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We study in detail the flavor-nonsinglet component of polarized structure functions in the frame- 
work of a consistent and complete next-to-leading order [O(a,)] analysis. In this context, we discuss 
some important features of the calculation of the next-to-leading order corrections. Particular em- 
phasis is put on the Qz evolution of sum rules for the first moments of the nonsinglet structure 
functions which, as we show, could serve to explore SU(2)- and SU(3)-breaking effects in relations 
b&we& baryonic &decay matrix elements and in the proton’s polarized sea. Furthermore we make 
predictions for polarized nonsinglet structure functions possibly measurable in a conceivable Z@col- 
lider mode of DESY HERA. 

PACS number(s): 13.88.+e, 12.38.B~ 
I. INTRODUCTION 

The spin-dependent structure functions of protons, 
neutrons, and deuterons have received much attention 
both experimentally and theoretically in the past years. 
Since the advent of the European Muon Collaboration 
(EMC) result [l] on the proton’s g1;(z, (Q2) = 10.7 GeV’), 
most theoretical studies have been focused on the singlet, 
component of this structure function in order to explain 
its unexpected experimental smallness, hereby assuming 
that the nonsinglet (NS) component is rather well un- 
derstood. First experimental evidence for this latter as- 
sumption was provided recently by the confirmation [2, 
31 of the Bjarken sum rule [4] which relates the integrals 
(ii& moments) of g: and g;. ‘However, tbis sum rule, 
which depends merely on the fundamental SU(2) isospin 
(u +t d) symmetry between matrix elements of charged 
and neutral axial currents and is therefore expected to 
hold, does not entirely fix the lint moment of the NS 

component, sp,i.Js, of gy, since the latter can be written 
[in leading order (LO)] as 

&‘,i.& = +-b(1) + &W , (1) 

where in terms of the first moments of the polarized 

(anti)quark densities A(i)(s, Q’) we have 
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AAs = Au + Aa - Ad - Ad) (F, Q’)dx , 

1 
AA*(l) = 

J[ Au+AaiAd+Ad 
0 

-2(As + As) 1 (z, Q’)dz . (2) 

The Bjarken sum rule [4] is equivalent to 

AAs = F + D = ga = 1.2573 f 0.0028 , (3) 

but information on AAs can only be obtained fiorn hy- 
peron /3 decays. Assuining full SU(3) symmetry between 
hyperon decay matrix elements of the flavor-changing 
weak axial currents and the neutral ones, one finds (with 
F, D taken from Ref. [5]) 

AA*(l) = 3F - D = 0.579 f 0.025 (4) 

Tbis approach has been seriously auestioned in Ref. ISl. 
__ - _ . 1. 

where the suggestion was made that SU(3)f symmetry is 
broken in such a way that only the valence Aq” = Aq-Ag 
content of AAs( AA*(l), rather than the full combina- ~,,. 
tions AAs( AAs( enters Eqs. (3) and (4). In view 
of these uncertainties and of the fact that the bwycmic p 
decays cannot tell us anything about sNS except for the 
first moment, it is interesting to exam& the NS sector 

of polarized structure functions in more detail in order 
to find other possible experimental clues to AA3, AAs, 
and the polarized valence densities Au,, Ad,, thereby 
improving our present understanding of the relation be- 
tween the fir&t moments of these quantities and the F 
and D values. In this respect, it is necessary to con- 
sider not only the NS piece of the electromagnetic (em) 
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53 SPIN-DEPENDENT ,NONSINGLET~ STRUCTURE FUNCTIONS IN 139 
structure functions gy” = g:“““, but also the polarized 
electroweak structure functions g3, g4 studied in Refs. [7- 
141, which partly are pure NS quantities. Since possible 
measurements of such structure functions tie likely to be 
performed at Q2 much higher than those relevant for Eqs. 
(3) and (4), it is important to theoretically understand 
the Q2 evolution of spin-dependent NS structure func- 
tions as well as possible. For this purpose, it is necessary 
to improve the theoretical predictions in the NS sector, 
by performing a complete and consistent next-to-leading 
order (NLO) analysis. All ingredients for this are avail- 
able as we will see below, and there are some features of 
the NLO corrections which are interesting in themselves. 
Also, the theoretical predictions are much more reliable 
for the NS sector since it is not plagued by the anomaly 
contribution as is the case for the singlet contributions 
to polarized structure functions [15]. ~, i, 

The remainder of this paper is organized as follows: In 
Sec. II we review the main LO results on spin-dependent 
NS structure functions. Section III gives a detailed ac- 
count of the.determination of the NLO corr&tions.~ Sec- 
tion IV contains the numerical evaluation of our results, 
and in Sec. V we summarize our findings. 

II. SPIN-DEPENDENT NONSINGLET 
STRUCTURE FUNCTIONS, 

IN LEADING ORDER 

The structure functions 91, 93, and gd appear in the 
hadronic tensor as (see, e.g., [I2]) 

