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Quark fragmentation into ‘PJ quarkonium 
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We calculate the functions of parton fragmentation into ‘PJ quarkonium at order a:, where 
the parton can be a heavy or light quark. The obtained functions explicitly satisfy the Altarelli- 
Parisi equation and they are divergent, behaving as z-’ near z = 0. However, if one chooses the 
renormalization scale as twice the heavy quark mass, the fragmentation functions are regular over 
the whole range of z. ,‘> 

PACS number(s): 13.20.Gd 
I. INTRODUCTION 

Fragmentation functions are in general nonperturba- 
tive objects in the context of the factorization theorem 
in QCD [I]. This makes it hard to study them by starting 
directly from &CD. However, if partons, i.e., quarks and 
glouns, undergo fragmentation into a quarkonium, frag- 
mat&ion functions can be factorized-they are sums 
of products of constants and coefficient functions. The 
constants represent the nonperturbative effects and may 
be defined as matrix elements in nonrelativistic QCD 
(NRQCD) or are related to a wave function, while the 
coefficients functions can be calculated with perturbative 
theory. With this factorization, fragmentation functions 
for various quarkonia were studied in 12-91. 

A quarkonium contains a heavy quark Q and its an- 
tiquark 0, which move with a small velocity v in the 
quarkonium rest frame. Because of the small velocity, 
the bound-state &ect, i.e., the nonpertusbative effect 
in the quarkonium, can be well described by employ- 
ing NRQCD. Recently, such an approach has been es- 
tablished [lo]. The approach is basically distinct from 
earlier treatments within the color-singlet model (for a 
nice review see 1111). In the color-singlet model one treats 
a quarkonium system simply as a bound state of Q and 
8, where the Q& pair is in a color-singlet state, and the 
nonperturbative effect is contained in the wave function 
of the bound state. Then an expansion in the small pa- 
rameter 21 is made and to leading order only the wave 
function at the origin or its derivative at the origin is in- 
valved. This model has serious problems. First, it does 
not tell us how to handle the Coulomb singularities. Since 
an expansion in 21 is made, this type of singularity must 
appear because of massless photons and massless gluons. 
The effect related to the Coulomb singularities is nonper- 
turbative. In the color-singlet model these singularities 
were absorbed into the wave function without solid rea- 
sons from theories. Second, infrared (IR) singularities 
appear when a P-wave quarkonium is involved and ap- 
pear even at the leading order of a,. In the model the IR 
singularities were regularized as divergences in the limit 
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of the zero binding energy. Such IR singularities clearly 
indicate that the wave function of a P-wave quarkonium 
can not contain all the nonperturbative effects. In the 
approach of [lo], quarkonium systems are analyzed in 
the framework of &CD. A systematic expansion in ZI can 
be made and the nonperturbative effect is represented by 
matrix elements in NRQCD. With these matrix elements 
one can show that Coulomb singularities are factorized 
into these matrix elements. From the point of view of 
a relativistic quantum theory a quarkonium system con- 
sists not only of a Q& color singlet but also many other 
components such as IQQG), etc. In the approach of [IO] 
the effect of these other components is also included in 
the systematic expansion in 21. It should be emphasized 
[l$lZ] that a QQ color-octet state is as important as a 
QQ color-singlet state for a P-wave quarkonium. There- 
fore one should take both states into account. It was 
already shown that results at the one-loop level for &on 
fragmentation into 3P~ quarkonium [9] are free from IR 
singularities and from Coloumb singularities. 

In this paper we will study the quark fragmentation 
into a 3P~ QQ quark&nn at leading order 01~. We 
will show that because of the contribution of the color- 
octet Q& pair, a light quark p can also fragment into the 
quarkonium at the same order of a, as a heavy quark 
Q. The heavy quark fragmentation into P-wave quarko- 
nium was originally studied in [S]. As pi&ted out in [9] 
the results for charmonium cannot be correct, because 
the fragmentation functions obtained there do not sat- 
isfy the Altarelli-Parisi equation. 

