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A relativistic constituent quark model (RQM) 1s used to calculate the form factors for the 
semileptonic decays B,D + x(p)lv, B --t D(D’)b, D i K(K’)1u, and the coupling constants 
for the radiative decays B’ + By, D’ + Dy. The quark model is combined with a soft pion 
theorem to derive the B’Blr and D’Dx coupling constants, which are used to calculate the rate 
for D’ + Dr. The parameters of the model are fixed by exploiting the duality of the vector meson 
dominance (VMD) picture and the picture of constituent quarks. This approach, which requires 
only that the predictions of the VMD model and the RQM are consistent, enables a parameter free 
determination of heavy quark properties, and leads to a q2 dependence of form factors which is 
different from the usual pole approximation. The predicted rates for D and D’ mesons agree with 
the data without exception. This positive result supports the conclusion that properties of heavy 
mesons can be analyzed consistently in this framework. 

PACS numberis): 13.20.Fc, 12.39.Ki, 12.4O.Vv, 13.20.He 
I. INTRODUCTION 

The analysis of semileptonic decays of heavy mesons is 
of great practical interest since the respective Cabibbo- 
Kobayashi-Maskawa (CKM) matrix elements, which de- 
termine the strength of the underlying quark decays, can 
be extracted and the quark structure of mesons can be 
probed by measurements of the decay rates. The rate r 
for the decay of a heavy meson is usually represented in 
terms of a reduced decay rate r,: 

r = Ivif12rv , (1.1) 

where V;f is the CKM matrix element for a qi -+ qf 
transition, and r, needs to be c&&ted. r, can be 
expressed in terms of form factors which describe the 
relationship between the quark picture and the hadronic 
picture of the decay process. Usually a phenomenological 
model is used to calculate the form factors for the various 
decays and, with increasing precision, the experimental 
data can be used to check and refine the input to the 
model. 

The CKM matrix elements that govern charm decays 
are rather well known, since the constraint of unitarity 
gives tight bounds for their magnitude. From [l] we quote 

IV& = 0.220 f 0.002, IV,./ = 0.9743 f 0.0007 

Therefore, the calculated form factors can be compared 
directly with the data and models checked. 

The situation with respect to the CKM matrix ele- 
ments that govern b decays is different, since it is diffi- 
cult to obtain a quantitative estimate of their magnitude 
based on the CKM matrix elements that are associated 
with the first two quark families. Semileptonic B decays 
are the only source of information about the CKM matrix 
elements Vca and I&,. Their determination from an anal- 
ysis of these decays necessarily requires reliable estimates 
of the decay form factors. The value of Vcb extracted 
~2821/96/53(3)/1349(17)/$06.C0 33 
from the measured rates for the decays of B + Dlv and 
B + D*lv is rather insensitive to the model used to 
calculate form factors, at least at the present level of ac- 
curacy of the data. The value of Vu* can be determined 
from the measured rates for the decays B + ?rev and 
B + pew. The transition B + ?r is of particular inter- 
est, since the form factor needs to be known for the large 
range 0 5 q2 5 (MB - MT)‘, where p is the momentum 
transfer. The interpretation of this reaction depends very 
sensitively on the particular assumptions that form the 
basis of the model used to analyze the decay. For in- 
stance, theoretical predictions for r,(B” + x+ev) range 
from 2.1 x 10’2 s-1 [Z] to 54.3 x 10’2 s-1 131. 

Let us consider in more detail transitions like B + 
lrlv and D --t ?rlv. For vanishing lepton masses, the 
rate for each decay is determined by one respective form 
factor f+(q’). Certain quark models [4,5] and lattice 
calculations [6] evaluate the form factor for q2 = 0 and 
postulate, motivated by vector dominance ideas, that a 
pole form holds for all values of q2: 

where the value of A1 is usually assumed not to be very 
different from MV, the mass of the lowest resonance 
V = B*, D’. A very detailed investigation of these decay 
modes by means of QCD sum rules in [7] seemingly con- 
firms these assumptions, since it concludes that j+(q’) is 
well approximated by the pole behavior (1.2) with pole 
masses in the expected range. However, we shall argue 
below that this extension of the pole form (1.2) to high 
values gf q2 does not seem to be reliable. 

An alternative determination of the form factor for a 
different range of values of q2 is possible in the approach 
that combines the heavy quark effective theory (HQET) 
and chiral perturbation theory. It has been applied to 
the semileptonic decays of B and D mesons [s], with 
the result that the B’ and D* poles are the dominant 
1349 0 1996 The American Physical Society 
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components of the form factor f+(q’) for B + ?r and 
D + ?T transitions close to the maximum possible value 

9= = 4,&x. For example, for high values of q2 the form 
factor for the decay B” + ?r+ev is given by the vector 
meson dominance (VMD) formula 

f+(q2) N Jz,B.B~+fB* 
M;. -q= (1.3) 

The factor fi appearing in Eq. (1.3) is due to our defi- 
nition of the vector decay constant fB*: 

(Ol&y,,ulB*;P’) = ie,xhfp (1.4) 

The B*Br coupling constant ~B.B~+ is defined by 

(B; P”jj,o (O)IB*; I”) = 2(eP”)gpw , (1.5) 

SB.BTr~ = SB.B&lJZ I 

where ~~ is the polarization vector of the B’ and j, is 
the source of the pion field. 

Analogous equations hold for D + r transitions. In 
the limit where the heavy-quark mass mg goes to infinity 
there are flavor-independent relations between coupling 
constants: 

g = gpDr+df,/MD. = swsr+d%/Mw , (1.6) 

where fx = 92.4 f 0.2 MeV, and 

JzfD = fD.lJMa; = &zfB = fB.IdzF. 

(1.7) 

These relations are valid at leading order in a perturba- 
tion expansion in powers of 1/ mq (91. 

We shall show that a naive extrapolation of the vet- 
tor meson dominance formula (1.3) to the point q2 = 0 
is not consistent with the pole formula (1.2), for in 
general the relevant parameters are different: f+(O) # 

fig,.Br+fwlM;. and Al # MB.. In order to illus- 
trate the quantitative consequences of these inequalities, 
it is instructive to compare the results of two representa- 
tive calculations. The method of (41 is based on the pole 
form (1.2), extended to all values of q2, and gives the re- 
sult r,(B” + x+) = 7.4 x 10” s-l. The method of [3] is 
based on the VMD formula (1.3), extended to all values 
of q’. The HQET equations (1.6) and (1.7) are used td 
estimate the parameters for the B --t r transitions from 
the experimental data for D --t TT. The reduced rate is 
predicted to be I’,(B’ + vr+) = 54.3 x 10” s-l. Thus it 
is obvious that the two methods to not match. 