@PU 
w,, = -iepvpa - p,qgl+ 

( 
-gpy+QILpy 93 

> 

+&(P+%&) (P”-Lqilg4 > (5) 

where we have already replaced SM + p@ for the spin 
vector of a longitudinally polarized nucleon with momen- 
tum p. In Eq. (5), q denotes the momentum of the vir- 
tual boson probing the hadron. As is well known, g3 
and ga do not contribute to purely em scattering, but 
appear in (parity-violating) electroweak neutral current 
(NC) or charged current (CC) lepton-nucleon interac- 
tions. Therefore, their experimental accessibility may 
seem remote presently. However, they could be mea- 

sured in (;’ scattering off a polarized target, and they 
would certainly play a role in deep-inelastic scattering 
(DIS) experiments at the DESY ep collider HERA if also 
the 820 GeV proton beam could be longitudinally po- 

larized [16]. All relwant cross section formulas for ‘;I$, 
e*$interactions in terms of 91, 93, and g4 can be found, 
e.g., in Refs. [12,13] and need not be repeated here. As 
was shown in [IZ], the LO expressions for the structure 
functions can be cast into the forms 
gl(n, Q2) = ; cs, [Aqh Q”) + Mn, &‘I] > 
4 

gdn, Q2) = ; CRq [A&> Q2) - Mb> &‘I] > (6) 

ga(n - 1, &‘I = f&j [A@, Q2) - &?(n, Q”)] 
* 

= ‘Wn, &*I , 
where,, as usual, the Mellin-n moments of a Bjarken- 
z-dependent function g(z) are defined as g(n) = 

1,’ sf-lg(z)dz. The coefficients S, and R, in Eq. (6) 
depend on the exchanged boson, ^I*, Z’, W*, in the DIS 
process and can be found in 1121. Obviously, for W* 
exchange ‘(CC ‘interactions), only the quark 01‘ the an-, 
tiquark of a given flavor contributes, depending on the 
charge of the W. To become more specific, we write the 
various cqnceivable structure functions in LO in terms of 
the NS quark combinations [for Eqs. (7)-(20) below we 
drop the obvious argument (n, Q’) from all quantities] 

Au,=Au-A%, Ad,,=Ad-Ad, 

AAa=Au+Aa-Ad-Ad, 

AAs=Au+Aa+Ad+A&2(As+A$ (7) 

and the singlet 

Ac=AuiAa+Ad+Aa+As+A$ (8) 

(for f = 3 5avors) as [7] 

e~P-4 i l 
91 - 12~~s + &AA* + RAE, (9) 

g;P~NC = ! 
( 

!Auv f !A& 
4 3 3 > 

(10) 

for &? NC interactions, where for g;’ we have only writ- 
ten the purely &xtromagnetic contribution (which dom- 
inates [12] if polarized electrons are used) since the other 
NC contributions do not easily lead to NS quantities. 

93 epJJC has been written only for the dominant [12] con- 
tribution from 7Z” interference.’ For CC structure func- 

tions (‘;b + e*X or e*p +‘;‘X scattering) one has 1121 

g;%4d+ A%+ fi(x)As 

= ; (Ad, -A% + Ac) - $1 - fi(X)] (Ac - AAs) 

(11) 
gy=Au + AZ+ fi(x)Aa 

= ; (Au, -Ad, + Ac) - ;[I - fi(X)] (Ac - AAs) 

(14 

‘As compared to Ref. [12] we have dropped a factor 
[4 sin’ Ow cost Ow(Qz + M~)/Q’] -’ from the normaliza- 
tion of gjpvNO, where Ow is the Weinberg angle and iv& the 
z” mass. 
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g;*=-Ad + AB - f&)As 

= ; (AA3 -Au, -Ad,,) - y (AX - AAs) 

(13) 
gip=-Au + Ad+ f$)Ag 

= -; (AA3 + AU, + Ad,) + @$ (AX - AAs) , 

(14) 

where we have introduced functions f<[X = Q2/(Q2+m~)] 
with f;(l) = 1 (massless limit) which take fully into ac- 
count the effects of the charm mass rn, in the .s + c 
transition. In the LO considered in Eqs. (ll)-(14), the 
j;(X) are simply given by the “slow-rescaling” prescrip- 
tion [17] which yields ZBj = Q2/2pp + ZBj/X and there- 
fore fi(X) = fs(X) = f(x) = X” for the nth moment 
in Eqs. (ll)-(14). The expressions for the nth moment 
of the structure function gd/2x, gd(n - 1, Q2)/2, are the 
same [7,8,11,12] as the right-hand sides (RHS) of Eqs. 
(10),(13),(14) with, however [12], fa(X) = f(X)/X in the 
CC case. In this way one finds a (slight) violation of 
the Callan-Gross-like relation gd(n - 1, Q’) = 2gs(n, Q’) 
by terms of O(m:/Q2) due to the CC .s --t c transi- 
tions. Note that Eqs. (ll)-(14) can be easily seen to 
receive only corrections of O(sin”~~m~?Q2) when taking 
into account the effects of Cabibbo mixing; we can safely 
neglect these small terms. The structure functions for 
DIS scattering off neutron targets can be easily obtained 
by changing the signs of the AAS terms and interchang- 
ing Au, C) Ad, in Eqs. (9)-(14). From Eqs. (9)-(14) 
we can, e.g., construct the following NS combinations [7]: 
g:p - gyp = Au- - Ad,, (16) 

g3yp -g;” = AAs, (17) 

gp + g;= = - (Au, + Ad,), (18) 

g 
( 
g;~ (-4 + g;“‘““‘) - 2 +;(x) w + ST) 

= 15f0) - 2 
5 f(X) + 2 

A& , (19) 

gy++y- 2 ;:!;“ (gp - g;n) = AAs , (29) 

etc. Besides these relations, the NC ggpP’NC(n, Q’) in Eq. 
(10) is obviously also an entire NS quantity. 

