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Role of strange and charm quarks in the nucleon spin structure function 
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We perform an analysis of the relation between the factorization scale and the masses of the quarks 
in the calculation of the hard gluon coefficient in polarized deep inelastic scattering. Particular 
attention is paid to the role of strange and charm quarks at finite momentum transfer. It is found 
that for the momentum transfer of the present experiments the contribution from the charm quark 
is significant. 

PACS number(s): 13.60.Hb, 12.38.Bx, 13,88.+e 
I. INTRODUCTION 

In the usual analysis of the proton spin structure func- 
tion, based upon QCD and the operator product expan- 
sion (OPE), the moments of the singlet part of gl(z, Q2) 
are written as 

J 1gp)(z,Q2)z”-Gh 0 
= A-WP”)C:(Q’/~~) + Agn(~2)C:(Q2/~2), (1) 

with C~(Q’/~‘) = 1 + O(a,) the Wilson coefficients for 
the quark operators and Ci(Q2/$) = O(a,) the Wilson 
coefficients for the gluon operators. The matrix elements 
AC,($) and Ag,($) are not determined by perturba- 
tive QCD and should be either fixed by experimental con- 

straints or calculated using nonperturbative techniques. 
Equation (1) can be inverted, using the inverse M&n 
transformation, and the result is 

d%,Q2) = A+,& @ Cp(~,Qz//12) 
+Adz, CL’) @ CD@, Q2/w2), (4 

where @ denotes a convolution of the two functions. 
Much of the debate on the proton spin in the last few 

years has been centered on whether or not the spin of the 
proton receives a contribution from the gluons [l-6). On 
the basis ofthe OPE the picture is clear: there is no twist- 
2 gluon operator contributing to the first moment of gl, 
and hence Jd Cg(.z, Q2/$)dz = 0. This result implies 
that the first moment of g1 is given solely by the first 
moment of AX. If AX were identified with the spin in the 
proton carried by the quarks then the gluons would give 
no contribution. In this scenario, following the parton 
model language, A’&(~‘) = N Cr Af,($), with Af = 
Afi the amount of spin carried by the f quark and N,= 
l/9 for three flavors, 5/36 for four flavors, etc. It happens 
that AX cannot be identified with spin because of the 
axial anomaly. Indeed, the axial anomaly is at the heart 
of the disagreement between the OPE and the improved 
parton model (IPM) results for the role of gluons in the 
first moment of gl(z,,Q’). In this contribution, we are 
not going to make a complete analysis of the equivalence 
(or otherwise) of these approaches but will limit ourselves 
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to the analysis of the gluon contribution in the light of 
the IPM only. 

In the IPM the situation is more complicated. One 
calculates the full, polarized photon-proton cross section 
and uses the factorization theorem to separate the hard 
and soft parts: 

where $ is the factorization scale, Afycs)lN is the po- 
larized quark (gluon) spin distribution inside the nu- 
cleon, and vh is the polarized, hard photon-quark or hard 
photon-gluon cross section. One then could relate g1 cal- 
culated in the IPM, Eq. (3), to 91 calculated in the OPE, 
Eq. (Z), by identifying the hard, perturbatively calcu- 

lated, Wilson coefficients with the hard photon-quark 
and hard photon-glum cross sections and identifying the 
matrix element AE(r,& [Ag(z,$)] with the factor- 
ized quark (gluon] distribution Af4(sl,N. However, as 

already mentioned, AE(z, $) cannot be identified with 
the quark spin distribution. The relation between them 
is beyond the scope of the present work. Instead, we will 
concentrate on the relation between the Wilson gluon 
coefficient and the hard gluon cross section of the IPM. 
Although there are excellent treatments of this subject 

in the literature [2,6-S], we think that the present con- 
tribution adds significantly to the understanding of the 
behavior of gl(z, Q’) at finite Q2. 