A general ansatz which interpolates between the forms 
(1.2) and (1.3) is given by 

d%*.Ba+fB- 
‘+(‘“) = (M;. - qz)[l+ (1 - q2/M;.)G(qz)] (“*) 

The representation (1.8) is motivated also by the classic 
work of Gounaris and Sakurai [lo], in which the VMD 
model is refined by taking into account the width of the 
vector meson, i.e., analytic properties and unitarity are 
included globally in a generalized Br&-Wigner form for 
the vector meson propagator. We shall use Eq. (1.8) as a 
convenient analytic expression to extrapolate the VMD 
form factor (1.3) outside its known range of validity to 
low values of q2. The damping of the monopole form 
(1.3) is contained in the unknown function G(q’) which 
accounts for the structure of the background. For B -+ r 
transitions the background would consist of higher B* 
resonances plus the B?r and the B*n continuum. In Ap- 
pendix A we shall investigate in detail the role of B’ 
radial excitations in the region near q2 = M$. We shall 
estimate the effect of the background by including the 
sum of all radial excitations. Of course, this is only an 
approximate account of the background, but it leads to a 
well-defined prediction for G(q’) at q2 = Mi.. Further- 
more, we shall show that G(q’) is a function that varies 
only slowly with q2. If the pole form (1.2) and the inter- 
polating form (1.8) are compared at q2 = 0 one obtains 
a relation between f+(O) and G(0) = 6: 

(1+ 6)f+(O) = &gs.Bn+fB./M& w 

We shall take into account the q2 dependence of G(q2) 
in the discussion presented in Sec. IV, but if terms of 
O(q’) in G(q’) are neglected for the sake of illustration, 
a comparison of the first derivatives at q2 = 0 leads to a 
relation between the pole mass A1 of Eq. (1.2) and MB.: 

(1 + 2S)hf = (1+ S)M;. (1.10) 

Therefore the quantity S is a measure for the mismatch 
between the seemingly equivalent forms (1.2) and (1.3). 
Again, analogous equations hold for D + ?r transitions. 
We expect rather large values of b for B,D + vr tran- 
sitions, and it is interesting to note that already for the 
electromagnetic form factor of the pion one finds a devi- 
ation from the naive VMD prediction which is given by 
1+ 6 = gp,,fpp4, N 1.20. 

In this work we shall use the relativistic constituent 
quark model (RQM) of [ll]. The RQM is based on the 
light-front formalism, which provides a simple framework 
for the determination of hadronic form factors for space- 
like momentum transfer. We have demonstrated in [12] 
that the RQM can predict the electroweak properties 
of light mesons very reliably, and we expect it to work 
equally well in the heavy quark sector. The first aim of 
this paper is to show that these form factors can be con- 
tinued analytically from spacelike to timelike, i.e., physi- 
cal, momentum transfer; therefore, hadronic form factors 
can be calculated for all values of q2 and we shall use this 
method to analyze semileptonic and radiative decays of 
B,B* and D,D* mesons. In order to make a quanti- 
tative comparison of the theoretical predictions and the 
experimental Fesults, the parameters of the model have to 
be determined in terms of a few coupling constants which 
must be obtained by the analysis of suitable experiments. 
This has been done for the (u, d, .s) quark sector in [12], 
but not for heavy quarks, since the relevant data are not 
precise enough or have not yet beaobtained. 

But even without knowing the values of the heavy- 
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quark parameters one can investigate the behavior of the 
expression for the form factor f+($) derived in the RQM 
in the limit, where the heavy-quark mass mq goes to 
infinity (heavy-quark limit). Of particular interest are 
the scaling rules for f+(g’) at Q’ N g$,x - rn; and at 

9’ N 0. In the heavy-quark limit one obtains, at g2 = 

m;, 

f+(?+ -my (1.11) 

This is the heavy-to-light scaling law of QCD. At q2 = 0 
the scaling behavior depends on the wave functions for 
the initial- and final-state mesons. In the RQM Gaussian 
wave functions are used and one finds 

f+(O) - exp(-&) (1.12) 

The first derivative of f+(q’) at g2 = 0 can be expressed 
in terms of A1 as 

and 111 scales as A1 - mQ 3’4 Obviously the pole form 

(1.2) approximates the form factor well for small values of 
g2 but we expect A1 to be smaller than MV. The scaling 
properties of ,f+(g’) at large and small values of g2 are 
evidently quite different. This observation shows once 
more that the monopole form factor (1.3), which scales 
as given in (l.ll), cannot be extrapolated to q2 = 0. 

The second aim of the paper is to propose an entirely 
different method for the determination of the heavy- 
quark parameters, by exploiting the duality of the vec- 
tor meson dominance picture, in which the form factor 
for B + x (and similarly D + x) transitions is given 
by Eq. (1.8), and the picture of the bound constituent 
quarks, where the relevant form factors can be calcu- 
lated in the framework of the RQM, as indicated above. 
In fact, we shall show that the parameters for c and b 
quarks can be determined such that the alternative ver- 
sions of the form factor match well for all values of q2. 
The only external input is the value for the mass of the 
resonance, namely MB. or MD., while the coupling con- 

st=nts SB.Bs, go*rhr, fs., and fn. are calculated in the 
RQM. Since the coupling constants depend also on the 
heavy-quark parameters, obviously a self-consistent pro- 
cedure must be used, that will be described in greater de- 
tail below. Therefore this approach, which requires only 
that the predictions of the VMD model and the RQM for 
the transition B + r and D + x are consistent, enables 
a parameter-i% calculation of heavy-quark properties, 
like coupling constants and form factors. 

For charm decays there exists now a set of reliable 
data and we shall show that the results of our calcula- 
tion fully agree with these experimental results. Since 
the SUCCESS of this concept of duality is perhaps surpris- 
ing, it might be helpful to demonstrate, as we do in Ap- 
pendix B, that the calculation of the form factor f+(g2) 
in the light-front formalism automatically takes into ac- 
count a subset of higher-order gluon exchange diagrams, 
whose summation would be expected to generate the res- 
onant structures which dominate the form factor f+(q’) . 
for large values of q’. The same calculation performed in 
the usual instant-form formalism does not have this prop- 
erty, and we expect that results obtained if the light-front 
and if the instant-form approach is used might be quite 
different. 

In Sec. II we present a brief summary of the general 
aspects of the light-front formalism for gp bound states 
and derive the procedure for the analytic continuation 
of hadronic form factors that govern semileptonic decay 
processes. In Sec. III we make use of a soft-pion theo- 
rem to extend the formalism to the treatment of pionic 
transitions between vector and pseudoscalar mesons, in 
order to estimate the B’Bn and D’D?r coupling con- 
stants. We illustrate the predictive power of this method 
by the calculation of the coupling constants for the de- 
cays p + nn and K’ + Ka. The idea of duality and 
matching of the vector meson dominance model and the 
constituent quark model is worked out in Sec. IV and 
used to determine the heavy-quark parameters. At this 
stage the RQM is completely defined and Sec. V contains 
our predictions for the semileptonic and radiative decays 
of B, B* and D, D‘ mesons and pionic decays of the D’ 
meson, which we compare with presently available exper- 
imental data. We conclude this work in Sec. VI with a 
summary of the results. 

II. GENERAL FORMALISM 

We represent the hadronic matrix elements for the de- 
cay of a pseudoscalar meson M’ + M”ev in terms of 
appropriate form factors. If the final meson M” is a 
pseudoscalar or a vector particle, we have, respectively, 

P”lP7,w~ = f+(qZ)P, + f-((9%, (2.1) 

and 
CP"; lJ316’Y,(l - 7s)q’lP’) = ig(g2)~,“,~E*“P”g~ - f(q2)$ - a+(q2)(E*P)P@ - a-(q2&‘P)g, 1 (24 

I 

where P = P’ + P”, g = P’ - P”, and E = E(.~s) is the 
polarization vector of the vector meson with (cP”) = 0. 

In the limit where the electron mass is neglected, the 
form factors f- and a- do not contribute to the respec- 
tive decay rates. In order to be consistent with the usual 
convention, we rewrite the form factors given in Eq. (2.2) 
in the following way: 
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V(2) = -(M’ + M”)9(8) , 

A,($) = -(M’+M”)-‘f(q’) , 

&(i? = (M’ + M”)a+(q’) , 

(2.3) 

where M’ and M” are the masses of the initial and final 
mesons, respectively. It, was shown in [ll] that these 
form factors can be determined in a consistent relativistic 
approach, which describes mesons as bound states of a 
quark and an antiquark, and we shall briefly summarize 
the main features of the treatment of qr bound states in 
the light-front formalism. 