III. NEXT-TO-LEADING ORDER 
CORRECTIONS 

In order to study the evolution of the polarized NS 
structure functions in NLO it is necessary to recall the 
well-known solution (see, e.g., [is]) of the NS renormal- 
ization group equation relating the Mellin-n moments of 
a polarized NS structure function &J-W = 91, 93, gd/2x 
at the input scale Qi and at Q2 > Qz: 
I 

where 

dQ2) 1 
-z 

p1 lnlnQZ/A& 

4n Po 1x1 Q”l”& 

(2% 

(23) 

with the QCD scale parameter Am, where MS denotes the modified minim& subtraction scheme, po = 11 - 2f/3, 
fll = 102 - 38f/3, and 
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is the suitable NS combination of polarized quark den- 
sities evolved from Qg to Q2 via the LO (one-loop) and 
NLO (two-loop) NS anomalous dimensionsz 7&(n) and 
A7hs(n). The precise form of the NLO pieces (AC:, 
Ar&) in Eqs. (21), (22), and (24) depends on the fac- 
torization scheme convention adopted for the relation 
(22) between the NS structure function and the rele- 
vant NS quark densities beyond the leading order. Since 
the &NS are physical, i.e. measurable, quantities and the 
7k(n) 19,191 is convention independent, it becomes ev- 
id+ from Eq. (21) that the scheme dependences of 
AC;(n) and A7&(n) cancel each other such that the 
combination 2ACi(n) +A7&(n)/2flo is scheme indepen- 
dent [18]. Needless to say, removing all NLO quantities 
(AC:, A7&, a) in Eqs. (21)-(24), we recover the LO 
results of Eqs. (9)-(14) with the quark density combi- 
nations evolving according to the LO (7& 19,191) NS 
evolution equation. 

Both the essential ingredients for the NLO calcula- 
tion, AC:(n) and A7i,(n), can be found in the liter- 
ature. To facilitate the further discussion, let us first 
turn to the first moments, n = 1, which are of partic- 
ular interest in the polarized case. As was discussed in 
Ref. [20] in the framework of the operator product ex- 
pansion (OPE), the operator corresponding to the first 
moments AAs(l, Q”) and AAs(1, Q’) is nothing but the 
NS axial vector current which is a conserved quantity 
and thus has vax$shing anomalous dimensions to alI or- 
ders, which iq particular means A7&(1) = 0. Fur- 
thermore, the value of the iirst moment of the Wilson 

coefficient AC:(n) for gd’“““’ was found in 120,211 to 
be AC;(l) = -3C~/2, giving -3Cp for the scheme- 
independent combination ZACi(l) + A7&(1)/2& and, 
according to Eq. (22), leading to the factor (1 - as/~) 
in the NS sector of 91. Of course, both AC,(n) and 
A7&(n) depend on the regularization scheme adopted 
in their calculation,3 and different schemes will in prin- 
ciple give different answers even for the first moments 
AC;(l), A7,&(1), though still respecting the condition 
2ACi(l) + A7&(l)/2po = -~C’F. However, the conser- 
vation of the NS axial current dictates the vanishing of 
Ar&(l), and hence the value AC;(l) = -3+/2, which 
means that a scheme transformation has to be performed 
if these results are not automatically respected by the 
regularization scheme used. 

Let us briefly list the results obtained for AC:(l) [to be 
calculated in the process,~$+ q(g) to O((Y~)] using var- 

2For the perturbative expansions of the QCD-P function and 
the anomalous dimensions we use the expansion parameter 
a,/4?r (see, e.g., [Xi] for detailed expressions). Note also that 
we have omitted the “A” for the (polarized) 7&(n) since this 
quantity is trivially equal to its unpolarized counterpart [9, 
191. 
SNeedless to say, this has to be the same in the calculations 

of these quantities. 
ious regulators also used previously in the corresponding 
calculations in the unpolarized case. The result of Ref. 
[20], AC,(l) = -3&/2, was found using massless but 
off-shell mcoming quarks and on-shell outgoing gluons. 
The same result for AC,(l) is obtained [22] if one uses 
massless on-shell quarks, but off-shell gluons (k’ > 0). 
Tuning to dimensional regularization in m, the result 
depends on how the Dirac matrix 75, appearing due to 
the projector on the quark’s h&city, is treated in n # 4 
dimensions. The prescription of a totally anticommut- 
ing 7s by Chanowitz et al. [23] yields [24, 251 again4 
AC,(l) = -3Cp/2. The same result is obtained [26] 
in the closely related 7s scheme of Ref. 1271, taking the 
y*p vertex as the “reading point” to be defined in that 
scheme. However, when using the original scheme of ‘t 
Hooft and V&man [28] and Breitenlohner and M&on 
[29] (HVBM), or the equivalent prescription of ReEs. [30, 
311, one obtains [25,32] 

AC,(l) = -;CF , (25) 

(naively) corresponding to a correction (1 - ?a./37r) in 
the NS sector of g1 and to a nonzero value for the anoma- 
lous dimension, Ay&(l), in contradiction to the conser- 
vation of the NS axial vector current. Finally, the same 
result, AC,(l) = -7C~/2, is obtained for massive on- 
shell quarks (rn4 # 0) in the process T$ + q(g). For 
completeness, we list all the results for AC:(n) for ar- 
bitrary M&n-n in the Appendix. Comparing with the 
corresponding results [33-371 for the Wilson coefficient 
C,“(n) for the unpolarized structure function F2/2x in 
the various regularizations, one finds that all the AC,(n) 
with the property AC:(l) = -3C~/2 satisfy 

C;(n)-AC;(n)=++-&) (26) 

[corresponding to C;(z) - AC;(z) = C&l + z) in 
Bjarken-a: space]. Tlns implied regularization scheme in- 
dependence of C,“(n) -AC,(n) can be understood as fol- 
lows: As a consequence of the factorization theorem, the 
difference C,“(n) - 2C,2 (n) , where C,“(n) are the n mo- 
ments of the O(a,) (NS) quark corrections to the unpo- 
larized Drell-Yan process qq + 7*(g), has to be the same 
in any scheme (see, fos, example, [33,34 

