), our model predicts correct values of A,(O) 
and AZ(O), but gives too low a value of V(0). The rea- 
son for that is not clear. However, the contribution from 
the form factor V(0) in the total width is kinematically 
suppresed. So, despite the above mentioned discrepancy, 
we have obtained the D --t K*lvl width in accord with 
experimental data. 

The ratios of form factors 

Rz = q2 1 - (MAs + MB)z Mn2)/A1(q2) > 
and 

> W”)lAds”) 
are given in Table II. It is important to note that the 
theoretical error in the form factor ratios is less than 
that in their values at the point q2 = 0. Really, most of 
the errors connected with the qz dependence in (51)-(55) 
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TABLE I. Theoretical predictions and experimental data for form factors in D --t Klvr and 
D + K’lw. 

Ref. f+(O) WO) A1 (0) Ad”) 
Expt. average [23] 0.75 + 0.02 * 0.02 1.1 + 0.2 0.56 i 0.04 0.40 f 0.08 
Theory 
RQM 0.73 * 0.07 0.62 f 0.06 0.63 zt 0.06 0.43 f 0.04 
ISGW [l] 0.82 1.1 0.8 0.8 
BSW [Z] 0.76 1.3 ~0.88 1.2 
AW 131 0.7 1.5 0.8 0.6 
BKS (41 0.9 + 0.08 * 0.21 1.4 * 0.5 i 0.5 0.8 + 0.1 zt 0.3 0.6 + 0.1 & 0.2 
LMMS [5] 0.63 i 0.08 0.9 f 0.1 0.53 f 0.03 0.2 * 0.2 
BBD [6] 0.6 1.1 0.5 0.6 
are canceled out in Rz and Rv. Thus, according to our 
analysis, the errors in Rz and Rv do not exceed 5%. 

The obtained branching ratios are 

B(D’ -+ K*-e+v,) = (1.9 + 0.2)% 

for 7@ = 0.415 x 10-12 s, 

B(D+ + p’e+v,) = (4.9 i 0.5)% 

for TV+ = 1.060 x 10-l’ s, 

to be compared with the experimental average data [23] 

Be’Pt(Do --f K*-e+v,) = (2.0 f 0.4)%, 

BeX@(D+ + R*‘e+v,) = (4.8 + 0.4)%. 

The ratio l?(D --t K*ev.)/l?(D --t Kev.) and the ratio of 
the longitudinal and transverse decay widths l?~,/r~ also 
agree well with experiment (see Table III). 

For the D. --f ‘plvl decay form factors our predictions 
are 

AI(O) = 0.63 f 0.06, A,(O) = 0.35 + 0.04, 

V(0) = 1.06 f 0.09. 

TABLE II. Calculated and measured D + K’lw form 
factor ratios R*(O) = A,(O)/A,(O) and Rv(0) = V(O)/Ax(O). 

Ref. W) WO) 
Experiment 
E691 [31] 0.0 * 0.5 * 0.2 2.0 f 0.6 + 0.3 
E653 [32] 0.82:;:;; i 0.11 2.00:0,:;4, + 0.16 
E687 1331 0.78 i 0.18 f 0.10 1.74 + 0.27 i 0.28 
Expt. average [23] 0.73 * 0.15 1.89 + 0.25 
Theory 

RQM 0.68 0.98 
ISGW [l] 1.0 1.37 
BSW [2] 1.36 1.48 

AW (31 0.75 1.87 
BKS [4] 0.7 + 0.16 zt 0.17 1.99 f 0.22 * 0.33 
LMMS [5] 0.4 * 0.4 1.6 f 0.2 
BBD [6] 1.2 2.2 
As the experiment provides us with & and Rv ratios 
for D, 7‘ ‘plv,, we compare them with predicted val- 
ues in Table IV. It is not clear why the experimental 
ratio Rz for D, + (olvr differs so greatly from that for 
D + K*lq. In the RQM we get approximately equal 
ratios Rz for both decays, because the general structure 
and the signs of the potential-dependent corrections in 
(31)-(34) are almost the same. It can be expected that 
the experimental results for the D. 3 ‘plvl form factor 
ratios will change in the future. Anyway, the experimen- 
tal uncertainties are still too large to conclude that there 
is a serious discrepancy between the R&M and the ex- 
perimental data in this case. 

For the D, + ‘plvl branching ratio we have B(D. + 
phq) = (2.5 * 0.3)%, while the experim.ent gives 
BeXPt(D, --f &Q) = (1.88 + 0.29)% (231. 

In B + D*lq decay, since both b and c quarks are 
heavy, relativistic corre&ions are not so significant, but 
the Lorentz structure of the quark-antiquark potential 
has an important influenc$ on the values of the form fac- 
tors. We have found our results for RZ and Rv to be 
in good agreement with the experimental data [24] and 
HQET-based predictions [ZS]. Measurements and predic- 
tions for the ratios of the form factors for B + D*lvl, 
evaluated at $ = q&,, are shown in Table V. We 
have obtained the following results for B + D*lvr and 
B + Dlvc branching ratios: 

B(B + D’lvl) = (33.8 f 2.5) x II’&, 

B(B + Dlq) = (14.8 f 1.5) x /I’&[‘, 

for ~~0 = 1.5 x 10-l’ s. They should be compared to the 

TABLE III. The ratios r(D + K'lur)/r(D --f Klvt) and 
IIL/IIT in comparison with the experimental data. 