The four-momentum of the meson of mass M in terms 
of light-front components is P = (P-,P+,Pl) where 
P* I Po f P3 and P2 = P+P- - Pj = M2. The 
appropriate variables for the internal motion of the con- 
stituents, whose momenta shall be denoted by kl and kz, 
are 

k: = xP+, kz+ = (1- s)P+ , 

kll = XPL + PL, kz.t = (I- ~)PL - PL (2.4) 

with kf = mf, ki = rn; and kinematic invariant mass 
where rnI, rn2 are the masses of the constituent quarks. It 
is sometimes convenient to replace the momentum frac- 
tion z by the longitudinal internal momentum ps of a 
vector p = (pl,p2,p3) whose transverse part ispl, where 
pJ is defined by 

In terms of this new variable Mo is simply given by 

It is crucial for the computation of form factors to 
impose the condition q+ = 0, which at this stage of 
the calculation means that form factors are known only 
for spacelike momentum transfer q2 = -41 5 0. For 
the sake of illustration we shall consider the form factor 
f+(q2) for the transition between an initial pseudoscalar 
meson with internal variables and masses of its con- 
stituent quarks (r,p;, m;,mb) and a final pseudoscalar 
meson with the corresponding quantities (z,p’;, rn:, mg), 
where rna = rn; = m2. The form factor is given by an 
overlap integral analogous to the corresponding nonrela- 
tivistic formula 
where p’; = p; - (1 - z)ql and NC denotes the number of colors. The additional factor in the integrand is a 
consequence of our normalization of the wave function, Eq. (2.11). The light-fr on wave function 11 has the same t 
structure as the wave function of nonrelativistic quantum mechanics: it is a product of spin and orbital wave functions 
and depends only upon the internal variables z,pl, the spin variables of the quarks X,x = ii, and the spin J of the 
meson. However, the composition of spin requires a momentum dependent Melosh rotation R~(z,pl) of individual 
spins, which for an S-state meson with spin 0 can be represented in the form [13] 

(2.9) 

The orbital wave function is assumed to be a simple function of the invariant rnas8 Mo of the quarks: 

‘+,pl) = Q(M;) = Nexp(-M,2/8f12) 

The factor N is determined by the normalization condition 

(2.10) 

(2.11) d3pl@(M,2)12 = 1 

It is sometimes convenient to change the variables of integration from x,p; to p;,p;,p;. They are related by Eq. 
(2.6) and 

dSp’ = 
1 E;E; 

---dxd=p; , 
r(1 -CC) ar; 

4E;E; = MA2 - (rn;’ - n#/M;” 
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In terms,of + the expression for f+($) takes the form 

{PLP’: + [zmz + (1 - z)m:1[2mz + (1 - z)m:ll) > 

(2.13) 
The formula (2.12) for f+($) depends explicitly on ~1 
and is valid for 91 = -Q’ > 0. We shall show now that 
it can be written as a function that depends explicitly 
on qz and that F+(s’) can be analytically continued to 
phy&al values q2’>mO: 

For this purpose it is useful to substitute the transverse 
momentum variable in the following manner: 

d2 
p;‘pl=p;-(l-z) Pm pn + pm Ql 

and consequently 

(2.14) 

P 
112 

P’;=PL-(l-4~,+p,QI’ (2.15) 

The product of initial and final wave functions, expressed 
in terms of the variable pb, becomes ,a function of q2 = 
-41: 

~“(M~2)‘B’(M~2) 

(2.17) 

The argument of the exponential function is negative d.4 
inite only for values of q2 that satisfy the condition 

The model cannot deliver the form factor for q2 > Q$ 
This is a limitation which arises from the simple model 
chosen for the wave functions of the mesons. 

The integrand of Eq. (2.12) for f+(q’) contains also 
square roots whose arguments have terms that are linear 
in qI. The latter can be isolated by means of the identity 

+ (P.lPL) 
(2.19) 
We can choose a frame of reference such that qI = (ql, 0) 
and qf Y -q2, (piqJ2 = -pfq’, in order to represent 
f+($) schematically as 

The sum in Eq. (2.20) contains only a few terms that can 
be constructed by repeated use of the identity (2.19), and 
all terms with odd n vanish when integrated. The result- 
ing function now depends explicitly on 4’; it has been 
derived originally for spacelike momentum transfer, but 
the representation (2.20) permits an analytic continua- 
tion of the form factor to timelike momentum transfers 
satisfying q2 5 Qi. 

An analogous representation can be established for the 
form factors defined in Eq. (2.2). 

We emphasize that the form factors calculated in this 
manner satisfy the heavy-to-light scaling laws of QCD in 
the limit where the heavy-quark mass mg goes to infinity. 
If we require that the value of p for the meson composed 
of a light quark and a heavy antiquark scales as 

112 
P-q? > (2.21) 

we find the following scaling properties for the form fac- 
tors at q2 = 77x6: 

V(q2 = rni) - ?$ , 

III. PIONIC TRANSITIONS BETWEEN VECTOR 
AND PSEUDOSCALAR MESONS 

Matrix elements for hadronic transitions between a 
vector meson V and a pseudoscalar meson P can be 
treated in the framework of the light-front formalism in 
special cases. We shall investigate the decay V + Pd’ 

whose rate is given by 
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r = dxd/(6~M;) > 

(3.1,) 

p2 = [Ms - (MP + M,)‘][M; - (MP -\M,)‘]/(4M;) 

The matrix element can be expressed in terms of the 
coupling constant as 

(P”lj,o(O)IP’; lJ3) = 2(EP”)g”p,o ) (3.2) 

where E = E(J~) is the polarization vector of the vector 
meson V. The matrix element (3.2) can be related to 
the matrix element of the axial vector current, defined 
by analogy with Eq. (2.2): 

(P”IA;(O)IP’; 1-k) = ;{f(i+p + a+@)@‘)Pp 

+4(rZ)(WQp~ (3.3) 

with 
A;(z) = &+~m+) - ~~k+m+) 

Partial conservation of the axial vector current (PCAC), 

@‘A;(z) = f~M$r”(z) , (3.4) 

leads to the following constraint among the form factors, 
which is originally due to Da, Mathur, and Okubo [14]: 

4lgvwIfr = If(o) - (M$ - M;b+(O)l (3.5) 

Note, that if this relation refers to gp+rr+ro the factor 4 
in Eq. (3.5) must bereplaced by the factor 2. In deriving 
Eq. (3.5) the r” has been treated as soft in the sense that 
P,“, = 9’ + 0, and it has been assumed that gvp,+ is a 
gently varying function of P,$. The combination of form 
factors on the right side of the soft-pion theorem (3.5) 
has been calculated in the RQM in [ll], and for bound 
states of a u or d quark with mass rn and an antiquark 
with mass mq it is given by 
f(O) - (M: -M;)=+(O) = -2Mv$ s d3~‘Q(~‘,~‘); 
X ~=%IZ~Q + (I- x)'d + (1 _ z,(Mh + m + mQ) (2a:-l)M~+m-m~~,+~2~~-(~-~)2~2] 

I 

(3.6) 

MAz=P;2+m2+Pl+m; 
I 1-a: 

, O(p’,p’) = I@(M;2)12[M;z - (mq - TTX)‘]-~ , 
and I and p$ are related by Eq. (2.6). The parameters 
relevant for the (u,d,s) quark sector have been deter- 
mined in 1121 and are given in Table I. The RQM thus 
predicts the coupling constants used in Eq. (3.1) for the 
decays p+ + ?r+?y” and K*+ + (Kr)+: 

g,,*,, = 5.62 (6.06 f 0.01) , 

gK.Ka E d5gK.+K+s0 = 5.05 (5.57 f 0.03) ) 

where we have defined an effective coupling constant 
gK.Klr, and used Eq. (3.1) and the isospin symmetry 
relation 

TABLE I. Quark masses mq and wave-function param- 
eters &,.,,, for (4,&j mesons. The light-quark mass is ,.~ ~. 
mp = m,,rj = 0.25 GeV. 

