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We study a new mechanism for hadronic helicity flip in high energy hard exclusive reactions. The 
mechanism proceeds in the limit of perfect chiral symmetry, namely, without any need to flip a quark 
helicity. The fundamental feature of the new mechanism is the breaking of rotational symmetry of 
the hard collision by a scattering plane in processes involving independent quark scattering. We show 
that in the impulse approximation there is no evidence for strong suppression of the helicity-violating 
process as the energy 01 momentum transfer Qz is increased over the region 1 GeV’ < Q2 < 100 
GeV’. In the asymptotic region Q2 > 1000 GeV’, a saddle-point approximation yields suppression 
by a fraction of a power of Q2. “Chirally odd” exclusive wave functions which carry a nonzero 
orbital angular momentum, and yet are leading order in the high energy limit, play an imp&ant 
role. 

PACS number(s): 13.85.Dz, 12.38.Bx, 12.38.Qk 
I. INTRODUCTION 

The theory of hard exclusive hadronic scattering in 
quantum chromodynamics (QCD) has evolved consider- 
ably over many years of work. Currently there exist two 
self-consistent perturb&w descriptions, each with a spe- 
cific factorization method for separating the hard scatter- 
ing from nonperturbative wave functions. A well-known 
procedure using the ‘Lquark-counting” diagrams has been 
given by Lepage and Brodsky [l]. A consequence, and di- 
rect test, of the factorization defining this mechanism is 
the h&on helicity conservation rule [z] 

hathg=hc+hD, (1.1) 

where the hi’s are the helicities of the participating 
hadrons in the reaction A+B --f C+D. The fact that this 
rule is badly violated in almost every case tested suggests 
two alternatives. One possibility, advocated by Isgur and 
Llewellyn-Smith [3], is that the energy and momentum 
transfer (Q’) in the data are not large enough for the 
formalism to apply. However, the data al& show power- 
law dependence on Q2, indicating that hard scattering of 
a few pointlike quarks is being observed. The apparent 
contradiction has led to much discussion, and has even 
caused some authors to suggest that perturb&w QCD 
itself might be wrong. 

The second alternative is that another power-behaved 
process causing h&city flip is present. In fact the “in- 
dependent scattering” subprocess, introduced by Land- 
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shoff [4], is actually the leading process at very high en- 
ergies [5]. But it has been assumed that hadron helicity 
conservation would be the same in the independent scat- 
tering process as in the quark-counting one, since both 
involve exchange of hard gluons with large Q2. In gen- 
eral, terms proportional ‘to a quark mass, mp, for ex- 
ample, have been understood to cause helicity flip in ei- 
ther model, but with amplitude suppressed by a power 
of ms/Q relative to the leading term. Such terms seem 
to be quite small and are probably not a believable ex- 
planation of the persistent pattern of large violations of 
the helicity conservation rule. 

Here we show that the independent scattering mecha- 
nism predicts high energy helicity nonconservation at a 
substantial rate. The calculations in momentum space 
are sufficiently complicated that this phenomenon has 
been overlooked for almost twenty years. Adopting a 
transverse position space formalism introduced by Botts 
and Sterman 161, we show that the details rest on non- 
perturb&w wave functions that should be measured 
rather than calculated. These wave functions measure 
nonzero orbital angular momentum not taken into ac- 
count by short distance expansions. We argue that the 
tiovel factorization properties of independent scattering 
processes cannot practically be reduced to the same in- 
gredients used in the quark-counting scattering. In any 
case, it is not necessary to flip a quark helicity: the new 
mechanism proceeds unimpeded in the limit of arbitrar- 
ily small quark mass and perfect chiral symmetry in the 
hard scattering. 
1202 01996 The American Physical Society 
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This paper is orginized as follows. In Sec. II we re- 
view the derivation of helicity conservation in the short- 
distance model. In Sec. III, we present the independent 
scattering mechanism with special emphasis on nonzero 
orbital angular momentum wave functions. We com- 
pute the contribution of these components to a helicity- 
conserving reaction in Sec. IV, and to a helicity-violating 
reaction in Sec. V. These two sections contain our most 
important results at asymptotic and at accessible ener- 
gies. Section VI is an experimental outlook. 

ILHELICITY CONSERVATION IN 
SHORT-DISTANCE-DOMINATED PROCESSES 

First we review the conventional derivation of hadron 
helicity conservation [Z]. The quark-counting factoriza- 
tion introduces the distribution amplitude ~(z, Q2) [7], 
an integral over the transverse momentum variables of 
the wave function for quarks to be found carrying mo- 
mentum fraction 2 in the hadron. For simplicity of pre- 
sentation we specialize to a single pair of quarks, the 
meson case. Let $(z,kT) be the light cone wax func- 
tion to find quarks with light cone momentum fractions 
I and 1 - z and relative transverse momentum kT and 
-kp In terms of the Fourier conjugate transverse space 
variable bT separating the quarks, then 

v(z, Q”) = 1” d2kT +(z> b.1 

(2.1) 

In the second line we have expanded the wave function 
P(z, bT) to exhibit the SO(2) orbital angular momentum 
eigenvalues m, using the hadron momentum as the “E” 
axis. Suppose the distribution amplitude ~(z, Q”) is as- 
sumed to be a good description of a process. Then, what- 
ever the angular momentum content of the wave function, 
evaluating the integrals reveals that the m = 0 element 
is the sole surviving term in Eq. (2.1): 

p(z,Q2) = lc5 d[bTlQ J1(‘;;‘Q)%(% IbTI). (2.2) 

This shows that “se of ~(z, Q’) imposes two things: as 
Q2 + co both the scattering region is, “small,” since the 
region b$ < l/Q2 dominates in the Bessel function, and 
the scattering is “round,” i.e., cylindrically symmetric. 
In the absence of orbital angular momentum, the hadron 
helicity becomes the sum of the quark helicities. The 
quark helicities being conserved up to O(mi/Q’) cor- 
rections, the total hadron helicities are conserved. The 
hadron helicity conservation rule (1.1) therefore repre- 
sents an exact symmetry of the quark-counting factoriza- 
tion in the limit of massless quarks. Crucial questions 
are the following. Does this symmetry of the model rep- 
resent a property of the entire perturbative theory? Or 
can we simply assume “s wave” SO(2) wax functions to 
be the main contribution as in a nonrelativistic picture? 
The answer to both questions is no. In general, quark 

wave functions themselves are not particularly restricted 
in orbital angular momentum content, even in the high 
energy limit. For example, in the pion (pseudoscalar me- 
son) case the light cone wave function may be expanded 
in terms of four Dirac tensors allowed by parity symme- 
try as 

P&rb;~) 

= :“/s IPod + 7% + P~~~,~Tl + %pT),p, (2.3) 

where p is the pion momentum. The P’s are functions 
of the light cone fraction r and the transverse separation 
bT. (For the moment we do not discuss dependence on 
gauge fixing and conventions used to make the wave func- 
tion gauge invariant.) The PI= term carries one unit of 
orbital angular momentum and yet scales with the same 
power of the “big” momentum p+ as the PO, term, which 
is s wave. Since the PI, term has a bT factor, which can 
be written in terms of b~,l Az ibT,Z, this term represents 
one unit of orbital angular momentum. In terms of power 
counting, then, the m = 0 and m # 0 amplitudes can be 
equally large. 