4 
. The same is 

true (see [24,25]) for the difference AC; (n) - 2AC,l(n) 
with the O(a,) quark corrections -ACfY(n) to the po- 

latizedDrell-Yan process 42 + 7*(g). On the other hand, 

4The same result in dimensional regulariaation was found 
earlier in [Zl] without specifying the 7s prescription. 
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the annihilating quark lines in this process trivially give 
ACty(n) = C,“(n) ijthe regularization scheme, used in 
the calculation of ACFy(n) respects chirality conserva- 
tion. It then automatically follows that C,“(n) -AC,(n) 
is also the same in all such schemes.’ 
In contrast to Eq. (26), we have for the calculation in 

the HVBM scheme and for the rn,, # 0 calculation [which 

g=“e AC;(l) = -7~421 
I 

C,“(n) - AC;(n) = CF 
According to our previous observations, these regulators 
then necessarily break the relation AC,DY(n) = G’,“‘(n), 
i.e., break chirality. In fact, it was shown in Ref. [25] 
that 

ACI’vBM(n) = C,“(n) - ~CF (' A) (28) ; - 

in the HVBM scheme, showing how the terms - [l/n - 
l/(n + l)] in Eqs. (27) and (28) cancel out in the dif- 
ference AC,Dy(n) - 2ACi(n), but individually break the 
relations ACDY = CtY(n) and C,“(n) - ACl = 
C~[l/n + l/[n + l)]. Furthermore, the terms -11/n - 
l/(n + l)] in the HVBM scheme originate [25] from a 
configuration where the incoming and the outgoing par- 
ticles in the process y*p + qg become collinear, and 
thus should rather be understood as part of the polar- 
ized (NLO) quark densities. Finally, as far as the mas- 
sive calculation is concerned, the term 2CF/n after the 
curly bracket in Eq. (27) can be traced back to have 
its origin in a cbirality breaking term N rni which sur- 
vives the eventual limit mp + 0 since it happens to be 
multiplied by a double-pole term. Having found the ori- 
gin of the additional terms in Eq. (27) which lead to 
AC,(l) = -7C~/2, we expect that similar terms would 
be present in the A7&(n) when calculated in the HVBM 
or the massive scheme, such that scheme transformations, 
by means of 2ACi(n) + A7&(n)/2& = invariant, could 
be performed to eliminate these terms from both AC, 
and Ar&(n). Hereby one would obtain the correct val- 
ues A@(l) = -3C~/2 and A7&(1) = 0 (as dictated 
[20] by t% e conservation of the NS axial current), and the 
relation C,“(n) - AC:(n) = C.n[l/n + l/(n + l)] would 
be restored in each case. 

To complete the discussion of the Wilson coefficients 
AC:, let us specify our final choices f:r the coefficients for 
gl,gs, and 94. Since, as we will see below, the anomalous 
dimension A7&(n) is known within dimensional regular- 
ization in the MS scheme, we have to choose the Wilson 
coefficients accordingly. This means that the coefficient 
in (A4) [21, 24, 261 (or the one in (A5) after elimina- 
tion of the chirality breaking term N [l/n - l/(n + l)]) 

is the relevant one for gp”‘. It turns out [32,38] that 
the coefficient is the same if electroweak contributions to 
g1 (e.g., gyp) from transitions between massless (X = 1) 
quarks q --t Q’ are considered. For the corrections to the 
structure functions 93, 94/2x one finds’ [32,38] 

AC;(n)=AC;(n)+C+&), 

1 
AC;(n) = AC,“(n) + ZC,---- 

n+l (29) 

One notes the striking similarity to the relations between 
the quark corrections to the unpolarized structure func- 
tions F3, Fl, F2/2x which is readily explained by the sim- 
ilarity of the corresponding hadronic tensors. Equation 
(29) shows that the Ca&n-Gross-type relation g4 = 2rg3 
mentioned earlier is broken even for massless quarks be- 
yond the LO. However, unlike its unpolarized analogue, 
FL = Fz - 2sFl, which (in the singlet case) also re- 
ceives contributions fmm gluon-induced O(a.) correc- 
tions, g4 - 2rg3 = 0 is broken only by quark-induced 
corrections [Eq. (29)] even in the singlet case, since cor- 
rections from incoming gluon.5 cancel out .for massless 
produced quarks [12]. 

In the case of the CC transition s + c we again have to 
take into account the mass of the charm quark which has 
an influence on the coefficient functions. For this par- 
pose we have calculated the contribution of the process 
W+s + c(g) with rn, # 0 to gl’, 93, ga in m dimen- 
sional regularizatioti, following the techniques developed 
in [39]. The results of our calculation can be found,in 
thti Appendix. It should be noted that the expressions 
have a smooth limit m,2/Q2 + 0 (X + l), in which they 
reproduce Eqs. (A4) and (29). From Eqs. (A6)-(Ag) we 
immediately read off the O(cy.) corrections to the func- 

‘Alternatively, one can see the expected scheme invariance 
ofC;(n)-AC,‘(n) from the fact that [33,34] C&-C;(n) = 
CF (t + &) is scheme invariant [where C,“(n) is the coeffi- 
cient function of the unpo!ariaed structure function FJ] and 
from the similar appearance of FS and g1 in the hadronic 
tensor. 

