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We present QCD corrections to the Drell-Yan process in the transversely polarized, longitudinally 
polarized, and unpolarized cases. The analytical results are presented in a form valid for all n- 
dimensional regularization schemes. A universal mass factorization scheme is presented in which the 
results reduce to those of dimensional reduction. The connection between the parton distributions 
and fragmentation functions of dimensional reduction and those of dimensional regularisation is 
elucidated in a simple manner. Numerical results are presented for proton-proton collisions at 
energies relevant to ,the BNL Relativistic Heavy Ion Collider. The perturb&w stability of the 

transverse and longitudinal asymmetries is investigated. 
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I. INTRODUCTION 

The unpolarized Drell-Yan process has been studied 
rather extensively in the literature, including O(cy.) [l, 
21 and O(a;) [3] corrections. As well, the O(a.) car- 
rections to the corresponding longitudinally polarized [4] 
and transversely polarized processes [5,6] have been stud- 
ied. What was still lacking was a unified picture for 
dealing with the polarized processes. The, basic prob- 
lem is the ambiguity associated with defining the ys ma- 
trix, or ~~“~0 tensor, in n dimensions; both of these ob- 
jects arise in polarized processes. For unpolarized QCD 
processes, dimensional regularization (DREG) preserves 
all the necessary invariances and symmetries for doing 
calculations to any order in a.. Hence DREG is the 
most commonly used regularization for &CD. The ambi- 
guity associated with the continuation of the ys matrix 
makes it impossible to uniquely define higher order COT- 
rections (HOC’s) for polarized processes using DREG. 
Various prescriptions are available, but problems with ei- 
ther mathematical or physical consistency generally arise. 
As a result, another n-dimensional scheme, dimensional 
diction (DRED) may be used. This scheme avoids 
the 75 problem, although it requires certain ultraviolet 
(UV) counterterms which are the same in both unpolar- 
ized and polarized processes and may be unambiguously 
determined. 

In this paper, we present analytical results for the 
unpolarized and (both longitudinally and transversely) 
polarized Drell-Yan process in a form valid for all n- 
dimensional schemes. For the polarized case, the am- 
biguity (or scheme dependence) in the DREG results 
is parametrized by the ambiguity in the polarized n- 
dimensional split functions. As well, we present numer- 
ical results for p-p collisions relevant to the BNL Rela- 
tivistic Heavy Ion Collider (RHIC). 

We go further to show that for a wide class of subpro- 
cases, including the one-loop corrections to Drell-Yan 
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and deep-inelastic scattering, DRED is simply equiva- 
lent to a particular mass factorization scheme in DREG. 
We call this scheme the E modified minimal subtrac- 
tion (MS,) [or E minimal subtraction scheme (MS,)] 
since it involves subtracting the E-dimensional part of 
the n-dimensional Altarelli-Parisi split functions, where 
n = 4-2~. As a consequence, the final results in them< 
scheme are regulwization scheme independent within the 
n-dimensional schemes. The final result is equivalent to 
that obtained in DRED and all ambiguities associated 
with the continuation of the y5 matrix are subtracted 
via the n-dimensional split functions. 

We will also~show the connection between the DRED 
parton distributions and fragmentation functions and 
those of DREG in a simple manner. More specifically, 
we show how to convert existing DREG distributions 
into ones suitable for use with cross sections determined 
using DRED. This is important since DRED is equiv- 
alent to four-dimensional helicity amplitude techniques 
which considerably simplify perturbative calculations. 
We may thus calculate new unpolarized cross sections 
using DRED OF helicity amplitudes and then simply con- 
volute them with the DRED distributions obtained from 
well-known unpolarized DREG parton distributions and 
fragmentation functions. 

Similar conclusions (for unpolarized processes) may be 
obtained in the approach of [7], which converts DRED 
cross sections into DREG ones by considering differ- 
ences in the Lagrangians and using fictitious E scalars 
to calculate the differences in the cross sections:Transi- 
tion rules between the two schemes are &so given in IS]. 
Here, we take a simpler and more phenomenological ap- 
preach, investigating how the scheme dependences arise 
in the Feynman graphs. The connection between the two 
schemes is simply the relation between the distributions 
of the respective schemes. This allows for easy interpre- 
tation and extension to a wide class of processes. We also 
explicitly consider polarized observables, unlike [7,8]. 
1142 01996 The American Physical Society 
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Il. n-DIMENSIONAL REGULARIZATION 
SCHEMES 

There are two parts to the dimensional continuation: 
the continuation of the momenta and the continuation of 
all other tensor structures (i.e., y matrices). The contin- 
uation of the momenta is unique, but there are various 
methods for continuing the tensors. The choice of the 
latter defines which dimensional method is being used. 