We also note that wave functions are not objects to 
be derived in perturbation theory, but instead repre- 
sent the nonperturbative long-time evolution proceeding 
inside a hadron. The nonperturbative Hamiltonian of 
QCD does not conserve spin and orbital angular momen- 
tum separately, but instead generates mixing between 
orbital and spin angular momentum. Finally, there is 
no simple relation between “s-wave” nonrelativistic mod- 
els of constituent quarks, and the pointlike quarks re- 
solved in large-&’ collisions; no statement can reliably 
be made about quark angular momentum content of 
hadrons. Thus if a nonzero orbital angular momentum 
component somehow enters the hard scattering-and this 
is a crucial point-then the long-time evolution before or 
after the scattering can convert this angular momentum 
into the observed hadron spin. It is not necessary to flip 
a quark spin in the hard interaction, because the asymp- 
totic hadron spin fails to equal the sum of the quark spins. 
Such a mechanism is totally consistent with the impulse 
approximation of perturb&& &CD. 

The challenge in high energy hadron scattering is 
therefore to find those large-Q2 processes in which non- 
zero orbital angular momentum enters, or, in other 
words, to find those which are not “round.” It turns out 
that in any treatment relevant to current energies the in- 
dependent scattering process is not “round” but instead 
“cigar shaped” (Fig. 1). The subprocess is highly asym- 
metric, showing an extreme dependence on the scattering 
phe. 

The origin of the asymmetry is kinematic. Let us sep 
arate hadron “center of mass” variables from the internal 
coordinates. The center of mass variables are handled by 
overall momentum conservation. The internal variables 
measure more dynamical information about the relative 
positions of quarks in the subprocesses. Let us consider 
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the internal variables in coordinate space, and focus on 
directions transverse to different hadron directions. In 
the hadron center of momentum frame, let us construct 
an orthonormal basis with initial state hadron momenta 
along the 3 axis, i in the scattering plane, and 2 perpen- 
dicular to the scattering plane [Fig. l(a)]. Quark trans- 
verse separations are limited by their wave functions in 
the hadrons, which are about 1 fm. In the indepen- 
dent scattering mechanism, let one pair of quarks scatter 
defining a scattering plane [the plane indicated by dashed 
lines, top subprocess, Fig. l(a)]. Since large momentum, 

0.1 

0 

.w 

J 
FIG. 1. Coordinate space picture of meson-meson indepen- 

dent scattering. (a) Scattering planes (dashed) and direc- 

tions of quarks (arrows) are independent, but to make a final 
state hadron the important region is the case where they are 
parallel. The intersection of the Lore& contracted hadrons 
(initial state pancakes are shown) and the region of integra- 
tion over the transverse separation between quarks, bT, inside 
the hadrons is a cigar-shaped overlap region. Pancake wave 

functions of outgoing hadrons have been omitted. (b) Con- 

tour map of the cigar-shaped region, an integrand made from 
the Sudakov V(z, Q, b) factors, defined in Sec. III, in units 
of fermis. The out-of-plane variable b and in-plane variable 

bT. i are transverse space coordinates defined relative to each 
hadron (Sec. III). The regions which are not strongly sup- 
pressed by coherence of glum emission correspond to small b. 
The “hole” as b + 0 is’an unimportant artifact of the stan- 
dard Sudakov expression (see Sec. IIID). (c) The same as 
(b) but multiplied by a polynomial representing quark orbital 
angular momentum m = 2. Because of the scattering plane 
asymmetry, the integrand has no symmetries to suppress the 
overlap of the m # 0 case with the m = 0 case, meaning that 
hadron h&city conservation generally fails to be true. Actual 
calculations also use bound-state wave functions (Sec. III) not 

shown in the contour plots. Both (b) and (c) are multiplied 
by a Gaussian in bT i for the hard scattering in the plane, 
and drawn to scale at Q2 = 2 GeV’; higher Qa flattens the 
bT i dependence without rapidly changing the b dependence. 
O(Q), is exchanged in the plane (i and 5 directions), 
the distances of quarks’ closest approach in the plane 
are order I/Q. For meson-nieson scattering, let another, 
unrelated pair of quarks scatter independently [bottom 
subprocess, Fig. l(a)]. Again, large Q will lead to short 
distance of the in-plane variables for the bottom plane. 
Finally, if the outgoing quarks are to have a good overlap 
to form a hadron, then the plane determined by the sec- 
ond scattering must be parallel to the first, up to a small 
(typically 300 MeV) relative 5uctuation of quarks to fit 
into the same bound state. The power counting of inde- 
pendent scattering comes by estimating the phase space 
for these conditions to occur. Demanding coincidence of 
momenta of the second scattering with the first can be 
represented by three 6 functions of large momentum (en- 
ergy and components along i and 5). Each 6 function 
scales like l/Q in the, fixed angle limit; three such func- 
tions scale like Qm3. But the allowed out-of-plane (along 
i) variation is set by the bound state wave functions, and 
is kinematically unrelated to Q. The corresponding inte- 
gration in coordinate space over the conjugate transverse 
variable b is weighted by coordinate space wave functions 
and will produce a spatial scale we can call (i?)‘/‘. The 
b variable measures the separation between the planes 
[Fig. l(a)], which ranges from zero to the maximum the 
bound states allow. The overall phase space for meson- 
meson scattering thus scales as (ba)l/‘Qm3. By repeating 
the argument, proton-proton scattering just adds another 
plane and will scale as ((b2)1/2Q-“)“. The power count- 
ing is well known 141, but the coordinate space picture is 
not. The crucial point is that the out-of-scattering-plane 
direction is preferentially selected, creating a kinematic 
asymmetry. Allowing for the Lorentz contracted pancake 
nature of the fast hadrons in real space, the hard scatter- 
ing occurs in an oriented cigar-shaped region, with three 
space dimensions of order (b2)‘/2 x l/Q x l/Q. This 

fact is quite hard to see in covariant perturb&& c&u- 
&ions in momentum space, explaining why it has been 
overlooked. 