(q&) meson mQ (GeV) 
II~ 0 0.25 

P meson (GeV) 

0.3194 
1 r 

K, K’ 0.37 0.3949 

D.D’ 1.445 0.4871 

B;B’ 4.64 0.6948 
gK.+@*+ = &gK.+K+*o 

in order to determine the experimental coupling con- 
stants as given in parentheses. The agreement of the 
theoretical predictions with the data is reasonable and 
within the range expected from the effect of an underly- 
ing approximate chiral symmetry. 

The coupling constants gB.B* and gD.Dm will be de- 
termined in the next section. 

IV. A CONSISTENT PARAMETRIZATION OF 
THE HEAVY QUARK SYSTEM 

In our approach we started with a simple ansatz, Eq. 
(2.10), for the quark wave function, which depends on 
one parameter l/fimeson that essentially determines the 
confinement scale of the qq bound state. The parame- 
ters of this model, the constituent masses nap and the 
wave-function parameters P,,,,,,,, can be fixed in terms 
of measured coupling constants. 

Based on the available precise data for the (u,d,s) 
quark sector, our model has been shown in [12] to give 
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predictions for the electroweak properties of light me.sons 
in excellent agreement with experiment. The data which 
would determine the parameters of the bound states of a 
light quark and a heavy antiquark are not precise enough 
or have not been measured as yet. In this paper we pro- 
pose an entirely different method for the determination 
of the heavy quark parameters, by using the duality of 
the VMD picture and the picture of bound constituent 
quarks, as presented in Sec. I. 

The decay 

PO + n+ec, PO = BO, DO 

turns out to be suited best to exploit this idea of du- 
ality. For vanishing lepton masses the hadronic matrix 
element for this transition depends on one form factor 
f+(q”), which has been discussed in the framework of 
the RQM in Sec. II. We shall denote it in this section 
by fFQ”(p”). A n alternative determination of the form 
factor is possible in the framework of the VMD model in 
the region near the B” or II’ poles, and we have argued 
in Sec. I that we expect Eq. (1.8) to be an interpolating 
form for all values of q2. Accordingly we have 

f+YMD(q2) = 
Jzfv wF+ 

M; - q2 1 + (I - q”/IM$)G(q2) 

(4.1) 

with V = B’,D*. 
The coupling constants that appear in Eq. (4.1) are 

not known for heavy mesons, but can be calculated in 
the RQM: gVP,,+ is given by Eqs. (3.5) and (3.6), and 
jv has been calculated in [12]: 
I 

(1-iz)m+znq+ 
2P? 

MO+TL+~Q 
(4.2) 
with E = m and EQ = dm. 

We shall use the RQM also to obtain information on 
the function G(qZ), which we fit by a quadratic approxi- 
mation 

The expansion coefficients in Eq. (4.3) can be fixed by the 
requirement that the RQM and the VMD representations 
of f+(q’) and its first and second derivatives agree at 
q2 = 0. With the following definitions of the quantities 

~1,~2, 

j;(o) ltQM 
Cb> 

1 
j+(O) = lq > 

1 f;i(O) RQM 1 1 -__ 

( > 

=--- 
2 f+(O) A? A; ’ (4.4) 

the parameters 6,y1,~2 are determined by the relations 

(I+ J)ffQM(0) = fifvswv+/M; , 

1 1+6 1 1+26 1 

‘=sz--- 6 M;’ (4.51, 
71 
Since the light-quark properties are known, both 
j;Q”(q2) and f,VMD(q2) depend only on two unknown 
parameters, the heavy-quark mass mQ and the wave- 
function parameter pP = flv (note that we assume iden- 
tical S-wave functions for singlet and triplet states). We 
shall show that the parameters of the e quark and the b 
quark can be chosen such that for the form factors that 
govern B + ?r and D 4 r transitions the two alternative 
approaches give consistent results for all values of q’: i.e., 

(4.6) 

In order to find the parameters that satisfy the consis- 
tency requirement (4.6) we replace the parameter set 
(mQ,&) by the set (mQ,jp), where the pseudoscalar 
coupling constant fp is given by [12] 

x [Mo” - (mQ - TIZ)~]~/~ 

X{(l-l)TTL+ZVLQ}. (4.7) 

Note that Eq. (4.7) can be used to calculate, e.g., f,, 
using the parameters given in Table I, with the result 
j,, = 92.4 MeV. 

For a given value of fp we find that the consistency 
relation, (4.6) is fulfilled only for a very narrow range of 
mq. As representative examples we have compared the 

reduced RQM form factor (M$ - q’)f+RQ”(q2) with the 
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reduced VMD model form factor (MG - $)f+VMD(q2) 
for the transition B + ?r in Fig. 1 and for the tran- 
sition D + r in Fig. 2. This is the quantity which 
in the popular pole approximation to the form factors 

0.6 &f, = 170 MeV 

000 

* 

0.6L~ &f, = 170 MeV 

i (c) 
0 MeV 

mb = 4.58 GeV 

000 
J? 

FIG. 1. The reduced form factor (A&. - q”)f+(q’) for 
the transition B + rn. The solid line denotes the result 
of the R&M and the dashed line the result of the VMD 
model. Results are given for three different parameter sets: 
(a) ,hf~ = 170 MeV, mb = 4.75 GeV; (b) d?fB = 170 MeV, 
mb = 4.64 GeV; (c) &fB = 170 MeV, mb = 4.58 GeV. 
is assumed to be constant, while we find a considerable 
variation with q2 as shown in Figs. 1 and 2. We illustrate 
the results for a fixed value of fp and for three different 
values of mq, and note that a striking agreement be- 

0 0.5 1 1.5 2 

* 
1.2 * 7 5, I (, I, I, ‘I II 

Cb) 

&f, = 200 MeV 

0 0.5 1 1.5 2 

G 

1.2 a I 7 1 I I I 
Cc) 

&f, = 200 MeV 

o,6F 0 0.5 1 

J3 
FIG. 2. The reduced form factor (ML. - q’)f+(q’) for 

the transition D --t x. The solid line denotes the result 
of the RQM and the dashed line the result of the VMD 
model. Results are given for three difficult parameter sets: 
(a) &‘f,, = 200 MeV, rn, = 1.52 GeV; (b) difn = 200 
MeV, rn, = 1.445 GeV; (c) &fo = 200 MeV, rn, = 1.40 
GeV. 
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tween the two versions of the reduced form factors can 
be achieved. For the ranges 140 < Jif, 5 230 MeV and 
1605 X/!&Y < 230 MeV we find the heavy-quark Massey 
rn,, = 4.625 + 0.015 GeV and rn, = 1.42 + 0.04 GeV. Th@ 
pairs of values of heavy-quark parameters (mp, fp) ob- 
tained in this manner can be restricted even further by 
means of an independent estimate of the function G(q2). 
We have presented this analysis in Appendix A, where 
we generalize the idea of VMD to mean not only the 
dominance of one pole, but we include also the effect of 
radially excited states. This mechanism generates a func- 
tion G(q’) which agrees with the RQM estimate of Eqs. 
(4.3)-(4.5) at q2 = M$ only for one pair of parameters. 