Continuation of the momenta 

For the continuation of the momenta, all momenta 
and phase spaces are continued to n dimensions (9, lo]. 
The phase space integrals are continued by generalizing 
integer-dimensional integrals to noninteger dimensions. 
Consequently, all loop integrals can be reduced, using 
Feynman parameters, to the fundamental integral 

J 
d”q (8)’ = i(-lYrn C’-“+n,* 
(2~)” (q2 -C)” (4")"&'(n/2) 

xB(r+n/2,m-r-n/2) (1) 

(see, for example, [ll]), with m > 0, T 1 0, and B the 
Euler beta function. As well, defining n = 4 - 2~ (T? = 
4 - 2~‘) with E < 0 (E’ > !I), we see that &’ is required for 
UV-divergent integrals and e for infrared- (IR-) divergent 
ones, initially. Then we must continue to 

E’ = E (2) 

since we can only work in one dimension at any time. 
From (1) it follows that massless self-energy insertions 
on massless external lines vanish. This means that on- 
shell wave function renormalization is trivial when all 
particles are massless. Hence, in the absence of coupling 
renormalization (i.e., gluon self-energies), effectively no 
UV renormalization is required. 

Continuation of the tensors (DREG) 

In DREG, one continues the metric tensor and the 
gamma matrices to n dimensions. Letting gt” denote 
the n-dimensional metric tensor, we have the relations 

9, S,” 
!J”* =* 

I y’y” + y”y@ = 2g’“. n (3) 

As well, the usual convention is to take 2 - 2~ = 7~ - 2 
helicity states when averaging over initial gluons or pho- 
tons. This is related to the continuation of the helicity 
sum rule 

F A’(P, NA*Y(~, 4 --t -dt”. (4) 

Here, Ao(p, X) is the gluon or photon polarization vector 
for gluon or photon momentum p and helicity X. Different 
conventions simply amount to finite renormalizations of 
the parton distributions (which, we will see, arise from 
differences in the n-dimensional split functions). 

There exist two popular methods for continuing 
the 7s matrix (@‘yx”) tensor to n dimensions: the 
anticommuting-7:, scheme [12] (see also [13] concerning 
YxP) and the ‘t Hooft-V&man-Breitenlohner-Maison 
(HVBM) scheme [9,14]. 
In the anticommuting-7s scheme, we use the relations 

757P = -7w75, 7,” = -1. (5) 

If traces with only one 7E occur though, there are known 
mathematical inconsistencies [14]. 

In the HVBM scheme, we formally take 7~ > 4 (with 
regards to the tensor algebra) and keep the 7s and EP”~@ 
in four dimensions so that 

{75,7d = 0: ti 54, [75>7Ail = 0: P > 4, 

which follow from the definition 

(6) 

(7) 

~(Lwzw‘+ - - 0, @i > 4; (8) 

otherwise, it is the usual Levi-Civita tensor. 
This scheme is mathematically consist&t, but cum- 

bersome. Physically, it has the problem that the nonan- 
ticommuting 7S leads to nonconservation of helicity of 
massless fermions in a minimal subtraction scheme such 
as m [15]. 

Dimensional reduction 

Dimensional reduction [16] is perhaps the simplest of 
all the dimensional methods. It was originally introduced 
because DREG violates supersymmetry. As will become 
obvious, it is also manifestly mathematically consistent. 
The idea is simple; all 7 matrices and tensors are taken 
to be four-dimensional, and formally n < 4. This implies 
that the components of all momenta between n and 4 
must vanish. We have the contraction identities 

9’“Srr” = 4, grg;* = g”“g,“, = 73 

and the usual four-dimensional relations such as 

(9) 

y’yY+yY^I’= 2g’Y. 

It is~ also useful to define 

(10) 

7," q 7&�� -s,��). (11) 

This method is particularly simple for the calculation 
of tree graphs (i.e., graphs not involving loops) since 
the traces are equal to their four-dimensional counter- 
parts, implying gauge invariance. One may thus use four- 
dimensional helicity amplitude methods, for instance. 
Then the phase space integrals are carried out in n di- 
mensions, providing an IR regulator. As well, the anti- 
commuting 75 implies h&city conservation of massless 
fermions. 