The kinematic violation of h&on helicity conservation 
by independent scattering raises several new questions. It 
is clear that the usual association of leading twist (short 
distance) and large Q2 either breaks down or hinges on 
delicate dynamical details. Our approach will exploit 
the fact that leading approximations to any kinemati- 
ally distinct amplitude are always perturbatively calcu- 
lable. For example, corrections of nonleading twist type 
in the distribution amplitude formalism cannot violate 
the hadron helicity conservation symmetry and will not 
affect our approach. The first nonvanishing contributions 
to helicity-violating amplitudes in the short-distance for- 
malism involve extra partons. A gluon embedded in the 
hard scattering, for example, could transfer spin to an 
outgoing hadron. We need not consider such processes, 
because, as demonstrated later, they are subleading by 
a power of Q2 and perturbatively small since such glu- 
ons are “hard.” It remains to be shown, of course, that 
helicity violation from independent scattering is not ‘sup- 
pressed by the same order. That is the main technical 
task of this paper. 
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III. INDEPENDENT SCATTERING: 
FORMALISM 

A. Kinematical analysis 

Botts and Sterman have considered [6] the generic 
“elastic” reaction MI + A42 + iV& + Mar where the Mi’s 
are light pseudoscalar mesons, at high center of mass en- 
ergy fi and large,scattering angle 9 = arccos(1 + 2tl.5). 
Their study has shown that the reaction is dominated 
by the two independent scatterings of the valence con- 
stituents with a kinematical ooniiguration depicted in 
Fig. 2. One has two scattering planes separated at the 
collision point by a transverse distance b. 

To define coordinates, let us consider different light 
cone bases (v<,u;,&,1)) attached to each meson Mi, and 
chosen so that, jn the cepter of mass &ame where fil = 2 
and~~=cose3+sine1, 

In the cm. frame, neglecting meson masses, one has 
pi = &vi, defining Q = mz. 

The scattering amplitude A(s,t) is written as a convo- 
lution 

P,=Qv, j 

FIG. 2. Kinematics of the independent scattering mecha- 
nism. The two scattering planes are separated at the collision 
point by a transverse distance b. In the cm. frame, we choose 
direction $ along the direction of flight of MI and 2 z q trsns- 
verse to the scattering plane. A light cone basis (vi, vi, &,q) 
is attached to each meson MS (see text). Neglecting meson 
masses, one has pi = Qui (Q = @). 
A(*,t)=H*H’*fiX;, 
kl 

where H and H’ are hard scattering subprocess ampli- 
tudes which depend on quark momenta k<, and Xi are 
Beth&alp&r amplitudes 

Xi(kd%) = 
s 

d4y ““~‘“(ol~I~~(Y)~~~o)lln(Pi)). @+e 

The Xi contain the information on “soft” bound-state 
dynamics. To avoid overcounting of the hard momentum 
transfer regions, they are defined so that qq configura- 
tions are eliminated when their relative transverse mo- 
mentum (along & and 17) is O(Q). The relative minus 
momentum (along vi) is of O(M2/Q) with M some typ 
ical hadronic scale. Then a simple kinematical analysis 
shows that momentum transfers in H or H’ are domi- 
nated by large invariants built with zi& terms. A first 
approximation is to neglect all but these components of 
the quark or antiquark momenta in the hard amplitudes 
H and H’. This is the impulse approximation. 

A second observation follows from kinematics. Al- 
though momentum conservation at the hard scattering 
H relates the internal momentum dependence of the X’s, 
a variation of one such momentum ki in its (4 or vi direc- 
tion induces negligible modifications in the three other 
X’s. Consequently, momentum components of ki along 
.$ or vi only appear as relevant variables in the wave 
function Xi and integrations over these components can 
be carried out. The components along q7 denoted Zi, rep- 
resent transverse momentum out of the scattering plane 
and do not share the same property. Thus the vertex 6 
function may be reexpressed as 

@(kl + kz - ks - k4) 

which indicates that the four constituents which enter 
or leave each hard scattering carry the same light cone 
eaction (zi = I or I- z). We let I be the common light 
cone fraction of the four constituents in H and 5 = 1 -I 
be the one in H’. Introducing the “out-of-plane” impact 
parameter b through 

+CO 

one may write the amplitude of the process Ml + A& --t 
Ms+M4 [6]as 
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with Dirac indices ~$3. Color indices are suppressed in 
Eq. (3.1) and sums over repeated indices are understood. 
We consider unflavored quarks; the effects of flavor are 
implemented by setting to 0 some of the graphs we are 
going to consider. H and H’ are Feynman amplitudes (a 
sum over allowed diagrams is understood) computed with 
standard perturbative QCD vertices and internal propa- 
gators. At lowest order in the coupling constant, H and 
H’ consist of one-glum exchange or qcj annihilation for 
each quark pair. Note that P and H are not individually 
gauge invariant. 

If the short-distance b -i 0 limit is assumed, then the 
four general wave functions in Eq. (2.3) can be reduced 
to the PO, term, by taking the trace 

Then, the zeroth moment of 7% is related to, the decay 
constant of the corresponding meson 

J 
1 

dsP&, b = 0) = f~ 
0 

where, e.g., for the pion, fn = 133 MeV. This zero- 
distance quantity contains no information on the inter- 
esting dependence on the transverse variable b. 

The selection of 7’0, to compute the leading-twist com- 
ponent of helicity-conserving amplitudes was shown to 
be consistent by Botts and Sterman [S]. Here we are 
concerned with the leading order description of helicity- 
violating terms. Thus, we will consider P&ype and 
‘PI,-type amplitudes on an equal footing, and make no a 
priori assumption that the region b + 0 dominates. 