‘Equations (29) are actually independent of the regular- 
iaation scheme chosen even in schemes where AC,‘(l) + 
-3Cp/2. 
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tions fi(X,n) introduced in Eqs. (ll)-(14). For the first 
moment, n = 1, these functions then read in NLO: 

fl(X,l)=X 1-3$+&(1-X)), 
( 

f&1)=X l+$Fq 
f 

~[,-~+(~-l-3~)l,,l_,,]}, 
f4(%1)=1 . (39) 

The last result that fd(X, 1) receives no O(a,) corrections 
also holds for the corresponding function for the unpo- 
larized structure function Fz [40], where it is in accor- 
dance with the Adler sum rule 1411. We emphasize that, 
similar to the unpolarized case [42,43], our results (A6)- 
(Ag) for the contribution of the transition s + c to the 
spin-dependent structure functions would enable a de- 
termination of the proton’s ?% polarized strange quark 
distribution via a detection of charmed final states in po- 
larized CC DIS. 

The (de facto) regularization scheme independence of 
the relation C,“(n) - AC:(n) = C~[l/n + l/(n + l)] 
immediately implies that the scheme-dependent parts of 
the polarized and the unpolarized NS anomalous dimen- 
sions Ay&(n), 7&(n) equal each other in all schemes. 
Even more, as was fist observed in [20] and recently es- 
tablished in more detail in [26], the J%~Z expressions for 
Ay&(n) and 7&(n) are exactly identical. Tbis state- 
ment is correct in all regularization schemes, provided 
one has taken care to warrant AC;(l) = -3Cp/2 in the 
scheme used, eliminating, if present, chirality breaking 
terms as explained above. 

There is, however, another subtlety involved in the 
equality of Ar&(n) and 7&(n): As is well known [44- 
46], there is no analytical continuation of the unpolarized 
7hs(n) to arbitrary n, needed for the transformation from 
Mellin-n space into Bj@rken-z space, that reproduces the 
results for 7ks(n) for all integer values of n. This is not 
unexpected since the OPE, first used to derive 7&(n) 
in MS dimensional regularization [46], gives only an an- 
swer for ezlen n if the moments of the NS contribution to 
the em structure function FJr are considered, thereby 
artificially excluding odd values of n. Therefore, the an- 
alytic continuation of 7&(n) only has to correctly re- 
produce the results for even values of n. On the other 
hand, as was shown in [47], odd values of n are relevant 
in the OPE for the NS combination FT/x - FZy’/x or for 
Fp + F3yp, meaning that in this case the analytic con- 
tinuation of 7&(n) has to reproduce the results at these 
values. These observations fit nicely and consistently to 
parton model considerations, where the NS quark combi- 
nations p-q’ and qy = q - q can be easily seen to evolve 
[44,48] with P+ E Pqq + Pqq and P- E Pnn - Pnp, re- 
spectively, which are different beyond the LO, where Pqq, 

Pqp are the q --f q and 4 + q NLO NS splitting functions 
with flavor-nondiagonal contributions subtracted [44,48]. 
The explicit calculation of Ppp, Pnp [44] shows that their 
M&n-n moments satisfy’ 

7&(n) = pTA4 + (-1)“P,Pb) I (31) 

which means that the analytic continuation of 7As(n) 
which reproduces the~values of 7&(n) for even ft equals 
the combination P+(n) for arbitnxyn, whereas the other 
analytic continuation of 7&(n), which is correct for odd 
n, corresponds to P-(n). In tbis way, the parton results 
of 1441 provide the rule for the analytic continuation of the 
OPE results. The essence of all this is that the moments 
of the combination F.Jp/x - F;“/r, or, more generally, 
the unpolarized As(n, Q’), As(n, Q2) [defined in analogy 
to Eq. (7)], evolve with P+(n), whereas, e.g., the mo- 
ments of F.Jp/x - F.J*/x, F,“‘~+ F3y* [which consist of 
pure valence, u,(n, Q’), d,(n, Q2)], evolve with P-(n). 

The important difference in the polarized case is that 
the relevance of even and odd n in the OPE and for 
the analytic continuation is reversed here. As was 
shown in [7,9], odd n contribute in the OPE analysis 

to the combinations (g$ (em) - gy ‘““‘)(n, Q’), (gTp + 
g3hQz), (s?’ - sF)(n,Q2)> b:= -Kn)@ - l,Q’), 
whereas even n are relevant, e.g., for (gy - g;=)(n, Q2), 
(g;* + g;=)(n, Q’), (g? + g:=)(n - I,&‘). In terms of 
the polarized NS quark distribution combiimtions this 
means that AAz(n,Q’), AAe(n,Q’) [as defined in (7)] 
evolve with P-(n) and the polarized valence densities 
Au,(n, Q’), Ad,(n, Q’) with P+(n) [49]. This situation 
is summarized by the relations APpp = Pq4, AP,, = 
-Pnq for the polarized analogues, APJp), of Pd;). 

IV. NUMERICAL RESULTS 

We are now equipped with all ingredients for a con- 
sistent NLO analysis of the spin-dependent NS struc- 
ture functions. Let us consider the f&t ‘moment of the 
NS combinations in Eqs. (10) and (15)-(20). To begin 
with, we recall that the first moment P-(l) = 7&(l) = 
Ay&(l) vanishes [44]. In the unpolarized case this is in 
accordance with the Adler sum rule [41] and the conser- 
vation of the number of valence quarks. In the polarized 
case it means that AAs(n, Q’) and AAs(n, Q’) for n = 1 
correctly do not evolve with Q’, as required by the con- 
servation of the NS axial vector current (see above): 

A&&r Q2) = A.&&, Qi) (32) 

In contrast with this, the iirst moment of P+ is nonzero, 

which means that the fist moment of the polarized va- 
lence densities evolves with Q2 beyond the LO: 

‘For simplicity we have normalized the P* relative to 7&, 
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Aq (1 &2) = 
” 1 