The only subtlety comes from the fact that the virtual 
momentum integrations generate the tensor g:“, which 
is generally contracted with four-dimensional 7 matrices. 
This can lead to a term - 7: which gives the incorrect 
Lorentz structure and must be removed by a counter- 
term. In [17] the counterterm for the quark-y(Z) vertex 
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was presented. It is (working in the Feynman gauge) 

with C, = 4/3 (i.e., the Feynman rule for the counter- 
term is obtained by making the above substitution in the 
usual rule). For the lepton-y(Z) vertex, we use (12) with 

cpg2 + 2. (13) 

Throughout, we consider (12) to be a Feynman rule for 
DRED. For the type of processes considered here, (12) is 
the only counterterm required to make DRED physically 
consistent. 

III. ANALYTICAL RESULTS 
FOR THE DRELL-YAN PROCESS 

We will first consider the unpolarized and longitu- 
dinally polarized cases, then the transversely polarized 
case. We have the general process 

A(hLt) + B(Pz,b) --t I-(PS) + l+h) +X, (14) 

where Xa, XB denote the helicities of hadrons A, B. The 
unpolarized and longitudinally polarized cross sections 
are defined, respectively, by 

cl= ;[v(+,+)++-)], Au = ;[v(+,+)-r(+,-)] 
in the notation u(Xa, X,). 
The general 2 + 2 [2 + 31 subprocess contributing to 

(14) has the form 

4~1, M + b(m b) 

--t 7*(q) + k(k)] + l-(Ps) + 1+(P4) + [c(k)1 (16) 

for general partons a, b, c. 
First, we define the process-level invariants 

s = (PI + P$, MZ = (~3 + pd)‘, 7 = Ma/S. 

(17) 

In the parton model, we have 

PI = GA, PZ = +&. (18) 

Hence, we may define the subprocess invariants 

s = (PI + P8 = X&bS, 
M2 M= 7 

w=s=S2a26=-. 
%a 

(19) 
The unpolarized (polarized] momentum distributions are 
given by 

[AlF,,&i,M,2) = +lfi,r(%Mf”) > (20) 

where the [AIf+ are the unpolarized [polarized] parton 
densities for parton i in hadron I, evaluated at factoriza- 
tion energy scale M;. 

The parton model expression for the Drell-Yan cross 
section corresponding to (14) is then 
(15) 
where 

WI = of%> 3% = WI/W , (22) 

and [Alea* is the unpolarized [polarized] subprocess cross 
section corresponding to (16). We must consider the sub- 
processes a = 9, b = q, c = g and a = Q, b = g, c = q, 
which are symmetric under a C) b and Q tf q as far as 
[A]d+JdM’ is concerned. 

We define the unintegrated leptonic tensor as 

I9 DRED = ~2ce2fp~d + P:& - W2/Wp1 a 
LUO DREG = P~~~~IP;& + P:P$ - W’/‘4~~~1 > (23) 

where the arbitrary mass scale pzE arises f&n the n- 
dimensional coupling e2 + ~‘JL~‘. Furthermore, we de- 
‘fine the integrated leptonic tensor as 

cc” = J 
@P3’ w? - P3Yl L‘Q, 

(2~)~-‘2p3,0 M2 
(24) 

One finds 

I-(1 - 2e) (3 - 2E)(l- 2&) 

I 
(25) 
khe corresponding DREG tensor is obtained by replacing 
gap + g,“@. This gives 

cap DREG = pe2f (4Y r(l - &) (1 - 4 
2n + Iyl - 2E) (3 - 2z)(l- 2E) 

(26) 

The part - q”qfi does not contribute to the cross section, 
as can be seen from gauge invariance. Hence the inte- 
grated leptonic tensor is effectively a constant. Nonethe- 
less, we keep all the terms for completeness. 

We may then define the unpolarized [polarized] sub- 

process hadronic tensor [A]W$ through the unpolarized 
[polarized] subprocess squared Feynman amplitude 

[AllMl% = $&dW’,“,P, (27) 

where lMl&, AIM\& are defined analogously to (15). 
Having done so, we may write the 2 7‘ 2 phase space as 
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Similarly, for the 2 + 3 phase space, 

where y = (1 + cos0)/2 and 0 is the angle between pl 
and k in the pl, pz cm. This is all we need to calculate 
[A]duaB/dM2. 