B. Gauge invariance 

The development so far has been sufficient to isolate 
the kinematic region of interest, which as we have al- 
ready noted is characterized by finite separation between 
the participating quarks in the out-of-scattering-plane di- 
rection. The amplitude is thus a strong function of the 
spatial dependence of the wave function. The Bethe- 
Salpeter wave function is a bilocal matrix element and is 
not gauge invariant. However, we will now discuss how 
gauge invariance of the description can be obtained. 

The key is in how the perturbation theory is re- 
arranged. In the Sterman and Botts factorization certain 
“soft” corrections are put into the wave functions, leaving 
other parts of Feynman diagrams to go into the hard scat- 
tering kernel. In dressing the wave function in this way, 
it is no longer a quark correlation (the Bethe-Salpeter 
wave function), but the matrix elements of operators de- 
termined by the types of diagrams put in. The opera- 
tors chosen in [S] are path ordered exponentials (POE’s), 
shown by Collins and Soper [S] to be the generators of 
eikonal approximations to the gluon attachments. The 
POE’s are gauge covariant, leading to a gauge-invariant 
amplitude. 

This is partly forced by physics, and partly a canven- 
tion. As a convention for the perturbation theory, sub- 
sequent diagrams must be evaluated with subtractions 
to avoid double counting. More generally, any operator 
functional of the A fields which transforms properly could 
serve in place of the POE’s, with the effect of creating a 
different subtraction procedure. Let us extract what we 
can that is independent of convention. 

Let the operator in the definition of the wave func- 
tions be called U(A; 2); we will call it a gauge-dressing 
operator. Under a gauge transformation at the position 
+, we require U(A;x) to transform like an antiquark. 
Then products such as U(A;z) 1()(z) are gauge invariant. 
That is, we have gauge-invariant matrix elements to find 
a dressed quark 

It is obvious that this requirement does not determine 
U(A; z) uniquely, because one could always attach a fac- 
tor which is gaugd invariant without changing the gauge 
transformation properties. The particular choice of what 
to attach is a prescription, i.e., a definition of what parts 
of the amplitude will be put in the wave function and 
what in the hard scattering, and it cannot be determined 
by gauge invariance alone. However, due to gauge trans- 
formations one must attach some kind of gauge-dressing 
operator to have well-defined matrix elements. 

C. Path-independent dressing 

Although the standard way to do gauge dressing with 
the POE is path dependent, no path dependence gener- 
ally need be associated with U(A;z) and in particular 
the observable process does not determine or favor any 
path. This important point can be seen with an elemen- 
tary example from QED, where the U(1) gauge invariance 
is easier to control.. The straightforward QED analogue 
of our process involves equal time (not light cone time) 
correlation functions in the gauge A0 = 0. This gauge 
choice eliminates a mode, but there still remains a lack of 
definition of the A coordinates due to time-independent 
gauge transformations f?(z): 

A(z) --f A’(z) = A(z) + V@(x), 19’0 = 0. 

This produces a change in the longitudinal modes. 
These modes are sometimes also called unphysical, a very 
unfortunate choice of terminology. In free space and in 
the absence of coupling a gauge theory has two transverse 
degrees of freedom and the third would be called unphys- 
ical. However; we are interested in the case that matter 
fields exist (and the non-Abe&n coupling is turned on) 



3 HADRON HELICITY VIOLATION IN EXCLUSIVE. 1207 
in which case the third mode is real, but special inas- 
much as being determined in terms of the other variables 
by gauge invariance. To see this, note that we can de- 
compose into transverse and longitudinal parts, 

A=AT+A~=A~+V& 

with the transforming part 

(3.3) 

6= +A] 

and invariant part AT = A-V& Here l/V2 is the Green 
function defined so that the 02(1/V&,) = J3(z -z’). 

Since it is there for gauge transformations, the longi- 
tudinal part 4 is not free to be varied in arbitrary dy- 
namical ways, but must accompany the matter field in a 
prescribed, unique functional. At time t = 0 this opera- 
tor is 

&(A; z) zz &‘+) (3.4) 

from which one can verify that, under a gauge transfor- 
mation, 

4(z) + 4(x) + G), 

G(x) + e -“9+,$(z), 

&(a; 3) + ei~ewc(a;3C), 

&(A;~)$(=) -+ G(A;~)W. (3.5) 

We will call u,(A; z) the Coulomb dressing operator 
because it creates a classical Coulomb field around the 
matter particle, as the reader can check by calculation. 
Since the Hamiltonian commutes with the gauge trans- 
formation operator once A0 = 0 has been set, the time 
evolution will maintain the invariance of the combina- 
tion U,(A; z)+(z). However, as noted already, one is not 
forced to accept this as the unique answer, but can opt 
for U,(A; z) f(A*), which will transform in the same way 
for any f(A,). 

The reader may still be curious to know the relation 
between Coulomb dressing and the POE approach. This 
can be very simply exhibited by noting that 

~(y)e”gb(“),-isQ(z)~(~) = ~(y)e”gS.Yd..v(8)(z)~(2), 

(3.6) 

This expression is still path independent. This is 
the choice I = 1. A different choice is the path- 
dependent one 

f(A,) = =P (k++(4) > 

in which case we have 

(3.7) 

U,(A;y)f(A~)U~(A;z)=ex~(ig~~da-A(~)), (3.8) 

which is the standard path-dependent POE. Both proce- 
dures are equally acceptable, as far as satisfying gauge 
invariance. An important difference is that the path or- 
dered exponential can create a line of physical transverse 
gauge field particles between the charged matter fields, 
depending on how the path is oriented. Such a line of 
gluons, existing only along the chosen path, can be in- 
terpreted as an arbitrary model for the transverse gauge 
field inside the state of interest. Similarly, if one boosts 
the Coulomb dressed definition with j(A,) = 1, the 
boost also creates a blast of transverse gauge fields as 
seen by the “equivalent photon” approximation, and this 
is path independent. 

In perturbation theory, the lowest order approxima- 
tion to non-Abelian dressing is the Abelian case. It is 
possible in the non-Abelian theory to write down expres- 
sions analogous to the Coulomb dressing but care must 
be used to keep track of the color indices. It is equally 
valid to use POE’s, which definitely transform properly, 
as building blocks to generate an infinite number of dif- 
ferent ways to dress the quarks. The different choices are 
not relevant for a leading order calculation to which we 
restrict this study. 