1 + 4QZ) - 4Q:) P+(l) 

4T 
zp, 

> 
&t&Q:) > (33) 

with [44] P+(l) = ~CF(CF - Ca/2)1-13 + 12C(2) - SC(3)] rn 2.5576, and where we have used Eq. (24) and the fact 
that the first moment of the LO NS anomalous dimension vanishes, 7&(l) = 0 19,191. This yields the following sum 
rules for the tist moments of the polarized NS structure functions to O(a,): 

( 91 
v (4 _ gd +)) (1,Q’) =; (l- +) AA&Q;), (34) 

g;“,NC(l,QZ) = ; 
( 

%(Q’) + ad&‘) -ad&;) p+(1) 1 - 3n 
4?r wo >( 

;Au, + $&) (LQ;), (35) 

;g;“.NC(,,,Q2) = ; (I+ aa(Qa)4;aa(Qg) g) (;A,, + ;A,,) (l,Q:), (36) 

(g;P _ g1yP) (1,Q2) = (1 - + + “(Qa)4;aa(QB) y) (Au, - Ad,)(l,Q;), (37) 

w - g;“) (1,Q’) = 
( 

1- y) AAa(l,Q;), (38) 

; (&= - g:“) (0, Q2) = AA& Qi), (39) 

(g3”P+gSYP)(LQ2)=- 1-7 
( 

%(Q2) + 4Q2) -ad&8 P+(l) 
4n 

zp, 
> 

(Au” + A&,) (LQ:,, (40) 

; (gy + gT) (0, Q2) = - (I+ as(Qa)4;os(Q’) T) (Au, + Ad,) (1, Q;), (41) 

[( 9 g;= (em) + g1 
e”cem’> - 

2 + f;cA, 1) W + g3] (LQ') = ; y;;';;;; (i-+)A.4,(i,Q:) , (42) 
etc. It should be noted that Eq. (20) receives sin- 
glet contributions beyond the leading oidei; therefore we 
have not written down this equation any more. Equa- 
tions (34)-(42) show how in principle measurements of 
the lint moments of polarized NS structure functions 
even at large Q2 can serve to independently determine 
the combinations (Au” Jr Ad,)(l,Qg), AAs(l,Qi), and 
AAs(l, Qi). This is particularly interesting consider- 
ing the question raised earlier of which combination of 
poltiized parton distributions can be related to the F, 

D values measured in baryonic fl decays. To simplify 
the discussion, we follow the recent NLO analysis [49] 
to assume that at the low input scale Qg = 0.34 GeV’ 
(z &LO [49]) we can neglect any effects of SU(2) isospin 
breaking in relating P-decay matrix elements of charged 
and neutral currents as well as SU(2)f breaking in the 
proton’s polarized sea. We then have AAs(l, Q,$ = 
(Au, - Ad,)(l, Qg) = F + D, and the right-hand sides 
(RHS) of Eqs. (34) and (37)-(39) are completely speci- 
fied, leading to unique predictions for the combinations 
of structure functions on the LHS in NLO of QCD. The 
first of these is of course the well-known Bj@rken sum rule 
[4] to O(a,) [ZO].” The results for Eqs. (34) and (37)- 

*Note that actually the corrections to O(az), O(az) to this 
sum rule are known [31]. 
(39) are displayed in Fig. 1 as functions of Q’, where we 

lkk used [49] A$&?) = 200 MeV. To account for SU(3)- 
breaking effects we parametrize the input quantities ap- 
pearing on the RHS of Eqs. (40)-(42) in the following 

AAs(l,Q;) = (3F - D)(l -CI), (43) 

(Au, + Ad,) (1, Q;) = &(3” - D) , (44) 

which yields (3F - D)/2(1 - ~2) + (F + D)/6 for the 
combination (2Au,,/3 + Ad,/3)(l,Q$ in Eqs. (35) and 
(36). Equations (43) and (44) are general enough to take 
into account all possible sources of SU(3) breaking: 61 
determines the deviation of the first moment AAs(l; QE) 
from the value 3F - D obtained from hyperon p decays. 
Such a deviation will occur if the use of SU(3) symmetry 
for relating the matrix elements of charged and neutral 
axial currents is not justified. In this case, el could be 
significantly different from zero, even such that only the 
valence quarks contribute to 3F - D [6]. This possibility 
is taken into account by the parameter, cZ which would 
vanish in the latter case. From the definition of AAs one 
furthermore sees that ~1 and ~2 together determine the 
amount of SU(3)f breaking in the proton’s polarized sea: 
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2Ayu”Af;;“A3(l,Q:) = (1 - e1)(1- E2) - 1 . 

(45) 

Figure 1 shows our predictions for the NS structure fimc- 
tions of Eqs. (35), (36) and (40)-(42) for the conceivable 
choices [49] c1 = 0, ~2 = 0.105 and e1 = 0.40, c2 = 0. 
It becomes obvious that the effects of changes in the 
es are larger than the present experimental 4% uncer- 
tainty [5] in the value for 3F - D [see Eq. (4)] and 
that therefore a measurement of the quantities shown 
would help to decide about the amount of SU(3) break- 
ing. In particular, the parameter e2 could possibly be 
d t e ermined in NC,CC experiments with polarized beams 
at HERA [16] via a measurement of g~p”‘NC(0,Q2) or 

(gip + g:=)(O, Q2) = (g;-“” +g,e+P’CC)(O, Q2) (or their 
gs analogues). Using the full M&n-n-dependent expres- 
sion for AC;(n) from Eqs. (29) and (A4) in Eq. (22), 
we can obtan NLO predictions for the Bjarken-z depen- 
dence of the latter structure functions: 
g;-(n - 1,Q2), 
(46) 
where, again, the polarized valence quark densities are 
to be evolved according to Eq. (24) with the correct 
analytic continuation P+(n) of the -&(n) found in [44, 