Ref. W’)/W) rL/rT 
RQM 0.65 1.05 
Experiment 
Expt. average [23] 1.23 + 0.13 
E691 [31] 1.8:::: zt 0.3 
E65.3 (321 1.18 * 0.18 j: 0.08 
E687 [33] 1.20 xlz 0.13 f 0.13 
CLEO [34] 0.60 zk 0.09 zk 0.07 
CLEO [34] 0.65 zk 0.09 zk 0.10 
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TABLE IV. Measured and calculated ratios of form fac- 
tors in D, --t @vt. 

Ref. RdO) R4J) 
Expt. average [23] 1.8f0.5 2.0 * 0.7 
CLEO [36] 1.4 * 0.5 f 0.3 0.9 k 0.6 zk 0.3 
E653 [37] 2x!“,:“, -+ 0.2 2.3+‘0;:, * 0.4 
Theory 
RQM 0.55 0.94 
BKS [4] 2.0 zk 0.19 f 0.23 0.78 3~ 0.08 f 0.15 
LMMS [5] 1.65 5 0.2 0.33 zk 0.36 

experimental data: 

B(B’ + D-e+v,) = (2.0 f 0.7& 0.6)% ARGUS [27] , 

B(B’ -i D-e+v,) = (1.8 f 0.6 zk 0:3)% CLEO-I [28] , 

B(B’ --t D*-e’v,) = (4.7 f 0.5 f 0.5)% ARGUS [29] , 

B(P -+ D*-e+v.) 

= (4.0 f 0.4 i 0.6)% CLEO-1[28,30] 

As a result we can extract the value of the CKM matrix 
element Vcbr 

1% = 0.036 f 0.001 f 0.004, 
where the first error represents the theoretical uncertain- 
ties and the second one arises from the errors in the ex- 
perimental measurments. 

B. Differential distributions 

The differential decay rate 1221 can be expressed in 
terms of two dimensionless variables I = El/MB and 
w = ‘~~vg, where El is the lepton energy, 
TABLE V. Predicted and measured ratios of form factors 
in 6’ + D’lvg at qa = q&,. 

Ref. Rv k&.x) 
Experiment 
CLEO [24] 0.79 + 0.28 1.32 + 0.62 
Theory 
RQM 0.92 1.39 
ISGW [l] 0.91 1.01 
WSB [Z] ‘0.85 0.91 
HQET(the leading order) 1251 1.00 1.00 
HQET based [26] 0.91 1.39 
HQET(Neubert) [7] 0.79 1.35 
LNN [38] 0.8 

+zw,(w)(p + (1 - 2x)2 - $w(l - 2Z))~}, 

(57) 

Here WI,~,~(W) are connected with semileptonic form fac- 
tors. 

(a) For the O- + O- transition, 

W(w) = 0, 

R(w) = ~lf+(4 
l&(w) = 0. 

(b) For the O- + l- transition, 

(58) 

(59) 

(69 
(‘51) 

(62) 

N’s(w) = $A,(w)V(w). (63) 
The kinematically allowed region is presented in Fig. 3 
where the lower bound curve w,(r) has the shape 

turn(l) = 2 (l-22)+%1. (64) 
A 2M~l-2s 

The analytical expression for the dl?/dx distribution de- 
pads on the q2 behavior of the form factors. Using (51)- 
(55), we obtain, after the integration over w, w
dl7 G$IK#M; 
TG= 32+ 

e-e3~K*(2) 

+ sinh [a~-(x)]e-~X+(2)&(~) 

+&(z) 
J 

W”dwe-u%+ , 
Wm (=I 1 (65) 

here 
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wo 

w u W.” 

x 

FIG. 3. Allowed region for semileptonic B + A(A’)h 
decay in terms of the variables w and I. Lower bound curve 
w,(z) is determined by (64), upper bound is VJO = (Mi + 

M;)/(%WaMs). 

(66) 

R= 
1-za:’ 

1 

!
FIG. 4. (l/r)(dr/&) for B + Dlu, and B -+ D’ln. 

Absolute rates dr/dx can be obtained by using F(D) = 1.71 X 
lo’” s-l and l?(D’) = 2.92 x 10” s-l for ~~0 = 1.5 x lo-” s 

and Ifi,\ = 0.036. 
 

4.00 

3 

k3 

g 

2.oc 

o.oc 
( 

Kf - 

A 
K 

,L 
).Ol 1 0.20 0.40 

x 

FIG. 5. (l/r)(dr/i) for D + mu, and D + K’h. 
Absolute rates dI’/ds can be obtained by using l’(K) = 6.68 x 
10” s-l andr(K’) = 4.34~10” s-l forTDo = 0.415~10-‘~s 
and 7 D + = 1.06 x lo-” s. 