In Sec. II we will develop the basis for the calculation 
of the hard gluon coefficient in the IPM. The resulting 
expression interpolates the known limits of -zNf for 

m; < p2 and 0 for m; > $ and overcomes conver- 
gence problems found in an early work [9]. The effects of 
this generalized, hard gluon coefficient are discussed in 

Sec. III. In particular, its effect on the contribution to 
gT(s, Q2) from up, down, strange, and charm quarks is 
studied. Our results indicate that these corrections are 
sizable and must therefore be taken into account when 
extracting the polarized gluon distribution from the pro- 
ton. We also point out in this section how this anoma- 
lous contribution is affected by finite Q’. In Sec. IV 
we calculate the amount of polarized gluon in the proton 
necessary to explain the available data. We compare our 
1191 0 1996 The American Physical Society 
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result with other estimates made using simply the lim- 
iting cases for the hard gluon coefficients. Section V is 
used to study the region in z where this contribution is 
located. In Sec. VI we summarize the results obtained 
in this article. 

II. THEORETICAL CONSTRUCTION 

The hard gluon cross section is extracted from the full 
photon-gluon fusion cross section g^I”Q and is calculated 
through the box graphs which start at order a,. The 
other contribution from which it must be separated is the 
quark distribution inside the gluon [i’]. Mathematically 
this is expressed as 

o’““(z,Q”) = g;” (~7 Q2/d + AQ~(~,&> (4) 

where A@ is the polarized quark distribution inside a 

gluon and gh 7”g is the hard photon-gluon cross section 
defined, in the IPM, as the contribution coming from 
quarks in the box graph with transverse momenta greater 
than the factorization scale. 

The full photon-gluon cross section has been calculated 
to be [lo, 111 
with P* = -p2 the gluon virtuality, nz4 the quark mass, and W* = Q*(l-~)-Pzr the invariant mass squared of the 
photon-gluon system. For very large momentum transfer, Q2 > mi, Pa, the full cross section reduces to 

It remains to calculate A@. This is given by computing the triangle diagram or, equivalently, the integral over the 
transverse momentum of the square of the norm of the light-cone @ wave function of the gluon [2,7,12]. As Aqg is 
a soft contribution, the integral over the transverse momentum has to have a cutoff: 

Aqg(zc,$) = zNf J 
8‘2 m; + (22 - l)kl 

dk’ [m; + P%(l - zz) + kl]” 

=$Nf;12 -1)l ( z II 
@2 + P%(l - z) + m; 

m; + P%(l - z) 
1 

+ (1 -z) 
2m; + P%(l - 2z) 2 
m; + P%(l - z) $ + P%(l - z) + m; 

1 

(7) 

Equation (7) is a generalization of previous results [2,7] including the dependence on the factorization scale for any 
values of the quark masses and gluon virtuality. Its first moment is zero for $ < mi, P2. If pL2 >> m$ P2 the first 
moment of Aqg(z, fi2) is 0 for Pz > mi, while it is ZNf for rni > P’. Using Eqs. (4), (6), and (7) we can calculate 
the hard gluon coefficient: 

+(1 -z) 
2m; + P%(l - 25) 

1 
!J2+m;+P%(l-z) (8) 
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Notice that the first moment of Eq. (8) does not depend 
on the ratio rni/P’ in the region p2 >> m$p2-it is 
a legitimate hard contribution. Equation (8) is also a 
generalization of previous results and from its limit, $ > 
mi, P’, it may be argued [l] that the gluons contribute to 

the first moment of gl(z, Q2) because J,’ r,;‘“(z, Q2)da: = 
-ZNf. 

On the other hand, if one calculates the quark distribu- 
tion inside a gluon through the triangle graph, which we 
call Aq&, using a regularization scheme that respects 
the axial anomaly, it is found that’ 

2$(1 -z) 

+~w%(l~-z)+m2 ’ * 1 
where the renormalization scale in the regulaization of 
AqsPE [using the modified minimal subtraction scheme 

(m)] has been taken to coincide with the factorization 
scale in the IPM. 

Equipped with Eq. (9) we can understand exactly why 
the hard gluon coefficient in the IPM has a first moment 
different from zero. The reason is that in the process 
of factorization the axial anomaly was shifted from the 
quark distribution inside the gluon to the hard coeffi- 
cient. Equation (9) reflects the fact that the regulariza- 
tion of Aq& respects the axial anomaly while the reg- 
ularization of Aqg does not. We also see that in the limit 
rni > $ the discrepancy between the two calculations 
disappears (at least for the first moment, the z depen- 
dence depends on the regularization method). A similar 
phenomenon is found in unpolarized deep inelastic scat- 
tering where an analysis by Bass [13] has shown that the 
trace anomaly induces the same sort of shift when a cut- 
off over the transverse squared momenta of the quarks is 
used to separate the soft and hard regions. 