The paper is organized as follows. In Sec. II we intro- 
duce the definitidn [13] of renormalized quark fragmenta- 
tion functions and the factorization [lo] forms for quark 
fragmentation into 3P~ quarkonium. Further details may 
be found in [10,13]. In Sec. III we start from the definition 
to calculate the heavy quark f?agmentation functions. In 
Sec. IV we calculate the light quark fragmentation func- 
tion. Finally we discuss and summarize the results of our 
work in Sec. V. Throughout this paper we always assume 
that the polarization of the quarkonium is not observed. 
We will use dimensional regularization and work at lead- 
ing order in the expansion of u. 
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II. DEFINITION OF THE QUARK 
FRAGMENTATION FUNCTION 

AND THE FACTORIZATION FORM 
FOR =PJ QUARKONIUM 

As we will use dimensional regularization we give the 
definition of the quark fragmentation function in d di- 
mensions. To give the definitions for a fragmentation 
function it is convenient to work in the light-cone co- 
ordinate system. In this coordinate system a d xc- 
tor p is expressed as p’L = (p+,p-,p~), with p+ = 
(PO +pdml)/fi,p- = (p” -pd-l) J&. Introducing a vec- 
tor n with np = (0, l,O, ,0) = (0, 1, OT), the fragmen- 
tation function for a spinless hadron H or for a hadron 
without observing its polarization is defined as [13] 
cd 
&P+,OT)~&P+,OT) 

where GP(+) = G;(z)T”, G;(z) is the gluon field and 2’” (a = 1,. ,8) are the SU(3)-color matrices. The subscript 

T denotes the transpose. a&(P) is the creation operator for the hadron H. For hadrons with nonzero spin the 
summation over the spin is understood. The definition is a unrenormalized version. Ultraviolet divergences will 

appear in @j,(z) and call f or renormalization. Following [13] th e renormalized quark fragmentation function can be 

defined as 

Here the summation over all possible partons is understood. The function L,(z) is chosen so as to cancel the UV 
divergences. In the minimal subtraction (MS) scheme L,(z) takes the form 

(2.3) 

where e = 4 - d. From Eq. (2.2) one can derive the Altarelli-Parisi-type evolution equation for the fragmentation 
function. We will use the modified MS scheme, where L,(z) is chosen to cancel the terms with N, = f - y + ln(4?r). 
The function DHlq(,z) is interpreted as the probability of a quark 4 with momentum k to decay into the hadron H 
with momentum component P + = zk+; it is gauge invariant by definition. Further, it is also invariant under a Lorentz 
boost along the moving direction of the hadron and under a rotation with the direction as the rotate axis. 

If the hadron is a 3P~ quarkonium, a factoriwd form for the fragmentation function can be taken. We will use the 
notation xJ for the 3PJ quwkonium. At the leading order of u, DH,~(z) can be written according to [lo] as 

D,J/&) = (2.4) 

where &(t, J) and &(t) are dimensionless and a,(z) is same for all J. The operators OTJ(3P~) and 0,XJ(3Pl) are 
given by 

O,H(“&) = X+~iT.7j)(a~aH)~+~~iTQX, 

(2.5) 
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where D is the space part of the covariant derivative D’ 
and ui (i = 1,2,3) is the Pauli matrix. The notation 
{ij} means only the symmetric and traceless part of a 
tensor is taken. In Eq. (2.5), + and xt are fields with 
two components for the heavy quark Q and its antiquark 
& in NRQCD. M is the mass of the heavy quark. a& 
is the creation operator for the hadron in its rest f&me. 
The matrix elements on Eq. (2.4) are defined in NRQCD. 

In Eq. (2.4) the part with 58 is the contribution from a 
cplor-octet Q& pair in a 3S1 state and the part with 
D1(z, J) is the contribution from a color-singlet Q& pair 
in a 3P~ state. We will call them the color-octet and 
color-singlet components, respectively. The mat+ ele- 
ments represent the nonperturbative effect, while D1 and 
Ds can be calculated pertwbatively and they should be 
free from IR singularities. 

A good method to calculate fil and & is to use wave 
functions to project out different states from a general 
QQ pair. At the leading order of 2) the projection can 
easily be worked out; details can be found in [14]. We 
will use a radial wave function RI(r) to project the 3P~ 
color-singlet QQ state and an octet radial wave function 

@‘l(7) to project the ‘S1 color-octet QQ state. Calculat- 
ing with these wave functions the left-hand side (LHS)~of 
Eq. (2.4) and the matrix elements on the RHS of Eq. (2.4) 
we can extract the functions &(z,J) and &(z). The 

results for &(z, J) and &(t) are independent of these 
wave functions. At the order of a. we consider, only the 
tree-level results for the matrix elements are needed; they 
are 

(olo:‘(3PJ)lo) = g(2;z l) IR:(0)12, 

(‘J.6) 

(olo,x’(3&)lo) = $ c IRP(0)12, 
c 

where R:(O) is the first~derivative of RI(V) at the origin. 
FIG, 1. The Feynman diagrams for the color-singlet com- 
ponent of the heavy quark fragmentation. The line is for the 
heavy quark, and the wavy line is for gluons. The double line 
represents the line operator in Eq. (2.1). 