In order to present [A]d6,,,/dM2 in a form valid for 
all n-dimensional schemes, we must first give the general 
form of the n-dimensional split functions Piy(z), related 
to the probability of parton j splitting into a collinear 
parton i having momentum fraction I, plus an arbitrary 
final state carrying the rest of the momentum. 

We may write 

PG(Z,&) = P&E) +‘6(1- .)P&), 

with 

(39) 

P&E) = P;“(z) +&P;+(z) (31) 

and 

Ph(&) = 232 + ,PZ. (32) 

In DRED, P;;xe(z) and Pi? are zero. In other words 

PD=yz) = P;(z), ‘3 (33). 

where Pi(z) is the usual four-dimensional split function. 
One might wonder how to determine the P;(z,E). It 

is done in the same way as for the four-dimensional case, 
but keeping the terms of O(E). 

We can make this clearer by considering the 2 + rn 
process (all particles massless) 

a(~,) + b(pb) + cl(h) +cz(kz) + .‘.+ cm(kn). (34) 

When JQ is collinear with p,, we have (at one loop) 

[AllMl;+,,J~b + CI ‘.;cm) 

- c [AIP,<,(z’E) [A]lA~$,,-~(db + cz .cm), 
d P, kl 

(35) 
where a --f d + cl and 

ICI e (1 - t)pa + pd = zp,, z < 1, (36) 

with AP;j being the corresponding polarized split func- 
tion. Then Pi is determined using probability and mo- 
mentum conservation, and it only appears when i = j. 
Also, by definition AP; = P$. 

In this paper, we will need [Alp,,(z) and [A]PQ9(z). 
In four dimensions [18] 

P&(z) = ;(l - 22 + 2z2), AP,4,(z) = z - ;, (37) 

For the unpolarized case in DREG, the e-dimensional 
parts are unique [19]: 

P,‘,c(z) = -Cp(l -z), 

except that P,‘,’ depends on the convention used for av- 
eraging over initial gluon states. In the anticommuting- 
ys scheme, one has 

P,�,(z) = AP,-,W q Pp=*+ (d - PpZp,. k) (39) 

0 

(with the i’s denoting helicities) as a consequence of he- 
licity conservation (i.e., an anticommuting 75). This is 
not true in the HVBM scheme due to (6), which vio- 
lates helicity conservation of massless fermions (see [15] 
concerning the polarized split functions in the HVBM 
scheme). We will show that this problem is overcome in 
the mis, factorization scheme, which we shall now define. 

Factorization of the mass singularities is equivalent to 
expressing the bare parton distributions (and fragmenta- 
tion functions) in terms of the renormalized ones. In the 
MS (MS,) scheme, this is done via 
I 

(49) 
where 

(41) 
I 
The conventional factor (u2/M3Y is not necessary, but it ,, 
allows for a distinction between coupling renormalization 
and mass factorization energy scales. We will take Mf = 
p in our calculations. In other processes though, this 
distinction might be necessary in order to avoid large 
logarithms. 

For the fragmentation functions 2)~,~, representing the 
probability for quark i to split into hadron A, the corre- 
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sponding renormalization is 

[A]D$(z) = [A]D;?“(z&) 

+V’$%/Y), (42) 

where aj = a., unless j (=A) = 7, in which ce oj = a. 
It is clear that the MS. scheme is just the MS scheme, 

extended so as to subtract off the entire n-dimensional 
split function. In DRED, MS. is equivalent to m since 
there is no c-dimensional part of the split function. 

We are now in a position to write down the results 
for [A]&-,b/dM2 in a form valid for all n-dimensional 
schemes. We start with the q4 subprocess. The Born 
term is given by 

[A]$$ = [A]x&)6(1 -w) 

with 

x;“““(z) = -A&=+) 

a= 2 2?r”C 
= N, 2-a &f4+2P 

4c (2 - El 
(3 - 2&)(1 - 2E) 

(43) 

(44) 
and 

(45) 

Here, N, = 3 and ep is the quark fractional charge. In 
the anticommuting-ys scheme 

A&‘(e) = -xp”“(+ (46) 

This is not true in the HVBM scheme though. Of course, 
in the limit e + 0, helicity conservation is restored in all 
schemes so long as there are no I/E poles arising from 
mass singularities. If there are such l/e poles, then one 
needs a scheme such as MS,, as we will see. 