As a consistency check of our equations, we calculate 
the OPE hard coefficient 0. It is defined in the same 
way as rTh ‘“’ in Eq. (4) and calculated with the help of 
expressions (6) and (9): 

Cg(r,Q2/p2) = zNf In $ 

.h(+y -I] +2(1-z)}. (10) 

This result is independent of mass and its first moment 
is always zero, in accordance with the results of Kodaira 
[14] and Bodwin and Qiu [S]. 

‘The triangle graph regularized with a cutoff on the trans- 
verse momentum results in Eq. (7). 
III. CONSEQUENCES FOR THE FIRST 
MOMENT OF THE HARD GLUON 

COEFFICIENT 

It is interesting to study the dependence on $ of the 

first moment of ok”‘. In an early study on this subject,2 
Mankiewicz and Sch&fer 19) determined the first moment 
of the box graph as a function of the minimum transverse 
momentum car&d by the quarks. Their results for Q2 + 
co agree qualitatively with ours, as will soon be seen. But 
it was also found in Ref. [9] that for momentum transfers 
of the order of 10 to 100 GeV’, the contribution from 
light quarks3 (m4 = 10 MeJ’) is deeply affected by the 
choice of the minimum value for the transverse quark 
momentum. In the method used here, such an ambiguity 
does not exist for the light quarks and its anomalous 
contribution for Q2 = 10 or 100 GeV’ is well defined 
and independent of kl. We use this result to argue that 
the hard gluon coefficient calculated here is more stable 
from the point of view of infrared singularities. 

Even with the known variations of the anomalous con- 
tribution with the factorization scale, it has been widely 
assumed in the literature [S] that for light quarks (u, 

d, and s) the first moment of crly9 is -cu,/27r and 
for heavy quarks (like c or b) it is zero (because, for 

m; > p2, ulus reduces to 0). But it also hap- 

pens tha;t the gluonic contribution to sl(z, Q2) is of the 

form 0; “(z, Q’/$) @ Ag(z,$). This means that the 
scale @ at which the gluon distribution is calculated (or 
parametrized) is the same scale $ that has to be used in 
the calculation of the hard gluon coefficient, and that it 
does not make sense to talk about the magnitude of the 
hard gluon coefficient without specifying the factoriza- 
tion scale. Thus the heavy quark contribution is negligi- 
ble only when the polarized gluon contribution is calcu- 
lated at a very low scale compared with the quark mass. 

In Fig. 1 we show the first moment of 0;“” as a func- 
tion of the factorization scale for the u and d quarks 

Cm: - 25 x IO-’ GeV2), for the s quark (m; - 0.04 

GeV’), and for the c quark (m’ N 9/4 GeV’). We 
see that, as is well known [2,6-S!, the c quark does not 
contribute when rn: > p2? as one can also verify di- 
rectly from Eq. (8). However, for reasonable values of 
pa there is a contribution large enough to be taken into 
account. Thus the significance of the charm contribution 
to g1(z,Q2) depends on where the polarized gluon dis- 
tribution is calculated. For instance, calculations have 
been made in the literature using input polarized gluon 
distributions at a scale of typically 4 GeV’. The au- 
thors of these calculations usually disregard the charm 
contribution. We note in passing that in the region of fix 
where polarized charm can be disregarded the polarized 
strange quarks yield only half of the contribution given 
by u and d quarks. As we see from Fig. 1, the c quark 

‘We thank S. Bass for pointing out to us this work. 
3We assume for the quark Massey their current values. We 

do not take into account variation of the masses with the 
factorization scale but note that our conclusions are not sig- 
nificantly altered by small changes in the quark mass. 
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FIG. 1. Hard &on coefficient as given by Eq. (S), calcu- 
lated with the assumption of infinite momentum transfer as a 
function of the factorization scale. For realistic scales (IL’ > 1 
GeV’), the charm contribution is seen to be important. 

gives around 64% of the contribution of the light quarks 
for p2 - 4 GeV’ and so it should not be disregarded if 

the gluon distribution is calculated at this scale. We also 
see from Fig. 1 that the u and d quarks give the same 
contribution, independent of the factorization scale. We 
further notice that, for practical purposes, the hard gluon 
coefficient is independent of the exact value of the gluon 
virtuality P’. 