III. HEAVY QUARK FRAGMENTATION 
FUNCTION 

From the definition in Eq. (2.1) we can always decom- 
pose the fragmentation function by sandwiching the op- 

erator xx 1X)(X/ between at, and ax as 

(3.1) 

where TH may be called the fragmentation amplitude for 
Q + H + X. Here we have the conservation of total 
momentum only in the + direction. 

A. Color-singlet component 

The color-singlet component receives nonzero contri- 
butions at order ai. The Feynman diagrams for 2’~ are 
given in Fig. 1. Because the Q& pair is in a color-singlet 
state, there are two gluon lines attached to the quark line. 
Here, there are no divergences, and so renormalization is 
not required. The calculation is complicated. Because of 
the summation over intermediate states, we encountered 
integrals of the type 
Here q~ is the transversal momentum of the quark as the intermediate state in Fig. 1. The integrals are finite and 
after performing the integrations we can extract 

(192 + 384~ + 52%~’ - 1376~~ + 1060~~ - 3’76~~ + 59ts), 

&(z,J = 1) = ~a~(p)~;-$ (96 - 2882 f 4962’ - 408~~ + 202~~ - 54z5 + 7z6), 

Dl(Z,J = 2) = “(‘2’$ (48 - 1922 + 4802’ - 668~~ + 541~~ - 184~~ + 23~~). 

(3.3) 
These results agree with those in [s]. It is interesting to 
note that there is a common factor ~(1 - z)“(2 -z)-” for 
all J, whereas there is a common factor z(~-z)~(~-z)-~ 
for heavy quark fragmentation into S-wave quarkonium 
161. Note that the same diagrams in Fig. 1 contribute 
to heavy quark fragmentation into S-wave quarkonium. 
The difference between these two factors is because for 
P-wave quarkonium the derivative of the fragmentation 
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FIG. 2. The Feynman diagrams for the color-octet compe 
nent of the heavy and light quark fragmentation. 

amplitude with the relative momentum between Q and 
fZj is involved whereas for S-wave quarkonium only the 
amplitude itself is involved. The appearance of these 
common factors can be roughly understood by counting 
the denominators due to the quark and gluon propaga- 
tors in the amplitudes and factors from phase space. A 
successful model for heavy quark fragmentation was ob- 
tained in this way [15]. However, we will see in the next 
subsection that such a counting rule will be violated due 
to renormalization. 

B. Color-octet component 

For the color-octet component, not only the diagrams 
in Fig. 1, but also the diagrams in Fig. 2 will contribute. 
The two diagrams in Fig. 2 were missing in [s] and they 
lead to divergences. Instead of integrals in Eq. (3.2), we 
have 

/($$“(&+(2-y-” forn=1,2,3,4. 

(3.4) 

The integral with n = 1 is ultraviolet divergent, requiring 
renormalization. For the renormalization we note that 
the function of glum fragmentation into XJ quarkonium 
is nonzero at order a. [9,6,7]: 
(3.5) 

Substituting this into Eq. (2.2) for H = XJ we can easily choose the function &(y) to cancel the divergence. Finally, 

we obtain the renormalized function &(t): 

&(z)= +(iL)(;[l+(l-z)*] [In(&) -2ln(l- ;)I --t 

+,$I;\ (192 - 11843 + 20162’ - 1360,~~ + 352~~ - 14z5 - 5z6)}. (3.6) 

Here there is no common factor like ~(1 - z)“(l - z)-‘. In Eq. (3.6) the results in the second line are not only from 
the contribution of Fig. 1 for the fragmentation amplitude, but also from the contribution of Fig. 2. With the results 
in Eqs. (3.6) and (3.3) we complete the heavy quark fragmentation function at order a:. This function should in 
general satisfy its evolution equation 

The splitting functions PQ+~(Y, p) and Pq+c(y, P) are in the one-loop approximation, the same as those for parton 
distributions. Using this fact and the result in Eq. (3.5) we obtain the evolution equation for the quark fragmentation 
at order of a:: 
Substituting our results into the LHS in Eq. (3.8) one 
can check that our results are in agreement with this 
equation. From our result the fragmentation function is 
divergent as z-l when E + 0. However, this singularity 
disappears if we choose the renormalizati& scale p as 
twice the mars M. The same was also found in the gluon 
fragmentation in [9]. This property is important for pos- 
sible applications of our result. In practical applications 
one solves the evolution equation at p numerically, where 
one needs the moments of our result for the fragmenta- 
tion function at some initial scale ~0 as the boundary 
condition. To ensure that the perturbative result is a 
good approximation, one should choose ~0 - M to avoid 
large logarithm terms at higher order. Our result tells us 
that one should choose p. = 2M to avoid these terms at 
higher order and also to safely calculate the moments. 