The factorization counterterm in the MS (MS,) scheme 
is 

PI- - %k _ ? A x 
dM2 J 1 B (c)zw ‘+‘[A]P&u) 

x 4w2 

c-1 

c r(l-E) s = 

M2 C-J r(l -2~) M; (47) 

The gluonic bremsstrahlung contribution is 
[A]$$ = [A]xs(8)$u1+Y?~ 

7 
-4(1+ w) ln(1 - w) - 2(1 - w) 

I 

The virtual contribution is 

[A]!$ = [A]x&),j(l -++ (g)’ r(l -E) 
rp - 2e) 

-$ - 7+ T - az 1 

(48) 

(49) 

So, adding (43) and (47) - (49), we obtain the total result 

[A]-$$=[A]x.e(O) S(l-w)+C&$w 
P4 (w) s 

6(l-w)+8(1n~--ww)) +2+h- 
+ Mr” 

-4(1 + w)ln(l -w) - 2(1 -w) + [A]& , (50) 
where 

[A]@ = 0, [A]dz = -&{[A]P~+P,$6(1-w)}. 

c51) 

We see that the O(E) scheme dependence of the Born 
term cancels with the l/8 (l/e’) divergences multiplying 
it. Also, we see that all the n-dimensional regularization’ 
schemes give the same answer in the m, scheme and it 
corresponds to the DRED MS answer. 
I 
We now consider [A]&?-,,/dM’. There is no O(1) term 

(in a.). At O(a,) there is a factorization counterterm -- 
contribution which is given in the MS (MS,) scheme by 

(52) 

The bremsstrahlung contribution is 
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[A]$ = [A]&@J~+’ lW,<,W + WlJ’r&g(~) 141 - w) 

+P -WI* 
4 

+w(l-w) 1 
Adding (52) and (53), we obtain the total result 

14% = Plm(O)$ In -+ + 21n(l- w,] + ?(I + 3~) + [A&j, 

(53) 

(54) 
where 

[AId? = 0, [A]dE = -[A]F’$(w). (55) 

In both the Q~J and QS cases, we verify that the unpo- 
larized DREG MS result agrees exactly with that pre- 
viously determined (see, for example, [3]). Since P,“, # 
AP,& in the HVBM scheme, we see from (50), (51) that 

cGq,4/dM2 # -Ad:,,-fdM2 in the HVBM scheme if one 
uses m. But this is a physical requirement. Hence, if 
one uses HVBM regularization>hen it is necessary to use 
a subtraction scheme such as MS, or one which subtracts 
at least the helicity nonconserving part, AP&+ - Pk’ as 
well (see also [15]) in the polarized case. Of course, it 
makes more sense to subtract the entire Apq& since this 
leads to regularization scheme-independent results. 

Now let us consider the Drell-Yan process with trans- 
versely polarized hadrons (transverse DrelG Yan process). 
The general process is 

WI, 4) + ‘qpz, +.sg + l-(P3) + l+(P4) +x , (56) 

where the SC are reference spin vectors satisfying 

27,” = -1, SC Pj = 0, i,j = 1,2, (57) 

implying that S1 and 5’2 lie in the plane transverse to 
the beam axis. Now, letting t denote polarization in the 
direction of the spin axis and letting J denote polarization 
opposite to the spin axis, we may define the transversely 
polarized cross section as 

ATO.= &(T,t)-,-+,L)l, (58) 

in the notation ~(5’1, &S’z). 
The general 2 + 2 [2 + 31 subprocess contributing to 

(56) is 

dPl,4 + a(Pz,h) + Y*(Q) + [sJ(~)l 

--t l-(P3) + l+(P4) + [S(k)] (59) 
I 

with 

$1 = s,, .% = s2, (60) 

and AT& defined analogously to (58). There is no qg 
subprocess since gluons cannot be transversely polarized. 
We may define the transversity distribution 

= f n+/a,hM;) - f,,/a,(w$L 

(61) 

which is often denoted as hy(s,Mf2). 
Let $3 denote the azimuthal angle of Ps about the 

beam axis (with respect to some reference axis) and let & 
denote the angle betweenPl andp, in thep,, pz center-of- 
momentum frame. Then, the quantity we are interested 
to calculate is A&?/dMZd&. This was done in [6] us- 

ing DRED, where ATdB/dM’d& was first determined, 

with 623 representing the solid angle of pa in the cm. of 
pl, pz. Then ATdc?fdM’d& was obtained via 

(62) 

Of course, if one was only interested in ATdcF/dM’d&, 
then one could integrate over & separately for the Born 
term, loops, bremsstrahlung, and factorization counter- 
term, then add all the different parts to get a finite 
result for ATd6/dM2d&. Either way, the expression 
for ATuaB/dM’d& is obtained from (21) by replacing 
[A] + AT and differentiating with respect to $3. 