D. Factorization 

The next step is to elaborate a factorized form for the 
amplitude, whose prototype is Eq. (3.1), regarding ra- 
diative corrections. Generalizing the results of [6] to the 
case of the helicity-violating D&x projections, a leading 
approxim&on to the soft region rearranges these correc- 
tions to obtain the expression 

where H and H’ are evaluated at respective scales zc& 
and (I-z)Q which are assumed to be large (Dirac indices 
are understood), and A = &CD, the strong coupling 
scale in a particular scheme. 

Large logarithmic corrections to the process, with the 
coexistence of the two scales Q and l/b, are resummed in 
the Sudakov factor U. At leading order, we approximate 
it by its dominant expression at large Q [6]: 

U(r,b,Q) cexp 
[ 
+I+$ -lnu(zQ,b) 

-1f u(zQ, b))] exp [(z -$ s)] (3.10) 

with 

u(zQ,b)=(-+&) andc=4;II-;n1,3=$ 

for nf = 3. The notation (z + 3) in Eq. (3.10) indi- 
cates writing the same function in the exponent with this 
substitution. We have introduced the variable u(zQ, b) 
which turns out to be the relevant one to describe the 
Sudakov unsuppressed region in the (b,Q) plane. For 
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u(zQ,b) = 1 [u(zQ,b) = l] there is no suppression 
from the first [second] exponential in Eq. (3.10). For 
u(sQ,b) < 1, then b is much larger than l/x&, and 
one gets a strong suppression due to the large InzQ fac- 
tor. The Sudakov suppression in the region u(zQ, b) > 1 
is inessential (as we explicitly checked numerically), be- 
cause the independent scattering mechanism does not re- 
ceive much contribution f?om this short-distance domain. 
After perturbative resummation, the QCD scale A turns 
out to be the natural bound for the integral over the 
impact parameter (U = 0 for b 2 A-l). 

Because U includes the logarithmic corrections from 

Q down to l/b, each PCs) is a soft object which does 
not include perturbative’corrections harder than l/b. In 
the short-distance regime, one can relate the s wave 

Pr)(z, b + l/Q;Qv;) to the distribution amplitude 

p(z,Q) [6]. There is no such correspondence for Py’ 
which is an entirely new object. 

End points in the 2 integral where hard subprocesses 
would become soft may look problematic. Both the dis- 
tribution amplitude and wave function approaches used 
here become self-consistent given end-point zeros, e.g., 
~(z + 0) - zk, where k > 0 should occur independently 
of spin projection. 

IV. CONTRIBUTION FROM NONZERO 
ORBITAL MOMENTUM COMPONENTS OF 

THE WAVE FUNCTION IN rrrr + ,mr 

Before analyzing helicity-violating processes let us ex- 
amine the leading contribution &cm the various compo- 
nents in Eq. (2.3) to a standard helicity-conserving reac- 
tion such as m + mr. 

A. Computation of amplitudes 

In their study, ,Botts and Sterman were interested in 
identifying the asymptotic behavior of the amplitude 
A(s,t) (s + +co, t/s tied). Asymptotically, the Su- 
dakov mechanism contained in U(z, b, Q) results in a sup- 
pression of the large-b region in the integral of Eq. (3.9). 
In this limit one can forget about tensorial components 
of Pa&, b; Qv) o( (. . p .)ap and only the component 

~%rsdl=~ of Pap survives. 
In the intermediate-Q2 regime, configurations of the qq 

pair sitting in a light meson with transverse separation 
smaller than the meson charge radius are not strongly 
affected by the Sudakov mechanism [lo]. As anticipated 
in Sec. II, any m = 1 components of the wave function 
which form large invariants in H (as large as the s-wave 
term) may give sizable contributions to the interaction 
amplitude. For contributions with leading power behav- 
ior in the pseudoscalar case, we must keep the tensorial 
decomposition 
We now explore the calculation with this assumption. In 
Eq. (3.9), one has to carry out the projection of the hard 
part H and H’ onto the Dirac and color matrices coming 
from each wave function. This is done in Appendix A. 
One finds the hard amplitudes ai labeled by the power 
of b entering: 

These hard parts are then multiplied by the four accom- 
panying soft wave function components and by the Su- 
dakov factor, Eq. (3.10), and integrated over b and 2: 

l1 da: /+l’* dba,,U(z, b,Q) (Pp)(s, b))4, 

AZ = x&& ,‘:zJ.‘^ dbazU(x,b,Q) 

x (Pr)(:,b))’ {;)(z,b))‘, (4.3) 

Aa= &$ 

x I1 dz j-y,;dba&+,b,Q) (P?(z,b))‘; 
0 

One then adds the three terms to obtain the amplitude 
A(s, t) = A0 + Az + A4 in Eq. (3.9). Let us note that 
the angular dependences are different for a~, a~, and a4 
and that within the approximations these dependences 
are not affected by the integrations. This remark is im- 
portant for phenomenological analysis: the p-wave con- 
tributions should be more important in some kinematic 
domain. 

We now limit ourselves to the study of the relative 
energy dependence. At 90°, the hard parts are 

ao(90”) = 19 (i)” $$, 

az(90’) = 120b’ (i)” &l 

a4(90”) = 304b4 (;)‘&. (4.4) 

Inserting these in Eq. (4.3), we denote the ratios of 
amplitudes 

II(Q) = .4(Q,90°)/Ao(Q,90”). 
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B. Model wave functions 

For an asymptotic estimate assuming short distance, 

the soft wave function ?f’ may be approximated to its 
value at small b, approaching the distribution amplitude 

161: ?r)(z, b) a ‘p(z, l/lbl). In this limit one has models 
for the z dependence: 

‘~a&) = ‘X41 - 4, (4.5) 
'PCZ(Z,~ - 500 MeV) = 5(2~ - l)‘rp,.(s), (4.6) 

which are standard choices for the pion. The asymptotic 
form Eq. (4.5) is derived in [1,7]; it has no evolution 
with p and is indeed the limit as p + co of all distri- 
butions. Because evolution with fi is slow, the effective 
distribution at the nonasymptotic regime may be very 
different from (o... Chernyak and Zhitnisky [ll] have 
built from QCD sum rules the above CZ form Eq. (4.6). 
This evolves with the scale, but at a rate which is quite 
negligible. We will ignore these effects in the following. 

The existence of the additional component PI compli- 
cates the problem. Next to nothing is known about it, 
but a reasonable an&z is to adopt a form similar to P,,. 
One notices that PO has a mass dimension set by fT. In 
the case of Pp1, the dimension is a squared mass and the 
normalization constant is unknown. We will adjust the 
normalization in a way described below, and assume the 
same I dependence for P,, as P,. 