IV. LIGHT QUARK FRAGMENTATION 
FUNCTION 

Since a color-octet Q& pair will lead to a contribution 
to P-wave quarkonium production at the leading order of 
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2), a light quark Q can und!rgo fragmentation into XJ by 
generating a color octet QQ through emission of a virtual 
gluon. Such a process happens at the same order of a, as 
the heavy quark fragmentation. The Feynman diagrams 
for TH are those in Fig. 2, where the quark line attached 
by the double line is for the light quark 4. At the leading 
order of ag and u the light quark fragmentation function 
D,,lp(z) ian be written 
DXJ,&) = ~(O,O,XJ(“S,),O). (4.1) 

The color-singlet component only becomes nonzero at 
higher order than 0,“. The calculation is similar to the 
previous section. We introduce the notation Y = m,fM, 

where mp is the mass of 4. The result for &X,&Z) is 
a%?(4 = $CiL)( ;r1+ (I- 47 [In (&) -In ((I- 2) + ;Y222)] - = - 2(I - a2 +Yz)4(I _ z;+YPZa]. 

(4.2) 

Again the light quark fragmentation function must satisfy its evolution equation. At order a: this equation is the 
same in Eq. (3.8). It is easy to check that the function in Eqs. (4.1) ‘and (4.2) satisfies the evolution equation. The 
light quark fragmentation function has the same property near z = 0 as the heavy one; i.e., it is divergent as t-l at 
any renormalization scale /I except when p = 2M. The light quark ma&m, can be safely neglected. With m4 = 0 
the function in (4.2) becomes 

(4.3) 
For the convenience of later discussion we introduce 
here some relations between the various matrix elements 
in Eq. (2.5). In principle these matrix elements have se- 
ries expansions in 21 and the leading order is u2. Since we 
only work at the leading order, the higher order correc- 
tions can be neglected. In this case, the matrix elements 
in Eq. (2.5) are related to each other with a spin factor 
of xJ. We introduce two parameters HI and HL as in 
[lo], and the relations can be expressed as 

(OlO:‘(“%)lO) = (25 + l)APH1, 

(4.4) 

(O~OgxJ(3S~)~O) = (2J + l)M2H;. 

With these relations the whole set of the quark fragmen- 
tation functions contains only two unknown parameters, 
which can only be computed nonperturbatively or ex- 
tracted from experiments. 

V. DISCUSSION AND SUMMARY 

Some useful quantities of parton fragmentation func- 
tions are their first moments. These moments allow 
one to roughly estimate a single hadron production rate 
through fragmentation, where the rate may be taken as 
product of a parton production rate and the correspond- 
ing first moment, where the summation over different 
partons is understood. We will give results of the first 
moments of our fcagmentation functions. We denote the 
first moment as M(qf --t XJ), where g5 stands for Q or 
4. Taking p = 2M, we obtain 
I 

M(q + XJ) is O.O29(2J + l)a;(2M)$, 

M(Q + x0) z O.O24a;(2M)$$ + O.O35~$(2M)t$ 

(5.1) 

M(Q + 21) c O.O72a:(2M)$ + O.O39a:(2M)$ 

M(Q + ~2) ii: 0.12cx(2M)?$ + O.O15a;(2M)$ 

Here we neglect the mass of the light quark. We take 
the c quark as an example to give some value for the 
moments. For the value of HI and HA we use HI = 15 
MeV [12] and HL N 1.4 MeV 1161. Taking M = m, = 1.5 
GeV and a.(2m,) = 0.26, the value for M(q -i X.J) 
is 1.8 x 10M6(2J + 1) and the value for M(Q + X~J) is 
2.4x10V5, 2.9x10F5, and 1.7xlO-‘forX~o, &I, and xc*, 
respectively. The contribution from the color-octet com- 
ponent is not negligible. For ~~2 the contribution from 
the color-octet component is roughly 70% of the heavy 
quark moment. From these values one can see that the 
moments for the li.ght quark fragmentation are roughly 
one order of magnitude smaller than those for the heavy 
quark. But the contribution from light quarks should not 
be neglected, especially in a h&on reaction, since the 
production rate of light quarks as partons may be larger 
than the production rate of a heavy quark and hence a 
substantial contribution from light quark fragmentation 
to the XJ production is possible. 

With the results here and those in [9,7] the functions 
of all possible parton fragmentation into 3P~ quark&urn 
are calculated at order ai. Only two parameters, which 
represent the nonperturbative effect at the leading order 
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of v, are not known precisely. The functions have the 
general feature that they are divergent as z-l when z + 
0. But at /I = 2M they are regular distributions over the 
whole range of z. The functions also satisfy the Altarelli- 
Parisi equation, as expected. 
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