46, 501. The results for g;p,NC(z,Q2) and (g4’-“cc + 

FIG. 1. Predictions for the Q2 evolution of the first mo- 
ments of the various NS combinations of polarized structure 
functions as given in Eqs. (34)-(42) for two conceivable 
choices of SU(S)f-breaking parameters el, LZ in Eqs. (43) 
and (44). The input scale for the evolution, Qz = 0.34 GeVa, 
was chosen according to Ref. [49], and a.(&‘) was calculated 
from Eq. (23) with Am from [49]. 
94 c+p’cc)(z, Q”). at Q2 = 1000 GeV2, found after Mellin- 
.g Eq. (46), are shown in Fig. 2, where for the po- 

larized input valence densities Aqy(+, Q$ at Qg = 0.34 
GeV’ we have used the two sets determined in Ref. [49]. 
Both sets give a very good description of all existing data 
on deepinelastic spin asymmetries in the valence region 
z ? 0.2, but they differ in the assumptions made about 
the role of SU(3)t symmetry breaking effects and there- 
fore have different fist moments (491, corresponding to 
the el, ~2 values used in Fig. 1. Thus the variation in 
the results shown in Fig. 2 for the different sets of po- 
larized valence input densities reflects the present theo- 

FIG. 2. Predictions for the NC and CC nonsinglet 
structure functions [cf. Eq. (46)] g;p”NC(z,QZ) and 
gycc(z, Qa) = (g;-p’cc + g~+p’cc)(z, Q*), respectively, as 
measurable in a future polarized e-pje’p collider mode of 
HERA [16]. For the predictions we have used the two sets 
of polarized input valence densities suggested in [49] which 
correspond to the SU(3)f breaking parameters introduced in 
Fig. 1. 
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retical uncertainty in the predictions. Conversely, Fig. 
2 shows that also a measurement of g:paNC(z,Q2) and 
(g;-P’cc + ,;+,,cc )(z,Q2) for 5 < 0.2 at HERA, if ex- 
perimentally achievable, could help to shed light on the 
importance of SU(3)f symmetry breaking. 

The different evolution of the polarized valence quark 
densities and the combination AAs beyond the LO in- 
duces a dynamical breaking of the SU(2)f symmetry 
in the proton’s polarized seag Equation (24) and cnu 
considerations concerning the analytic continuation of 
r&(n) predict 

2 (Aa - A4 (n, Q2) = 4Q2) - a.(&:) P-(n) -P+(n) 4?r 
ml 

4QZ) ( > 
-&(~,lWO 

x- 
4&:) 

x (A% - A&) (F Q;), > (47) 

where we have again assumed the nonperturbative input 
at Qg to be SU(2)f symmetric, Aa(n, &g) = AJ(n, Qg). 
Using again the polarized input valence distributions of 
Ref. [49] at Qg = 0.34 GeV’, we obtain a prediction for 
(Aa - Aq(z, Q2 = 10 GeV’) which is shown in Fig. ‘3. 
Both sets of polarized input valence densities considered 
in [49] lead to entirely indistinguishable results, since only 
the input combination (Au. -n&)(2, Qi) is needed here 
whose first moment is fixed by the value F f D [Eq. (3)] 
in both cases. It should be noted that such a dynamical 
breaking of SU(2)f symmetry in the sea induced by two- 
loop evolution was considered in the unpolarized case in 
Ref. [45], where it was found to be very small. The 
results in the polarized case differ in sign (due to the 
interchange P+ ct P-) and slightly in magnitude (due 
to the polarized valence input instead of the unpolarized 
one) from the unpolarized results. However, the relative 
effect of SU(2)f breaking is much larger in the polarized 
case since the polarized sea densities are probably much 
smaller than their unpolarized counterparts. Even so, 
when taking the first moment, one obtain@ 

x%(F+D) 
~0.006 , (48) 

which means that unless the input at Qg strongly breaks 
SU(2)f symmetry the effect of the breaking is probably 

,‘There is also a dynamical breaking of SU(3)t symmetry in 
the sea induced by AAs. We do not pursue this effect since 
it is most probably dominated by the SU(3)f breaking in the 
nonperturbative input [see Eq. (41)] due to the larger strange 
mass. 
“This number depends quite crucially on the value chosen 

for the input scale Qo. Taking, e.g., Qg = 1 GeV’ the result 
in Eq. (48) is reduced by a factor 3. 
FIG. 3. Prediction for the dynamical SU(2)f breaking 
of the proton’s polarized sea (A% - A4 (I, Q*) at Q2 = 

10 GeV’ according to Eq. (47). The nonperturbative va- 
Ience input (Au, - Ad,) (z,Qi) at ,Qi = 0.34 GeV2 was 
taken from the analysis in Ref. 1491. For comparison the 
dashed line shows the averaged sea density -Ap(z,Q’) E 
- [A*(%, Q2) + Al(z, Q~)] /2 determined within the “stan- 
dard scenario” of Ref. [49]. 

SWJ compared to the size of lAti(l,QZ)I, lA$l,Q2)1 
which might well be of the order ? 0.05 [49]. It is 
straightforward to introduce parameters &, 62 in anal- 
ogy to,el, e2, which would parametrize genuine SlJ(2) 
breaking effects in the first moment of the polarized sea 
and in the relation between charged and neutral axial 
current P-decay matrix elements. Measurements of the 
first moment of the structure functions in Eqs. (34) and 
(37)-(39) (see al& Fig. 1) would then allow to determine 
these parameters and to pin down SU(2) breaking effects. 