C. Asymptotic behavior 

To get the asymptotic behavior, we analytically evalu- 
ate the b integral 

with a saddle-point approximation, using the change of 
variable u = -1n b/ In @Q. One has a maximum of 
the integrand at u. = h and finds 191 

J 
A-’ 

db b=U(b, I, Q) ~5 IL,, (4.7) 
0 

Defining the I integrals 

J 
1 q% 4 = dzc++y [e(l - z)]-“+“” *, II 

an asymptotic expression is found for the ratio 

j&,(Q)= 2c+1 9 

0 2c+n+1 A 

from which one deduces 

Rz c( Q-l,“, R4 cc Q-l=. 

The power suppression for each power of b2 is interme- 
diate between the case of no suppression (naive inde- 
pendent scattering) and the short-distance expectation 
l/Q’. Note that the asymptotic power does not depend 
on the model for the z dependence. 

D. Intermediate behavior 

At accessible energies, we expect deviations from the 
result given in Eq. (4.8). We have numerically evaluated 
the amplitude Eq. (3.9) with U given by Eq. (3.10). Re- 
sults for our computation of the ratio of amplitudes are 
displayed in Fig. 3 with CZ distribution (solid line). We 
get similar results for the asymptotic distribution ampli- 
tude (Fig. 4). To fix the normalization, we choose here 
and in the following to set arbitrarily the ratios to 1 at 
fi = 2 GeV. We observe that Rz decreases by a factor 
of around 7 from fi = 2 to 20 GeV. This is a much 
milder suppression than the naively expected l/Q2 fac- 
tor (dotted curve). R4 drops more drastically by a factor 
of around 20 in the same energy interval. A numerical 
study shows that logarithmic corrections ignored within 
the saddle-point approximation are not negligible in the 

(a) 

fi (GeV) 

FIG. 3. The energy dependence of the Rz (a) and of the & 
(b) ratios with CZ distribution amplitude [ll] (thick lines). 
Also shown is naive behavior postulated in short-distance 
models (thin lines), respectively l/Q* and 1/Q4. The shaded 
area in (a) indicates an estimated uncertainty from neglected 
subleading logarithms. The ratios are normalized to 1 at 
,Li =2 GeV. 
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FIG. 4. The energy dependence of the Rz ratio calculated 
using the asymptotic distribution amplitude with (solid thick 
line) and without (dashed line) intrinsic b dependence. The 
thin line is as in Fig. 3. 

accessible range of energies. At larger values of the en- 
ergy, fi > 20 GeV, the approximated result of Eq. (4.8) 
becomes accurate. 

Secondly, Eq. (3.10) should be supplemented by non- 
leading terms which are known in the s-wave case [6] but 
presumably differ in the p-wave case. The neglected log- 
arithms in the expression of U [Eq. (3.10)] may modify 
somewhat the ratio over an intermediate range of energy. 
To model such an effect, we add a simple 2, b-independent 
factor 

exp (,lnln$ 

in the expression of Rz with K some constant. The ra- 
tio modified by such a factor is shown in Fig. 3(a) as a 
shaded area limited by the curves corresponding to K = 1 
and K = -1; this measures in some way the theoretical 
uncertainty on the p-wave contribution. Further theo- 
retical progress in the computation of these subleading 
terms might be possible. 

A third effect may come from the intrinsic transverse 
dependence of the wave function. While the replacement 
of ‘P(“)(r,b;l/b) by p(z;l/b) discussed in Sec. IVB is 
reasonable at large Q2 (> 100 GeV2), it is more ques- 
tionable at intermediate values. In that case, long-range 
physics may be accounted for by including some intrinsic 
b dependence [lo] as 

P&b) = 4dd’~(z) exp (-2 - $) (4.9) 

Following [lo] we use parameters a2 = 0.096, p2 = 
0.88 GeV2, and N = 1.68 with the asymptotic distribu- 
ti& amplitude. The results are depicted in Fig. 4, where 
the curves from this wave function and from the asymp- 
totic distribution amplitude are shown for comparison. 
We remark that the phenomenology may also be modi- 
fied considerably by studying further model variations. 

These three effects show that the powerlike decrement 
Eq. (4.8) of the ratio is diluted at intermediate energies 
and consequently the amplitudes A0 and A2 are likely to 
compete over a rather large interval of s, say 1 GeV’ < 
s <IO0 GeV’. 

V. HELICITY-VIOLATING PROCESSES IN 

ZcT -+ PP 

A. p wave function 

To begin, let us find the possible tensorial decompo- 
sition for the quark-antiquark wave functions of the p 
meson. A on&particle state is specified by the momen- 

tum pi (i = 3,4), written pi = Qv; + C&J: (m is the p 

mass which we do not neglect for the moment), and by 
the h&city hi E {l, 0, -1). The three-h&city states are 
described in a covariant way with the help of the three- 
vectors &i(p;), satisfying EI, ‘pi = 0 and a. E:, = --&I,~. 

For p(ps), the set (lj3,&,7j) forms a right-handed orthog- 
onal basis and we choose polarization vectors 

(h = +l) EE=-++iO), 
Jz 

(h= 0) Q 
80 = ;“3 - F$J,, m ’ (5.1) 

(h = -1) EL = $t3 -ill). 

A consistent choice for p(p4) is 

(h = +l) 

(h= 0) 

(h = -1) 

CR = $(F3 -ill), 

Q 
EO = ;‘U4 - $4’ m ’ (5.2) 

EL = -+& +i?+). 
Jz 

Thus, demanding a parity “-” state, the Bethe- 
Salpeter amplitude has the most general Dirac-matrix 
expansion 

(5.3) 

One can then extract the relevant components for the 
study of independent scattering processes. That is, we 
isolate leading high energy tensors, which contain one 
power of the large scale Q. [We have already set the 
relative “r+” coordinates to zero in Eq. (5.3), but this 
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does not affect the counting of terms.] We get, for a 
longitudinally polarized p, 

Phb;prh= 0) = 2 (P;,$ +p:[$Jbl) , (5.4) 

and, for a transversely polarized one with E,, = h~ or EL, 

B. The double-flip rule 

Before computing a h&city-violating process, let us 
exhibit what we call the double-flip rule. The rule sum- 
marizes the consequences of angular momentum and chi- 
ral conservation in perturbation theory. Let each term 
in a meson wave function be classified by its chiality. 
The cbirality will be ‘I+” if the term anticommutes with 
^(s, and I‘-” if it commutes. In the short-distance limit, a 
&rally ‘I+” state has quark-antiquark spins canceling [as 
in the s-wave contribution to the pion, i.e., the rs$ term 
in Eq. (2.3)]; a &rally “-‘I state has the spins aligned. 
There is a selection rule due to the hard scattering (which 
acts like an overall factor of 1) conserving chiiality: for 
each connected quark loop, the product of all the cbiral- 
ities of the wave functions must be I‘+.” Otherwise the 
Dirac traces will vanish due to chin1 symmetry. 