The discussion of the preceding paragraph was based 
on the not so realistic assumption that the momentum 
transfer Q2 is infinitely bigger than any other scales in 
the theory. It implies, for instance, that when integrating 
the hard cross section we allow 3: to go from zero to 1. 
But from simple kinematic arguments we know that z has 
a maximum value of z,,, = Q”/(Q’ + P2 + 4773:) and so 

Gnax + 1 only when Q2 >> m$ P*. For the finite Q2 of 

the current experiments, z,,, never reaches 1 and so the 
integral in + has a cutoff. For instance, if one calculates 

the first moment of g;“” for the c quark (m; = 9/4 

GeV’) at j? = Q2 = 4 GeV’, using Eq. (S), one finds 
that its value changes from -0.64, when z is artificially 
allowed to reach 1, to - 0.015 when the physical cutoff in 
z is applied. What happens is that expression (8) itself 
was obtained under the assumption of an infinitely large 
Q2. To be more consistent when dealing with finite Q’, 
one should derive the hard cross section from the full 
cross section without any approximation. 

In the general case we then write 

cg = cTY”Q - Aq&, (11) 
02”” = ~-I”0 - A*9 (14 

with ~7-9 given by Eq. (5) and Aqg and A&& given by 
Eqs. (7) and (9). We stress that these equations are the 
complete result at order a,. In Figs. 2 and 3 we show the 

first moment of rd”, defined in Eq. (12), as a function of 
the factorization scale $ for Q2 = 10 GeV’ and Q2 = 3 

GeV’, respectively. These values were chosen because 

they are the average Q2 of the European Muon Collabo- 

ration (EMC) [15,16] and SLAC [17] experiments. The 
resulting dependence is very interesting. It shows that in 
3 
-“: 

- m*,=o WY, P’= any value 

E -1.5 
m’.=9/4 GeV’, P’= any value 

g 
m’,=0.04 GeV*, P’= 0.1 GeV’ 

_. m’,=0.04 GeV’, P’= 0 GeV’ 
c Q’= 10 GeV’ I 

0.01 0.10 1 .oo 7 0.00 

iL1 
FIG. 2. Hard gluon coefficient as given by Eqs. (5), (7), 

and (12). The momentum transfer is fixed at 10 GeV’. It 
is seen that the strange quark contribution never equals that 
from the up and down quarks and the charm quark contribu- 
tion is sizable for $ > 1 GeV2. 

the region of interest ($ 2 1 GeV’) there is no apprecia- 
ble dependence on the gluon virtuality or on $ (at least 
for Q2 = 10 GeV2) but the mass dependence is strong. 
Remarkably, the contribution from the s quark is never 
the same as the contribution from the u and d quarks, 
contrary to what is usually claimed. The s contribution is 
- 0.9a,(Q2)/2r for the EMC data and - 0.75a,(Q2)/27r 
for the E143.SLAC data. We also find a non-negligible 
contribution coming from the c quarks. For the EMC 
data, the c quark contributes with - O.Za.(Q”)/Zvr and 
for the E143-SLAC data with - 0.1a.(Q2)/2vr. Figure 
2 is unaltered4 if we go from rni = 0 to rni = 1 x 10e4 

GeV2. If we then compare our Fig. 2 with Fig. 2 of Ref. 
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FIG. 3. Hard gluon coefficient as given by Eqs. (5), (7), 
and (12). The momentum transfer is fixed at 3 GeV’. It is 
seen that the strange quark contributes with approximately 
75% of the up and down quarks in the realistic region of $ > 
1 GeV’. In the same region, the charm quark gives a 10% 
contribution. 

41n reality, there is a - 1% correction for $ - 0.01 GeV’. 
This result is in complete accord with the fact that the anoma- 
lous contribution for the u and d quarks goes to zero as fi’ 
goes to zero. 