V. SUMMARY AND CONCLUSIONS 

We have performed a detailed study of spin-dependent 
nonsinglet structure functions in the framework of a com- 
plete and consistent NLO QCD calculation. Our analysis 
is based on a careful discussion of the calculation of the 
O(a.) corrections to the structure functions, in which we 
have examined the regularization scheme dependence of 
the NS coefficient function ACi for g1 with respect to the 
constraints imposed by axial current conservation. We 
have also shown how to correctly take into accoht the 
two-loop evolution of polarized NS quark combinations. 
A further ingredient of our study is the full inclusion of 
the charm mass effects in the charged current s + c con- 
tributions to polarned electroweak structure functions. 

Our mimerical analysis has rev&d that conceivable 
measurements of spin-de+ndent NS structure functions 

at HERA or in ‘~‘scatte~ing experiments off polarized iu- 
cleon targets would serve to improve our understanding 
of the relations between the first moment of NS combi- 
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nations of polarized quark densities and the F, D values 

extracted tiom hyperon+ decays, and would also shed 
light on SU(2)f, SU(3)f breaking in the nucleon’s po- 
larized sea. Finally, we have also shown that the latter 
symmetries are dynamically broken by NLO evolution in 
the NS sector. 
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APPENDIX 

In tbis appendix we list the results for the polarized 
coefficient function AC,(n) using various regulators in 
its calculation from the process T< + q(g). In all 
cases we have chosen to just subtract the collinear pole 
contribution, which is then factorized into the (bare) 
quark distributions. The singular terms are of the forms 
r&(n) ln(Q2/~m2~) (if some mass or off-shellness m 
is used as the regulator) or 7&(n)(-l/E) (in dimensional 
regularisation in the MS scheme). Since the first moment 
of 7&(n) vanishes [9,19], the pole contribution drops out 
from the more important first moment anyway. The re- 
sults in M&n-n space below can be easily transformed 
into Bjmken-z space with the help of the Appendix of 
Ref. 1341. 

@%hell massless quarks, on-shell gluons. This c&u- 
l&ion corresponds to the one of Ref. [20], but our results 
slightly differ by a tan &[-I + 2/(n + l)] (which van- 
ishes for n = 1) due to the specific operator normalization 
chosen in [ZO] (see Appendix A.2 of Ref. (201 for details). 
For the result in the unpolarized case (Fz) see [33]. 

AC,l(n)=Cr -$+A+; 
[ 

1 . C-
On-shell massless quarks, o&d~lZ glum. The 

AC:(n) for tbis calculation can be obtained from [22]. 
For the unpolarized case see [35]. 

‘AC,(~)=CF -i-g+-& 
[ 

+$-(n:1)2 - 

+(kncn:l& 

On-shell massive quarks, off-shell gluons. In this reg- 
ularization we obtain 
41) 

(A3) 

Note that AC;(l) = -7C~/2 in this scheme. See Refs. 
[36,20] for the corresponding unpolarized result. 

Dimensional regularization. Using the 75 prescription 
of [23] (or its more systematic and consistent generaliza- 
tion [27]) one obtains, in the m scheme 124,261, 

AC,‘(n)=Cp -;+&+ 
I 

(A4) 

The same result in dimensional regularisation was found 
earlier in [21] without specifying the 75 prescription. 
However, using the original scheme of ‘t Hooft and Velt- 
man [28] and Breitenlohner and Maison [29] (or the 
equivalent one of ReEs. [30, 31]), one finds [25,32] an 
additional term 

AC; (n)H”BM = AC; (re) - 4C 
+&> ’ 

(A5) 

which leads to AC;(l) = -7C~/2. For the unpolarized 
case see [34,37]. 

We finally present our results for the coefficient func- 
tions Act for gl, g3, gd/2x for the transition s.+ c, fully 
taking into account the effects due to the charm quark 
mass. The calculation was performed in m dimensional 
regularization in the 76~scheme of Ref. [27], choosing the 
axial vertex as the reading-point. Our Bjplrken-a: space 
.results for Aei, AC!,“, AC,4 fully agree with those of 
Ref. [39] for the unpolarized hs,*, hl,,, hz,* (for F3, F1, 
F2/2z), respectively, after eliminating an error in the co- 
efficient AZ in that paper w&h should read Ka instead 
of Ka/2. The differences ACp”-Aci, Ac:-Acz, which 
are regularization scheme independent, are in agreement 
with the results of [40] for the corresponding differences 
in the unpolarized case.’ We note that the results of Ref. 
[42] seem in slight disagreement with both [39] (even af- 
ter correction of the above-mentioned error) and 1401 and 
also with our calculation in this respect. Here we present 
the M&n-n moments.of our results. For this purpose it 
is convenient to present the moments for the differences 
Ac;(n,X) - AC;(n), where the AC:(n) are the (usual) 
massless coefficient functions given in Eqs. (29), (A4), 
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and X = Q2/(Q2fm:). D+ing the sum 
and [39] 

K*(X) z +(l- X) , 

we find 
A&~) -AC,(n) = CF -KA(X) + 22; [s&,x) - &($A)] 
id 

(n, X) - (AC,4 - AC,“) (n) = CF 

M 

The last term in Eq. (A6) which contains the LO 7&(n) 19,191 is introduced if one chooses the scale Q2 as the 
factorization scale 1391. It should be noted that, like in the LO [see Eqs. (ll)-(14)], an additional factor of X” (An-l) 
is needed to calculate the contribution to the structure functions gl(n, Q2), gs(n, Q’) [g,(n - 1, Q2)/2]. 
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