In this manner we find the following set of parameters 
for the B, B* system: 

mb = 4.64 GeV , 

d??f~ = 170 MeV (4.8) 

The corresponding value of 0~ is given in Table I. Addi- 
tional relations of interest are 

hf,. fMB. = 185.4 MeV , 

g~.~ro = gB.B,+fd = 16.21 , (4.9) 

g = gp~a+ &fz/Mp = 0.56 

The parameters that determine the VMD form (4.1) by 
means of the approximate relation (4.3) are given by 

6 = 1.93, y1 = 11.3 GeV, ^(z = 9.5 GeV 

Evidently the function G(q2) varies only slowly with $. 
It is gratifying to see that this approach leads to a value 

for mb that is consistent with a recent determination of 
the heavy-quark mass mb = 4.72 f 0.05~GeV in 1151. 
The value for fm is within the range established by the 
lattice calculations of [16], w h ere a high statistics analysis 
of pseudoscalar decay constants is carried out with the 
result &fe = 180 f 50 MeV. The coupling constant g 
has been defined in Eq. (1.6) and is independent of flavor 
in the heavy-quark limit. 

For the D,D* system we find, in the same manner, 

rn, = 1.445 GeV , 

d& = 200 MeV (4.10) 

The value for 0~ is listed in Table I. Additional relations 
are 

difp fMp = 248.9 MeV , 

gp~+ = g,.,,+/h = 6.21 , (4.11) 

g = gpDr+&fJMp = 0.57. 

The function G(q’) is determined in terms of the param- 
eters 
6 = 0.62, 71 = 30.27 GeV, ‘~2 = 3.51 GeV 

The value for fm again is consistent with the results of 
the lattice calculations in [16]: &?fD = 170 + 30 MeV. 
The value of g given in (4.10) is consistent with the value 
191 = 0.61+ 0.22 obtained by the approach that incorpo- 
rates both heavy-quark symmetry and chiral symmetry 
in [3]. 

The values for y1 given above seem to be incompatible 
with heavy-quark symmetry: The first derivative of the 
RQM form factor f+(q’) calculated at q2 = 0 scales as 

A1 -mq 3’4, where mq is the mass of the heavy quark. 

In the heavy-quark limit (1 + 6)/J + 1 and y1 + A*, 

i.e., y1 scales also as y1 N mQ 3’4 However, y1 is defined 
in Eq. (4.5) as the difference of two terms whose scaling 
behavior is not very different. This means that a large 
heavy-quark mass is required to suppress the corrections 

to the heavy-quark limit y1 = Al N mq v4 In fact, for 

D + r l/rf is close to zero, which leads to the large value 
for 71. For B + ?r y1 gets closer to 111 (note that A1 = 
1.71,3.96 GeV for D, B --t r, respectively), but even mb 
is too light for scaling to set in. Thus the results found 
for y1 are in accord with the pattern that is expected for 
values of the heavy-quark mass below the region where 
scaling rules are meaningful. 

In Figs. l(b) and 2(b) we have plotted the reduced 
RQM versus the VMD form factor for the parameter sets 
(4.8) and (4.10), respectively. The two versions of the 
form factor match well for all values of q’. The slight 
deviation for very large values of 0” is due to the fact 
that an analytic continuation of the RQM form factor to 
timelike momentum transfer is possible only for q2 < Q& 
For the parameters given in Table I we have, according 
to the definition (2.18), 

The close proximity of Qi to qk, seems to be related 
to the need for the (analytically continued) RQM form 
factors to reproduce the dominant effect of the vector 
resonance (B’ or D’) near qLax. Such a feature has 
been observed also in [17], where the similarity between 
the free constituent quark model and the VMD model 
description of certain pion properties was noted. 

We did not attempt to obtain a fine-tuned set of pa- 
rameters, since for values of q2 very close to Qi the RQM 
calculation of j+(q’) depends sensitively on the details 
of the wave function for the qf bound state, and we do 
not expect that our ansatz is reliable there. However, the 
form factor is predicted there by the VMD model. 

V. NUMERICAL RESULTS 

A. The semileptonic transitions D + ZT, p and 

B--t=,p 

We have determined the heavy-quark parameters in 
Sec. IV by the requirement that the predictions of the 
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RQM and the VMD model for the form factors of the 
decays B --t ?reu and D + ?rev are consistent, and 
at this stage the RQM is completely defined in terms 
of the parameters given in Table I, or the equivalent 
parametrization given in Eqs. (4.8) and (4.10). Based 
on this parametrization we have used the RQM to anai 
lyze also the decays B + pev and D --f pev. Our results 
for the form factors at q2 = 0 are collected in Tables II 
and III, and are compared with the results obtained by 
means of QCD sum rules in [i’] and of the popular BSW 
approach [4]. A more detailed discussion of the predic- 
tions of several other models can be found in 171. The 
corresponding results for decay rates are given in Tables 
IV and V. 

Our results for the form factors for D decays at q2 = 

0 are very similar to the results of the QCD sum-rule 
approach, but the rates are quite different and reflect 
the differences in the q2 dependence of the form factors. 
In the following we compare our results for the ratios of 
branching fractions with the data: 
I 

R = w+ + nolu) = 
0.042 (this work) , 

n 
r(D+ -3 I&v) 

0.085 f 0.027f 0.014 (CLEO 1191) , 
0.055'0,:0,;, f 0.05 (Mark III [18]) , 

r(D+ -3 p%) 

r(D+ + R’%) = 

0.030 (this work) , 
0.044?::$: f0.014 (~653 [zo]) 
The predicted value of R, is somewhat smaller than the 
recent CLEO data. The obvious remedy would seem to 
be to increase the D’ signal by increasing ~D.D,, (which 
would require smaller values for the parameter fm). But 
this choice would increase also the strength of the pionic 
transition D’ + D?r, and this would bring us in conflict 
with the experimental upper bound for lYtot(D*+). How- 
ever, this is a minor point at present, since the data still 
have rather large errors. 

For B decays our results at q2 = 0 resemble those of 
Bauer, Stech, and Wirbel (BSW) [4]. This is as expected, 
since BSW work in the infinite momentum frame, which 
leads to practically the fame results as the light-tiont 
formalism we used in this work, but BSW employ an 
approximation for the wave function which agrees with 
our ansatz only in the heavy-quark limit. Furthermore, 
BSW postulate the monopole form factor as given in 
(1.2), which again generates rates different from ours. 
Our form factors at q2 = 0 for B --t p transitions are 
lower than those obtained by the traditional application 
of QCD sum roles in [7], but agree with the light-cone 
QCD sum-rule approach of [21] ([21] contains a compara- 

TABLE II. Form factors for semileptonic D --f ?r,p transi- 
tions at q2 = 0. 

f+(O) “(0) AI(O) AdO) 
This work 0.67 0.93 0.58 0.42 
Ball (71 0.5(l) LO(Z) 0.5(Z) 0.4(Z) 
BSW [4] 0.69 1.23 0.78 0.92 
tive discussion of the two QCD sum-rule methods). Fur- 
thermore, we find form factors V(q2), AI( A2(q2) that 
increase monotonically with q2. This result is consistent 
with that of [21], but partly disagrees with that of (71. 