53 ROLE OF STRANGE AND CHARM QUARKS IN THE NUCLEON.. 1195 
1 10 100 1000 
Q’ 

FIG. 4. Hard gluon coefficient for the charm quark, cal- 
culated with Eqs. (S), (7), and (12). The factoriaation scale 
is fixed at 3 GeV’ and the Qz dependence is studied. 

[9] we see clearly that the present approach does not have 
a convergence problem in Q2 and yelds a perfectly un- 
ambiguous contribution from the light quarks. Finally, 
we show in Fig. 4 the Q2 dependence of the polarized 
charm contribution calculated with $ = 3 GeV’. This 
contribution, obviously, tends to the value calculated in 
Fig. 1 [- -0.57a.(Q2)/2?r]. 

IV. RELEVANCE IN ANALYZING 
THE FRACTION OF NUCLEON SPIN 

CARRIED BY GLUONS 

In terms of the polarized quark and gluon distribu- 
tions, $(I, Q”) for four flavors is written as 

9:hQY = +d~4?) + ~A~~(~,Q~) 

-~AQ~z, ~2) + &A+,Q? 

+&p (G Q2, P’) @ Adz, fi’)> (13) 

where Aq3 = Au - Ad, Aqs = Au + Ad - 2As, Aq15 = 
Au+Ad+As-3Ac, and AE = Au+Ad+As+Ac. For 
three flavors the coefficient of the singlet part changes 
from 5/36 to l/9 and Aqls does not exist. To order 
a.(&‘) 1141, the first moment of (13) is 

r;(Q’) = WQ’) + MQ2) - MQ2) + UQ2) 
5 -- 

( 

,as(Q') + ,1m 
36 2?r 2?r 

+c as(Q2) Ag(Q”). 
I-G- > 

(14) 

The coefficients of a.(&‘) have the following meaning. 
The 2 indicates,~>,at the u and d quarks give the same 

contribution q, as discussed before. The s1 and cl 
factors give the amount of strange and charm quark con- 
tributions, according to Eq. (12) and Figs. 1-3. 

To extract the value of Ag(Q’) we will closely follow 

Refs. [18,19]. For the sake of comparison, we begin 
with only three flavors and with the common assumption 
that the u, d, and s quarks give the same anomalous 
contribution. 

Under the assumption that the polarized sea originates 
exclusively from the anomalous gluon contribution we 
have, for three flavors, the identities 

I*=$,(F+D)(l-3) , 

4+~~=~(3F-D)[(1-~)+4(1-~)], (15) 

where the quark spin fractions were expressed in terms of 
the F and D couplings and corrections from the two-loop 
expansion of the beta function and anomalous dimension 
were incorporated. In nonleading order (NLO), a. is 
given as the solution of the transcendental equation 

with PO = 11 - 2Nf/3 and 0, = 102 - 38Nf/3. We use 
A = A@) = 248 MeV, determined by fixing AC41 = 200 
MeV [ZO]. Using the experimental values of F and D as 
given in [lQ], we determine 13 and 1s + 10 at Q2 = 10 
GeV2 [with a.(&’ = 10 GeV’) N 0.2091: 

1s = 0.0977 f 0.001 , 

I* + IO = 0.0779 * 0.002 (17) 

We now use Eq. (14) to determine Ag(Q’). On the left 
hand side, we use the experimental result 1161 

l?f(Q’ = 10 GeV’) = 0.142 f 0.008 zk 0.011. (18) 

On the right hand side we use the results (17), s1 = 1, 
and cl = 0 and remember that for three flavors the singlet 
coefficient is l/9 and 11s = 0. The result is 

Ag(Q2 = 10 GeVZ) = 3.04 f 1.4. (19) 

For four flavors the analysis is similar. One just has to 
redefine the integral of gy(z, Q2): 

I,=&(FfD)(1-2) , 

Is + IO - IIS = ; (3F - D) (1 - 3) P-9 

We then proceed as before and calculate Ag using the 
result for the gluon coefficient as displayed in Fig. 2. We 
see that for $ = Q2 = 10 GeV2, s1 - 0.9, cl N 0.21, 
and a.(Q2 = 10 GeV*) = 0.2142, resulting in 