The functions Kl,2,3(z) take different forms for the O- + 
O- and O- + l- decays and are given in Appendix B. 

The (l/F)(dr/dx) distributions for the B --t D(D*)Zv~, 
D + K(K*)lvl, and D. + rplvi decays are shown in 
Figs. 4-6. All curves are normalized by the corresponding 
decay width r, i.e., the area under each curve is equal to 

1. 

coo I 

4.00 - 

z 

% 
x 
k 
c 

I 

0.00 0.20 0.40 

x 

FIG. 6. (l/r)(dr/dz) for D. --t &I. Absolute rate 
&‘/da: can be obtained by using r = 5.42 x 10” s-l for 
?b. = 0.47 x lo-‘= s. 
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IV. CONCLUSION 

Using the quasipotential approach, we have obtained 
expressions for the semileptonic decay form factors tak- 
ing consistent account of relativistic effects. This account 
includes more careful consideration of the s quark con- 
tribution than in our previous work (151 and results in 
a small shift in the values of the D + K(K*)1w decay 
form factors, which are in good agreement with mea- 
surements. Our model provides more accurate values 
for the ratio A2(0)/AI(0) in the D + K(K*&l de- 
cay and for the ratio l?(D + K*lvl)/l?(D + Klvl) in 
comparison with other models. We have also calculated 
form factors and branching ratios for B + D(D*)lvt, 
D + K(K*)Iv~, and D, --t &. The extracted value of 
IV&f = 0.036 f 0.001 zt 0.004 is lower than the previous 
one 1151 because of the changes in the form factors as well 
as in the B meson lifetime. We should emphasize that 
in order to get reliable results for D meson semileptonic 
decays it is necessary to take into consideration all pos- 
sible relativistic effects, including the transformation of 
the meson wave function (20) from the rest frame, which 
is ignored in many quark models. 

The proposed 4’ dependence of the form factors is used 
for the determination of differential semileptonic distri- 
butions in the case of pseudoscalar and vector final states. 

It should be noted that the expressions obtained for 
the semileptonic form factors are valid for all B and D 
meson decays, except decays into mesom containing two 
light quarks (n, p mesons), where one cannot expand in 
either p2/m2 or p2/&= at the q2 = q;= point in the 
vertex function (19). The solution of this problem is 
proposed in (351. 
The analysis has shown that the Lorentz structure of 

the quark-antiquark potential plays an important role in 
heavy meson semileptonic decays. We have obtained ex- 
perimentally motivated and H&ET-based arguments to 
conclude that the confining potential has predominantly 
a Lorentz vector (with Pauli term) structure E = -1. As- 
suming also the long-range anomalous chromomagnetic 
moment of the quark to be K. = -1 we have obtained sat- 
isfactory description of all considered B and D semilep 
tonic decays. 

We argue that the small number of parameters, most 
of which were fixed previously, and the agreement with 
HQET for the structure of leading, subleading, and sec- 
ond order terms in the l/mg expansion make the RQM a 
reliable tool for the investigation of heavy meson physics. 

In this paper we have restricted ourselves to the O- + 
O- and O- --t l- transitions. One more practically im- 
portant case of decay into a P wave final state (i.e., 
B + D**lvi) will be considered in the future. 
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APPENDIX A: EXCLUSIVE SEMILEPTONIC DECAY FORM FACTORS A’,! $ = ,$, POINT 

C-41) 

(A3) 
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(A4) 

AI2s)bdmx) = A&&,) = 0, (A51 

~4% (dm) = 
(M.4 + M&iKX3 s 

“I~(~)(~)*“~[_MB-~-E. 
(2n)3 

+$($+-&-?(Ms+Mc 
* 

&,-&.-~,,,(,+,)~(P~)]~~(P,, (AT) 

v(l) (qi,) = 

(AQ) 
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(MB + Ma -a, - E, - 2~~) 

(All) 

here (p@p) acts to the left on the wave function %a(~). In the limit p”/ m= + 0 the above form factors reduce to 
the standard expressions, obtained in the nonrelativistic quark models. 

APPENDIX B: FUNCTIONS K1,9,s(z) FOR (l/r)dr/dm DIFFERENTIAL DISTRIBUTIONS 

(a) In the case of the O- + O- transition, 

- !$$(I - 2z)) lj+(1)12. 

(b) In the case of the O- + l- transition, 

If&) =-G&- 2aG1(2) - 2a2Gz(s) - ;dGs(z), 

where &2,3,4(z) depend on the V&ES of the form factors at the w = 1 point: 

@I) 

W 

(‘33) 

634) 

035) 

636) 

(‘37) 
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G&) = - $A,(~)A,(I)(~ - 2z) - ~LJ~(I)V(I) + 
JG 

(M;$B)” (Amy - 22) 

-~vy1,) + g$f (l+~)za~(l)(-1+~(‘-2”)), 

G&T) = c;AM’+&Vz(l)(l + $)‘(l- 2x+ 2)“. 

W 

(B9) 
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