B. The semileptonic transitions D --t K, K’ and 
B-+D,D’ 

We have already analyzed semileptonic D + K, K’ 

an< B + D, D’ transitions in [11,22]. The parametriza- 
tion chosen in the present work and the refined treatment 
of the q2 depend&ce of form factors lead to somewhat 
different results, which we shall present below and com- 
pare with the most recent data. 

The CLEO Collaboration [23] has me+sured all four 
D + K(K*)lu decays in one experiment, with results 
that are in excellent agreement with previous measure- 
ments. The predictions of our model (we have used the 
value IV,,\ = 0.9743) fully agree with these data, as the 
following comparison shows: 

TABLE III. Form factors for semileptonic B + r,p tran- 
sitions at q2 = 0. 

f+ (0) “(0) Al(o) AdO) 
This work 0.27 0.35 0.26 0.24 
Ball [7] 0.26(Z) 0.6(Z) 0.5(l) 0.4(Z) 
ABS [lS] 0.28(6) 0.24(4) 
BSW [4] 0.33 0.33 0.28 0.28 
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r(D + x2v) = 
9.60 x 10” s-* (this work) 
(9.1+ 0.3 + 0.6) x 10” 8-l YCLEO) , 

r(D + K*‘v) = 
5.50 x lOI“ s-* (this work) 
(5.7 f 0.7) x 1O’O s-l (CLEb) , 

R = r(D + K’lu) = 0.57 (this work) , 

IyD + Klv) 0.62 + 0.08 (CLEO) 

The K’ polarization as defined by the ratio of the longitudinal to the transverse partial widths is 

~L(D i K’lv) 1.326 (this work) , 

FT(D + K’lv) 
= 1.18 f 0.18 i 0.08 (E653 [24]) , 

1.20 f 0.13 f 0.13 (E687 [25]) 
For the sake of completeness we give also our results at 
q2 = 0 for the form factors that govern D -i K, K* 
transitions and compare them with former quark model 
calculations in Table VI. While our predictions are in 
agreement with the experimental results, given also in 
Table VI, they partly disagree considerably with the re- 
sults of [2,4,5,26]. In particular, the ratio R, which in 
the older work is about a factor of 2 larger than the ex- 
perimental value, is predicted correctly in the light-front 
analysis. We have argued in Appendix B that the light- 
fnmt formalism which we use in this work is basically 
different from the usual instant-form formalism. There- 
fore, we expect that results obtained if the light-front 
and if the instant-form approach is used can be quite 
different. Only the BSW model of [4] Can be compared 
at all with our RQM. But BSW calculate the form fac- 
tors V(O), Al(O), AZ(O) by taking matrix elements of the 
transverse components of the currents, which in the in- 
finite momentum frame formalism are “bad” operators, 
and their determination in the BSW approach is consid- 
ered even by Bauer and Wirbel [4] to be uncertain. This 
is the origin of the discrepancy between the results of 
the two models for D + K*, p transitions, since we de- 
termine all form factors uniquely in the RQM by taking 
only matrix elements of the plus components of the CUI- 
rents. This subtle point is of only minor importance for 
B + D”, p transitions since mb is large. 

The semileptonic B + D,D’ transitions are used to 
measure V,a. The CLEO collaboration [28] has recently 
determined the partial width 
r(B -+ D’lv) = 129.9 f l.g(stat) f 2.7(syst) * 2.0(lifetime)] x lo9 s-l (5.1) 

based on the average of the LEP and CDF measurements of the lifetimes [29] 

TB+ = 1.68 f 0.12 ps, 7BO = 1.53 f 0.09 ps 

CLEO us% the HQET approach of [30] to d erive for the CKM matrix element 

Ixbl = 0.0362 f O.O019(st$) f O.O020(syst) f 0,0014(model) (HQET) (5.2) 
TABLE IV. Decay rates for semileptonic Do + x+,p+ 
transitions in units 10,” s-‘, Listed also is the ratio of trans- 
verse and longitudinal decay rates rr, and I?=. The value 
IVcdl = 0.220 has been used to calculate the rates. 

r(D’ -+ T+) l?(D’ + p+) wrT 
This work 0.80 0.33 1.22 
Ball [7] 0.39(3) 0.12 (3) 1.31(11) 
BSW [4] 0.68 0.67 0.91 
TABLE V. Decay rates for semileptonic B” + r+, p+ tran- 
sitions in units /V,b1’ x lOI s-l. Listed also is the ratio of 
transverse and longitudinal decay rates rr. and rT. 

r(BO --f n+) r(BO + p’) wrT 
This work 1.00 1.91 0.82 
Ball [7] 0.51(U) 1.2(4) 
BSW [4] 

0.06(2) 
0.74 2.6 1.34 
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TABLE VI. Form factors for semileptonic D --t K, K’ transitions at q2 = 0. Listed also is the 
ratio R = r(D + K*lv)/r(D + Klv). 

f+(O) V(O) AI(“) AdO) R 
This work 0.78 0.66 0.43 1.04 0.57 
ISGW [Z] 0.8 0.8 0.8 1.1 1.08 
BSW [4] 0.76 0.88 1.2 1.3 1.14 
KS [51 0.7 0.82 0.8 0.8 0.96 
AW/GS [26] 0.7 0.8 0.6 1.5 1.34 
E687-93 (271 0.59 i 0.05 0.46 i 0.11 1.0 zt 0.3 
Expt. ave. [27] 0.75 * 0.03 0.56 * 0.04 0.40 * 0.08 1.1 + 0.2 
Our model predicts the rate 

I?(B + D’lv) = \Vcbl’ x 25.33 x 10” s-l (5.3) 

and from the experimental partial width (5.1) we can 
derive &,: 

lVcbl = 0.0344 & 0.0023 (this work) , (5.4) 

where the error is a combination of the different uncer- 
tainties in (5.1). The values for Vca given in (5.2) and 
(5.4) are obviously consistent, and the same is true for 
the predictions of the models of ISGW [2], BSW [4], and 
KS [5], giving IVct,l = 0.0348(23), 0.0369(23), 0.0340(23), 
respectively. 

The vector to pseudoscalar ratio that we find compares 
well with the CLEO and ARGUS data 

P(B -i D’lv) = 
2.64 (this work) , 

r(B + Dlv) 
1, 

2.6’;:;?;:0, (CLEO) [31]) , 

2.9’;:“,‘“,:“, (ARGUS [32]) 

Finally we list our values for the form factors that govern 
B + D, D’ transitions at q2 = 0: 

f+(O) = 0.69, V(0) = 0.81 , 

AI(O) = 0.69, AZ(O) = 0.64 

In closing we note that the predicted rates for B decays 
as given above depend very little on the value of the 
parameter f&3. 