Is = 0.0976 f 0.001 , 

Is + I,, - 115 = 0.0786 f 0.002 , 

Ag(Q’ = 10 GeV2) = 2.32 + 1.06 (21) 

In passing we notice that if the usual assumption of infi- 
nite momentum transfer were used then according to the 
results of Fig. 1, at 10 GeV’ s1 = 1, c1 N 0.81, and 
hence Ag N 1.89. 
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V. THE z DEPENDENCE 

The exact z depend&x of the anomalous contribution 
is a matter of convention because the freedom in the fac- 
torization scheme while calculating 02”. Other choices 
of regularization would result in different functions of 2. 
But, as shown by Gliick et al. [Zl], the exact form of the 
z dependence seems not to be very important. Once we 
do not know the form of the polarized gluon distribution, 
the best we can do is constrain it by some general consid- 

erations. For instance, there is the positivity condition 

lAd=,Q2)l 5 &>Q2L (74 

where g(z, Q’) is the unpolarized gluon distribution. A 
very simple form that satisfies the above condition is 

A&) = +ds), (23) 

where a is determined through the normalization of Ag. 

For Ag of Eq. (21), a = 0.49. The advantage of using 
this form to study the z dependence is its simplicity. The 
problem with Eq. (23) is that it does not have the correct 
behavior as I + 0. As proposed by Brodsky et al. [22], 

Adz) ) 2 
9(z) ’ 

as I --t 0. From the many ways to satisfy both conditions 
(22) and (24), we choose 

Ag(z,$ = 9 GeV’) = azg(z,/? = 9 GeV’)(l - @, 

(25) 

where a = 6.92 for Ag = 2.32. We made this choice 
guided only by the desire of simplicity and to produce 
a polarized gluon distribution that resembles an already 
existing one [18]. For the unpolarized gluon distribution, 
we use the one given by the New Muon Collaboration 
(NMC) [23], determined from inelastic J/$ production: 

zg(r) = $7 + l)(l -x)“. (26) 

,This parametrization is valid for $ = 9 GeV’ and 
should not be trusted for z 5 0.01. Again, this 

choice is based on simplicity and we note that a further 
parametrization by the NMC [24] group agrees with Eq. 
(26) for z > 0.01. The parameter 17 is 0 = 5.1 + 0.9. 
Given these choices, we show in Fig. 5 the forms (23) 
and (25) for the polarized gluon distributions plus the 
forms of Brodsky et al. 1221 and Gehrmann and Stirling 
(GS) [18], c&&ted at 4 GeV’. Our parametrization 
(25) is slightly higher than that of GS because of the 
normalization factor. If we use the same normalization 
as theirs,5 both curves would be essentially the same. 

‘We note that in.[lS] the coupling constant is calculated 
in leading order rather than in NLO. This would lead to an 
increase of the total polarization carried by the gluons. 
FIG. 5. Comparison of various polarized glum distribu- 
tions considered in the text. 

Evolution Gem 4 to 9 GeV’ for the GS distribution also 
has small effects. The parametrization of Brodsky et al. 
[22] is much smaller than the others because in their ap- 
proach the polarized gluons are not responsible for the 
small experimental value of Eq. (18). 

Using the constructed glum distributions, we can es- 
timate where in z the anomalous contribution is lo- 
cated. In Fig. 6 we show the anomalous contribution, 

&u;““(z,Q”+“) @ Ag(z,p’), for A&) = w&)(1 - 
z)~. We see that its contribution inside the experimental 
region is important. To better evaluate its importance, 
we calculated the amount of the total gluon that lies in- 
side the region 0.01 5 z 5 1. For four flavors, the con- 
tribution from z 2 0.01 corresponds to about 66% of the 
total anomalous contribution. In the case of three fla- 
vors, this percentage is - 69%. For Ag(z) = zag(z) this 
conclusion is not dramatically altered. 