Consider next a nonzero amplitude for a mesa. scatter- 
ing process calculated wing the s-wave wave functions. 
Let us compare this to the same process computed with 
non-s-wave terms. Adding a unit of orbital angular mo- 
mentum is done with a factor of fin in the wave function. 
Keeping the meson’s overall angular momentum fixed, 
this is compensated by flipping the sign of the chirality. 
To keep the product of chiralities around a loop “f” us- 
ing such a wave function, there must be another such 
term elsewhere on, the same loop. This is the double-flip 
rule: terms with bT in the wave function occur in pairs 
on each connected quark loop. The rule can be checked 
in our earlier example of ?T= scattering. 

The power suppression of short-distance amplitudes 
with extra transverse gluons is &z&d by the same con- 
siderations. By power counting, each extra glum em- 
bedded in a hard scattering creates a suppression by 
a power of l/Q. However, the chirality of the wave 
function attached is flipped by one “-” for angular mo- 
mentum conservation. There is no point in adding one 
transverse glum, so gluons (like bT) must be inserted 
in pairs. When orbital angular momentum and gluon 
components are compared, orbital angular momentum 
dominates: from Sec. IV, we found an asymptotic sup- 
pression of Q-“.55 for one ‘p wave” compared to Q-’ 
for a gluon. At finite energies the dominance of orbital 
angular momentum over extra Fock components is even 
greater, because the p-wave contribution is even less sup- 
pressed. 

Here is a further consequence of the rule. Consider that 
the s-wave function for a meson state (spin 0 or spin 1) 
with net h&city zero is chiially “-I)) while the s-wave 
part of a helicity 1 meson wave function must be chi- 
rally “f.” Within the s-wave calculation, one concludes 
that a process must have an even number of zero meson 
helicity legs, or it will vanish. Adding orbital angular 
momentum adds an even number of bT’s on the same 
internal loop. This does not change the counting; the 
previous conclusion remains generally true. For a two- 
to two-meson scattering process, we find that only those 
processes which violate hadron helicity conservation by 
two units are allowed. For example, ?rn + pop* vanishes. 
nli + PRPR is allowed, and will be studied next. 

It is easy to verify that the ?rx + PRPR vanishes when 
calculated using the s-wave components of the external 
mesons (see Appendix B). By the double-flip rule the 
first nonzero term is a b2 amplitude Mz(z, b). Its com- 
putation, within the approximation of Sec. IVA, leads 
to 
(5.8) 
This amplitude has to be integrated over b and z. Al- 
though it involves several unknown objects, one notices 
that the angular dependence varies from one component 
to another and is rather different from the one obtained 
in n?r elastic scattering. It may be possible to analyze 
the contribution to helicity violation processes from dif- 
ferent wave functions and use this information to deduce 
properties of the wave functions. 
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The numerical study of Sec. IV can be used to under- 
stand the energy dependence of double-helicity-violating 
processes at accessible energies. As explicitly shown in 
Figs. 3(a) and 4, the naive l/Q2 factor is replaced by a 
milder suppression. This is primarily due to the speci- 
ficity of the independent scattering mechanism supple- 
mented by Sudakov effects. Even at very large energies 
the Q-‘.‘O ratio of Eq. (4.8) looks to be quite a weak 
suppression. 

VI. REALISTIC PROCESSES AND 
EXPERIMENTAL OUTLOOK 

Studying meson-meson scattering is an interesting but 
unrealistic simplification. Including baryons is a neces- 
sary but quite intricate further step. A high number of 
Feynman diagrams and internal degrees of freedom to be 
integrated over then occur. We can, however, still draw 
some conclusions from our analysis, leaving baryons to 
future work. The mechanism we have explored occws in 
several experimentally accessible circumstances. Indeed, 
there is a host of reactions involving hadronic helicity vi- 
olation from which we could learn about the interface of 
perturb&w and nonperturbative &CD. 

The helicity density matrix of the p meson produced 
in rp + pp at 90’ is a nice measure of helicity-violating 
components. Experimental data [12] yield pl-l = 0.32 zk 
0.10, at s = 20.8 GeV2, f&,. = 90”, for the nondiagonal 
h&city-violating matrix element. Without entering a de- 
tailed phenomenological analysis, we may use the results 
of Sec. V through the following line of reasoning. Assume 
that the presence of the third valence quark, which is not 
subject to a third independent scattering, does not much 
alter the results. Then one may view ~1-1 as coming 
from the interference of a h&city-conserving amplitude 
like ?T?T + PLPR with a double-helicity-flip amplitude like 
?T?T + PRPR. We then predict a mild energy dependence 
of this matrix element, i.e., Q-‘.” [Eq. (4.8)] at asymp- 
totic energies, or behavior as shown in Fig. 3(a) and Fig. 4 
at accessible energies. This is at variance with the pic- 
ture emerging from the diquark model (131. Measuring 
the energy dependence of this effect would be highly in- 
teresting. 

The most well-known example of hadron helicity vio- 
lation occurs in pp + pp scattering [14]. Our demonstra- 
tion of helicity-violating contributions to meson-meson 
scattering has a bearing on this, because generalized me- 
son scattering is embedded in the diagrams for proton 
scattering. Without needing to make any dynamical as- 
sumption of “diquarks,” the perturbative QCD diagrams 
for pp -+ pp scattering contain numerous diquark regions, 
convolved with scattering of an extra quark. There is no 
known selection rule which would prevent the scatter- 
ing of such subprocesses from causing helicity flip in pp 
elastic scattering. This does not exhaust the possibili- 
ties, because there are other channels of momentum flow 
and color combinatorics which might have different in- 
terpretations. The data for pp + pp also reveal large 
oscillations about power-law behavior, a second piece of 
evidence that the short-distance picture is inadequate. 
Elsewhere 1151 we have identified these oscillations as a 
sign of independent scattering. Given the theoretical [16] 
and experimental evidence, we therefore find no evidence 
that hadronic h&city conservation is a general feature of 
perturbative &CD, and we believe that independent scat- 
tering is a main contender in explaining the observations. 