C. Radiative and pionie transitions D’ + Dy, 
D’ --t Dn, and B’ --t BT 

The rate for the decay V + Py is given by 

We assume that the transition takes place between S- 
state mesons, which have identical orbital wave functions. 
The coupling constant gyp7 can be expressed in terms 
of the loop integral Iz(m,mp) which has been calculated 
in [12] and is given by 
(5.6; 

Using the parametrization of Sec. IV we obtain for the 
respective coupling constants 

gn.+~+, = QJ~(~c,~) + Qcddm>mc) 
= -0.30 GeV-’ , 

go.0~0, = QcL(m,~) + QJdww) 
= 1.85 GeV-’ , 

(5.7) 

~B.+B+? = QJ&=,ma) + Qddmm) 
= 1.40 GeV-’ , 

where Qp is the charge of quark q. The rate for the decay 
D’ --f D?r is given by Eq. (3.1) and the coupling constant 
has been derived by means of a soft-pion theorem, with 
the result given in Eq. (4.10): 

gD.+D+n~ = gjyop,o = g,,.+non+ f&’ = 6.21 

Using the! equations for the rates we finally obtain the 

predictions of ox model: 

l?[D*+ -+ (Or)+] = 91.39 keV , 

r(D*+ --t D+y) = 0.56 keV , 

rtot(D*+) = l?[D*+ + (on)+] + r(D*+ + D+-i) 

= 91.95 keV , 

r(D*’ + Don’) = 43.40 keV , 

l?(D*” + D’y) = 21.69 keV , 

rt,&To) = r(D*O + D%?) + r(D*’ --t Day), 

= 65.09 keV , (5.8) 
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TABLE VII. Branchina ratios in % for radiative and Dionic 
D’ decays. 

Decay mode This work CLEQ [30] 
D’+ + D+r 0.61 1.1 * 1.4 f 1.6 
D*+ + D+?i’ 30.97 30.8 * 0.4 * 0.8 
D’+ --f Dorn+ 68.42 68.1 + 1.0 zt 1.3 
D” + Day 33.33 36.4 zk 2.3 ct 3.3 
D” + D”?i’ 66.67 63.6 i 2.3 * 3.3 

and 

l?(B*+ + B+y) = 0.429 keV , 

l?(B*’ + Boy) = 0.142 keV (5.9) 

The D’ lifetimes have not been measured yet, but our 
predicted D’+ lifetime is close to the experimental up- 
per limit rt,,$(D*+) < 131 keV [33]. We compare the 
resulting branching ratios for D’ decays with the respec- 
tive data from the CLEO Collaboration [34] in Table VII. 
Again the predictions of our model are in agreement with 
the data. 

VI. CONCLUDING REMARKS 

The relativistic quark model, based originally on the 
light-front formalism, has been extended to the treatment 
of decay processes with a timelike momentum transfer, 
and has been combined with a soft pion theorem. This 
approach enables the calculation of coupling constants 
and form factors for a great variety of decay processes 
involving heavy mesons. The crucial step, the determi- 
nation of the parameters of the RQM, in particular the 
values of the constituent masses of the c and b quarks, is 
accomplished by making use of the duality of the VMD 
and the RQM approaches in the analysis of the transi- 
tions B,D + fl. The q2 dependence of the form fac- 
tors provided by the RQM is different from that in the 
usual pole approximation. We have compared our pre- 
dictions with a large body of data for decays of D and 
D’ mesons, and found agreement without exception at 
the present level of accuracy of the data. It seems that 
properties of heavy mesons can be analyzed in a sim- 
ple and consistent manner in the framework provided by 
this relativistic quark model. We think that such a phe- 
nomenological method has significant advantages as an 
alternative to the heavy-quark effective theory, in partic- 
ular in view of indications 1351 that charmed and even 
beauty mesons may not ,be heavy enough for the HQET 
to permit reliable predictions. 
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APPENDIX A: GENERALIZATION OF THE 
VMD MODEL (GVMD) 

The form factor f+(q’) for the decay B” + n+lv is 
dominated at q2 = q:, by the B’ pole and has the 
form given by Eq. (1.3). We have argued that this form 
has only a limited range of validity. We expect a more 
extended range of validity if the idea of VMD is gen- 
eralized by including the effect of B’ radial excitations. 
This assumption leads to the generalized vector meson 
dominance (GVMD) formula 

f+G”MD(qZ) = c _ am 
n=l 1 q21M,2 ’ (Al) 

where A4, is the mass of the &-state meson B,?, and 

a, = d&p,+ fB,: /M,” : W) 

Analogous equations hold for D + ?r transitions. 
In order to calculate the coupling constants gB;B* and 

fB. from Eqs. (3.5), (3.6), and (4.2), we use harmonic- 
os&&or wave functions for the orbital nS states, which 
have the form 

for n = 1,2,3,. , where H, is a Hermite polynomial 
and z2 = P~/&&~. The normalization factor N,, is 
determined by the normalization condition (2.10). The 
value of /3~o~ for B,B’(D,D*) mesons and its radial 
excitations is fixed for a given parameter set (mu, fp). 
The n = 1 S-state wave function of Eq. (A3) is different 
from the ansatz chosen in Eq. @lo), except for mesons 
composed of equal mass quarks; in that case the two 
representations are equivalent. However, the coupling 
constants and the values of f+(q’) and its derivatives at 
q2 = 0, calculated for the purpose of this appendix on the 
basis of Eq. (A3) are only slightly different from those 
calculated on the basis of Eq. (2.10), and our conclusions 
are practically independent of the representation chosen 
for the wave function. 

In order to calculate the quantitative consequences of 
the GVMD model we need at least approximate values 
for the masses of the radially excited states. In [36] a 
relativistic quark potential model has been used to de- 
scribe the mass spectrum of mesons, and the masses of 
the first radial excitations of B” and D’ are found to be 
Mz(2S) = 5.93 GeV and M&S’) = 2.68 GeV, respec- 
tively. Once the masses MI and MZ are known, one can 
estimate the masses of the higher states by means of the 
mass formula for the relativistic harmonic oscillator 

4+, = cd; + const 

We have given the coupling constants and expansion pa- 
rameters for a fixed value of the parameter set (mq, fp) 
for B, B’ in Table VIII and for D, D’ in Table IX. 
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TABLE VIII. Coupling constants ~~‘~~0, fq and expan- 
sion coefficients a, for n&state mesons BZ for the RQM ~a- 
rameter pair (mb,./zfB) = (4.64 GeV, 176 - - MeV). 

rz 1 2 3 4 5 6 
J/zf~z /Mn (MeV) 185 202 219 227 235 240 ~.~“. 
sB;BrrQ 15.06 -4.42 2.23 -1.35 0.90 -0.63 
a, 0.74 -0.21 0.11 -0.06 0.04 -0.03 

Although the inclusion of excited states manifests as 
an effective damping of the monopole form factor, this 
contribution is not sufficient to account for the behavior 
of f+(q’) for small values of q2. We expect the GVMD 
model to work more reliably close to the B’ or D’ pole, 
where the effect of the generalized form (Al) can be inter- 
preted as a correction of the monopole form (1.3), which 
is given by 

fO(U - P”ln/r,z)“)l > (A4) 

where 

If Eq. (A5) is compared with the interpolating form (4.1) 
one finds the relation 

n = G(M;) W) 

We have compared the results obtained for both sides of 
Eq. (A6) using Eqs. (4.3) and (A5), respectively, for dif- 
ferent sets of heavy-quark parameters. For (mb in GeV, 
Fiji in MeV) =( 4.625,155), (4.64,170), (4.635,185), 
(4.635.200) we find n = 1.1, 1.2, 1.2, 1.3 and G(@) = 
0.8, 1.2, 1.6, 2.0, respectively. For (m,,&f~) = 
(1.433,190), (1.445,200), (1.452,210) we find K = 0.43, 
0.44, 0.45 and G(@) = 0.21, 0.47, 0.73, respectively. 
Evidently the two methods agree only for 

&if, N 170 MeV and &j~ N 200 MeV 

The precision that is required in order to have the 
GVMD quantity n agree with G(n/r,z) and the sharp val- 
ues for the parameters obtained in this manner might 
be surprising. However, when n and G(@) have been 
calculated above for different sets of heavy-quark param- 

TABLE IX. Coupling constants gDGD,,o, fD; and expan- 
sion coefficients a, for &-state mesms DZ for the R&M pa- 
rameter pair (m,, v'?fD) = (1.445 GeV, 200 MeV). 

n 1 2 3 4 5 6 
v’2fD:, JM,, (MeV) 248 247 256 255 257 256 
gD;D?i’ 6.06 -2.01 1.07 -0.67 0.45 -0.32 
a.. 1.06 -0.26 0.12 -0.07 0.04 -0.03 
eta, the values of the meson masses A’f, have been kept 
fixed. We expect that if the dependence of A& on the 
heavy-quark parameters would be accounted for correctly 
then rc and G(M,2) would possibly match over a wider 
range of parameters, and in particular G(Mf) would de- 
pend less sensitively on the parametrization. 