It is also interesting to compare the anomalous gluon 
contribution directly with the experimental data. To this 

0,000 ,,._..._.: ._... j.-...L..I-...I-../-. 
7 “‘I 

FIG. 6. Comparison of the I dependence of the non- 
strange, strange, and charm quark distributions to gl(x). 
The anomalous contribution is given by $~~““(z, Q2,pL2) @ 
Ag(z, pa) and it is used in the form Ag(s, $ = 9 GeV2) = 
axg(z)(l - z)” for the polarized glum. 
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FIG. 7. EMC [15] and Spin Muon Collaboration (SMC) 

[16] data for glp(z) at 10 GeV’. The theoretical curve for 
the polarized valence distribution is calculated in NLO and 
taken from Ref. [ZS]. The anomalous contribution should be 
subtracted from the theoretical cuwe. 

end, we plot in Fig. ‘7 the experimental data [15,16] for 
g:(z) together with an early next-to-leading order es- 
timate [25] for the valence quark distribution and the 
anomalous gluon contribution for the case of three and 
four flavors. A remark is necessary here. The calcula- 
tion of the hard gluon coefficient was performed through 
a cutoff on the transverse momenta of the partons in 
order to regularize the integrals. This procedure is the 
definition of the parton model. On the other hand, we 
calculated the strong coupling constant, and also the evo- 
lution of gy in Ref. 1251, using the MS scheme. In prin- 
ciple, showing the x dependence of two quantities in dif- 
ferent schemes is not a consistent procedure. However, 
the problem is not as bad as it looks. First, if we change 
schemes we can mantain a. unaltered by a simple redef- 
inition of the parameter A in expression (16). Second, 
the theoretical curve for gf(z, Q’) is to be interpreted as 
a guide of what a parametrization for the valence part of 
the polarized structure function would give, the regions 
in which it differs from the data and where it should 
be corrected. A proper procedure would be to calcu- 
late the quark distribution, the anomalous dimensions 
and the Wilson coefficients in the same scheme. That 
said we proceed noticing that the integral over 2 of the 
valence contribution calculated in [25] (- 0.169) is in 
complete agreement with the estimates calculated previ- 
ously in Sec. IV. The two curves below the origin are 
the anomalous contributions that should be added to the 
solid curve for Nf = 3 or 4. As we fixed the normaliza- 
tion of the total polarized glue for either three or four 
flavors, there is no noticeable difference between the two 
cases. We see that the anomalous contribution is po- 
tentially important to correct the I dependence of the 
polarized valence distribution inside the proton. 

VI. DISCUSSION 

In sutimary, there is a gluonic contribution to the pro- 
ton spin when the IPM hard gluon coefficient is defined 
through Eq. (12) with Aqg defined as the quark distri- 
bution inside the gluon with transverse squared momen- 
tum less than the factorization scale. As a consequence, 
this anomalous gluonic contribution in the IPM is free of 
infrared ambiguities. We showed that if we accept the 
commonly used assumption of an infinitely big momen- 
tum transfer there is a c quark contribution to the spin 
in addition to the u, d, and s quark contributions. The 
contribution from the massive quarks is dependent on the 
factorization scale at which the polarized gluon distribu- 
tion is calculated. The c quark contribution is small only 
in the region p2 < 1 GeV’, in which case the s quark 
contribution is also strongly affected. 

We also calculated what would be the possible anoma- 
lous corrections when the momentum transfer is in the 
region of the present experiments. To perform such a cal- 
culation we have to keep all terms in mi/Q’ and P2/Q2 
in the full photon-gluon cross section when calculating 
the hard gluon coefficient. This means that we are in- 
cluding higher twist effects and, although we use the com- 
plete result at order e.(Q’), possible corrections coming 
from higher order terms in a,(&‘) could be important 
and so our calculation is incomplete. Even so, we think 
that our results are more consistent than simply using 
the approximate expression (8) for the hard gluon coef- 
ficient in the case of massive quarks and relatively low 
Q2, The corrections due to finite Q2 are not small and 
we think they should be taken into account when cal- 
culating the amount of spin carried by gluons. When 
studying the + dependence of the anomalous contribu- 
tion, we conclude that both three and four flavors give 
approximately the same contribution inside the experi- 
mental region. But the amount of polarized glue needed 
to fit the data is much smaller when charm is included. 
Moreover, we showed that from the conceptual point of 
view, it would be wrong not to include a fourth flavor. 
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