Since reactions of baryons are extremely complicated, 
and next to nothing is known about the various wave 
functions in the proton, a productive approach to the 
question is to ask for experimental circumstances in 
which the general mechanism we have outlined could be 
tested without requiring too much detail. We believe that 
progress here will come from using nuclear targets, and 
studying the phenomenon’of color transparency in hard 
(as opposed to diffractive) reactions. This program has 
been outlined elsewhere [17]; it suffices to mention here 
that suppression of large-b2 regions is expected in reac- 
tions involving large nuclei. It follows that helicity con- 
servation should be obtained in the same circumstances. 
Thus the mechanism we have outlined is testable. We be- 
lieve that a multitude of phenomena involving spin, color 
transparency, and detailed hadron structure will play a 
major role in the future. 
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APPENDIX A: COMPUTATION OF HARD 
AMPLITUDES 

In this Appendix, we explain how to carry out the 
computation of hard amplitudes for the process rn + 
?T?T. 

Following Eq. (3.1) or (3.9), one forms the projection, 
denoted as t and t’, of the hard amplitudes H and H’ on 
the Dirac tensors (&&P~ and $~5[$i,&,p,) coming 
from each wave function. We follow the Botts-Sterman 
classification qf graphs, with three fermionic flows for H 
and two gluonic channels each (see Fig. 5): 

Color flow in this problem is simplified by noting that 
one-gluon exchange between two quark lines gives a color 
tensor 
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FIG. 5. Feynman graphs for the lowest order hard ampli- 
tude H: for H’ reverse the arrows. 

c, zz c2 = ;;c2 = Cl = 2. 

With this notation, one finds for the hard amplitude 
containing no b factor (as indicated by the subscript 0), 

times an overall common factor 

where g is the QCD coupling constant which appears in 
Feynman rules. We have already indicated that the whole 
amplitude Eq. (3.9) can be properly defined regarding 
renormalization and factorization, so that g4 stands for 

(~+s(~&)w@&). 
There is no term with an odd power of b, due to the 

corresponding odd number of y matrices; this is a con- 
sequence of chiral symmetry. The second term consists 
therefore in three hard amplitudes containing b2 (as in- 
dicated by the subscript Z), which we found to be 

WJ), 
st - 112 

’ (a = c,c+ + (&CJ + C,&)~ 

” - 2tu 
+crcJ~, (A‘4 

WJ), 
tu - 2 

’ @) = c&g + (&2J + c&,- 

- - 2st 
+w.q, 

with a common factor 

The third hard amplitude is the same combination as 
Eq. (Al), but with an overall factor 

A check of the above expressions (and a trick to re- 
duce the number of graphs one has to compute) is pro- 
vided by symmetries under meson exchange. Starting 
ftom the expression one gets with two-wgluon exchange 
and fermionic flow f = 1 which we label uul (Fig. 5), 
one can generate 

Exchange channel kinematic color 

2+t4 ssl u*s cttc 
3-4 tt2 uC)t cttc 
2-3 uu3 si-it c et c. 

The reader will easily find the channels obtained l?om 
another starting point, say ~$1, and the combination of 
exchanges needed to determine graphs which do not ap 
pear in the above array, thus completing the whole am- 
plitude. 

In the leading-logarithm approximation, U in 
Eq. (3.10) is a scalar in color space and one easily per- 
forms the color traces. The color matrix coming from the 
ith wave function is iSaic and one has 

With 
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_ - 1 
CICJ = 3s 

1 -3 

( > -3 9 ’ 

one then obtains the following hard amplitudes, labeled 
by the power of b entering: 

az=bz (?$??&+2~$$-t3u3, (A3) 

At next-to-leading-logarithm order, the corrections are 
color matrices [15], and inln(Q’) terms can produce os- 
cillating amplitudes as Q2 is varied. Such terms may be 
phenomenologically important but are not studied here. 

APPENDIX B: VANISHING OF THE 
HELICITY-VIOLATING AMPLITUDE WITH 

s-WAVE WAVE FUNCTIONS 

Let us verify explicitly the vanishing of the hard am- 
plitude using the s-wave components of the external 
mesons. For this purpose, it is instructive to examine the 
connection between quark h&cities and the s-wave Dirac 
tensors we have used until now. This is accomplished in 
the following way. One considers the free massless spinors 
of a quark and an antiquark moving in the same direction, 
the quark having a momentum zp and the antiquark a 
momentum %p, so that the compound system has a mo- 
mentum p. Then one constructs the four possible helicity 
states of the system with solutions of the Dirac equation 
and finds 
The helicity conservation rule is then easily verified 
with these combinations of spinors when one chooses the 
chin1 representation [lS]. In this representation, the two 
diagonal blocks of each 7“ we equal to the null 2x2 ma- 
trix. A Feynman-graph fermion line, with vector (or ax- 
ial) couplings and massless propagator, is an even number 
of 7 matrices between two spinors: 

#+(p’,h’)wr”!,& . ..$nP+‘ti’(P. h). 

Inclusions of Ye, which is diagonal in this representation, 
do not modify this property. Then, since to order m/p 
the chirality of a spinor corresponds to the helicity of the 
state and, in this representation, chiial eigenstate spinors 
have either their two tist components or their two last 
equal to 0, states of different helicity always give a null 
product. 

This property is algebraic and therefore independent of 
the representation chosen. However, it is more difficult 
to observe its effects in the trace formalism. Let us exam- 
ine how it works in the case of the reaction considered. 
Among the twelve graphs discussed in Appendix A, each 
tt and uu graph is 0 because they contain traces over the 
product of an odd number of y’ matrices. For the eight 
remaining graphs, the sequence 

occurs (the anticommutation to the left of every 75 is 
understood and does not modify the reasoning). The 
product of an odd number of yM being a linear combi- 
nation of 7” and y#, one is left with the evaluation 
of 

where u4 = V; and ellR = EQL have been used and the 
index 3 dropped. One can decompose each 7’ onto 
(d, $‘, tR, $L)r which are such that their square is 0 and 
their anticommutation rules are 

to conclude that all graphs effectively vanish. 
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