APPENDIX B: WHAT IS SPECIAL ABOUT THE 
LIGHT-FRONT APPROACH AND THE 

CONDITION q+ = O? 

The matrix element for the transition between two 
pseudoscalar mesons is given by 

(P”(@y,q’lP’) = R, WI 

We shall discuss the matrix element (Bl) under the con- 
dition Q+ 2 0 and in a frame that is defined by 

p+ = M’ p; = 0 

PI’+ = M’ - 4+, P;i = -41 632) 

-kz 

a) 

b) 

FIG. 3. One-loop diagrams which are ordered with regard 
to the evolution of the plus components of the momentum 
lines. They represent the hadronic structure of the amplitude 
for the weak transition between two mesons. 
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The matrix element was expressed in Eq. (2.1) in terms 
of the form factors j+(q’) and j-(4’) which can be re- 
lated to its light-front components. If we use 

we find 

(B3) 

f+ bi? = &CR+ - Rq+) , 

f-(q”)=R+&(R+-9’) (B4) 

The matrix element (Bl) can be represented by the 
two diagrams of Figs. 3(a) and 3(b), which are ordered 
with regard to the evolution of the plus components of 
the momentum lines (from left to right). It is possible to 
draw four additional diagrams, whose contribution van- 
ishes, however, due to the conservation of the plus com- 
ponents of the momenta at each vertex. The evaluation 
of the first diagram, Fig. 3(a), is straightforward, since 
the meson vertices have the usual qq structure which can 
be expressed in terms of the respective wave functions. 
We choose the following variables for the internal quarks: 
k;+ = yP’+, k;, = yP; +p; , 

k:+ = xP”+, k:‘, = .P;l +p’; ( 

k; = (1 - z)P”+, kzA=(l-z)P;i-p’;, 

where 

pI:=p;-(1-y)Pi+(l-x)PT, 

y = 1 - (1 - z)P”+/P’+ , 

and the ranges of the momentum fractions z,y are 

O<a:<l, YO_<YSl, 

with y,, = q+/P”. The kinematic invariant masses are 
given by 

The contribution of the first diagram, Fig. 
matrix element (Bl) is 

3(a), to the 
E;E; S, 
R,(4a) = $ f dy / d2p;O(p”,p’)- 

YO M; ZY(~ -Y) ’ 
(B5) 

where fi(p”,p’) is given by Eq. (2.13) and 

4E;E; = MA” - (rn;’ - m;)“/M;” 

In the notation of [ll] the trace S, is given by 

S, = tr{y.s(-$2 + .mz)ys(^ik;( + m:l)y,(yk: + m;)} 

and all quarks are on their respective mass shells. Th.s light-front components of S,, in the system of reference (B2) 
are 

(m: - m#] + z$[M;’ - (m; - m$‘] 

+(l - y) q2 + +&‘f;’ -M”) - &(M[’ -M”‘) - (m; - n~:))~ , P-3) 

Sl= -2ql[M;’ - (m; - ??I~)‘] + 2~; M;’ - (m:) - m$ + M;’ - (m; - m2)’ 

+(m: - my - q2 - $,,f;2 _ M12) + $ (M[’ - M”‘) 1 (B7) 
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For q’ = 0 the expression for j+(q’) resulting from Eqs. 
(B4), (B5), and (B6) coincides with Eq. (2.12). More- 
over, in this case the contribution of the diagram of Fig. 
3(b) vanishes, again due to the conservation of the plus 
component. Thus j+(q2) can be calculated straightfor- 
wardly from the diagram of Fig. 3(a) only when q+ = 0 
(and therefore q2 5 0). This condition is clearly cru- 
cial for the calculation of form factors in the light-front 
formalism. 

In order to illustrate the role of the process represented 
in Fig. 3(b), we consider the transitions B -+ ?r and 
D + ?r, for which M’ > M”, and values of q2 close 

to 4L = (M’ - M”)2. It is commonly believed, that 
for high positive values of q2 the form factor j+(q’) is 
dominated by resonant structures. The descriptions of 
the same process by a valence quark picture and by a 
VMD picture are quite complementary, but the light- 
front formalism provides some insight into how the two 
pictures are linked. At q2 = q:, the contribution of 
the diagram in Fig. 3(a) to the form factor j+(q’) is 
very small, since q+ = M’ - M” at q2 = q$,, and the 
value of y. = q+fM’, the lower limit of the interval over 
y in Eq. (B5), is then close to 1. For a quantitative 
comparison we have calculated j+(q’) at q2 = qz, for 
B” + n+eu, and quote its value together with the result 
obtained from the interpolating VMD formula (4.1) 

For the numerical evaluation we have used the parame- 
ters given in Table I and in (4.8) and (4.10). 

Obviously the dominant contribution to the form fac- 
tors for large values of q2 must be due to the diagram of 
Fig. 3(b). Unfortunately its evaluation is hampered by 
the fact that the vertex for the outgoing meson cannot 
be expressed directly in terms of a valence quark wave 
function. One of the quark lines must first be “turned 
around” by the exchange of one or more gluons. In lowest 
order this process corresponds to the two-loop diagrams 
of Fig. 4: the glum emitted by either the light spectator 
quark or the heavy-quark creates a qq pair such that a 
wave function can be used at the vertex for the outgoing 
meson. 

However, the treatment of explicit glum exchange be- 
tween constituent quarks goes beyond the valence quark 
picture, which is the basic assumption of the approach 
used in this paper. Moreover, a perturbative treatment 
would not be expected to be adequate. In particular the 
diagram of Fig. 4(b) belongs to the subset of graphs 
which are characterized by the exchange of gluons be- 
L 
P’ P” 

a) 

4 

b) 

FIG. 4. Two-loop diagrams for the same process as in Fig. 
3. 

tween those constituents, which annihilate into the cur- 
rent. The summation of this subset of diagrams would 
be expected to generate the resonant structures which 
dominate the form factor j+(q2) for large positive values 
of q2, according to the generalized VMD relation which 
we have used. 

Obviously, the calculation of the form factor j+(q’) 

from the diagram of Fig. 3(a) in the framework of the 
light-front formalism under the condition q+ = 0 is basi- 
cally different from the corresponding calculation in the 
instant-form formalism [in the latter case Fig. 3(a) repre- 
sents a time-ordered diagram]. A comparison might serve 
as an illustration: The former is the light-front analog 
of the nonrelativistic calculation of the photodisintegra- 
tion of the deuteron using Siegert’s theorem [37], while 
the latter is analogous to the calculation without using 
Siegert’s theorem. 
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