From the form of the unpolarized and longitudinally 
polarized results, it is straightforward just to take the 
final DRED result of [6] and put it in a form valid for 
all regularization schemes. The result is (with &, ~$2 the 
azimuthal angles of sl, s2) 
I 

ATd& 

dM=d& 
S(1 -w) + $w 

In2 w 
-8ln(l- w) - 6wl- + 4(1- w) + ATd (63) 

with 
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(64) 

and 

A,d,,. = 0, ATdi, = -&[ATP,‘,.“+P,;~~(~-w)]. 

(65) 

The transversity split function A,P& is obtained via (35) 

with [A] + AT. In four dimensions, A,P,4, is given by 

PI 

A&(Z) = C, (1 $+ - 2 + $(1-z) 
[ 1 (66) 

In the anticommuting.Ts scheme, it is straightforward to 
obtain 

A,&‘?(Z) = -C&l -z). (67) 

The transversity renormalizations corresponding to 
(40), (42) are obtained by replacing [A] + AT. We veri- 
fied explicitly that the form of (40) does indeed hold for 
the transverse case. 

IV. CONNECTION BETWEEN 
n-DIMENSIONAL SCHEMES 

Here we will show how to convert results of one n- 
dimensional scheme to those of another in a straightfor- 
ward manner. We do this by examining the origin of the 
scheme-dependent parts. Strictly speaking, this only ap- 
plies to processes not requiring coupling constant renor- 
malization, since other differences may arise from the UV 
sector. On the other hand, it has been shown [21,22] that 
the UV sectors of DREG and DRED in QCD can be re- 
lated via a finite O(ai) renormalization of the coupling. 
Namely, 

(see, for example, [S]). In other words, one may go from 
one scheme to the other by simply expressing the cou- 
pling of one scheme in terms of that in the other. We 
will assume this has been done so that the only differ- 
ences may arise from the IR sector. Then all the follow- 
ing argumentation can be seen to apply to all one-loop 
QCD processes. 

As an example, we will consider the 48 subprocess in 
the unpolarized Drell-Yan process, to show the origin of 
the scheme dependences. Then we will show that the 
same argumentation holds for all one-loop processes. 

In order to extract the scheme-dependent parts, we 
need only consider terms which give rise to l/& poles. 
This is because the scheme dependences come from 
f .0(e) terms, where the O(E) terms are in general scheme 
dependent. We therefore consider the contribution to 
deqp/dM2 when k is collinear with one of the initial par- 
tons, say pl. From (35) we see that 
with 

k = (1 - w)p1. (70) 

After phase space integrations, this will yield a contribu- 
tion to dCqpjdM2: 

&+C+, 
99 - 1 xB(E) 
dM2 E (1 - uJ)l+zc 

[(l - W)P,<,(W,&)] 

XBb) 1 
z- 

-:i 
[ 

-kb(l -w) + 
(1 -w)+ 

ln(1 -w) 

1-W ) 1 + 

x[(l - w)P,<,(w)l. (71) 

Hence [noting that P?(w) - 1 - w], we get a scheme- 
dependent part from the bremsstrahlung, 

dBSD 
A - XB(O)P,<,.pfJ) 
d+C (72) 

as well as an equal term arising from k N (1 - w)pz. The 
soft divergent terms - [f6(1- w)] i cancel exactly with 
the loops, having the same overall factor, and hence do 
not lead to scheme dependences. 

As well, there is a scheme-dependent term coming from 
the loops. By definition of P&, there must be a term 
proportional to 

- N x,&yl -w). 
d&v 

dM2 (73) 

This will lead to a scheme-dependent part 

d+cD 
_ N x&O)P$6(1 - w). 
dM2 (74) 

Hence, the entire scheme dependence can be traced 
back to the process-independent n-dimensional split 
functions (their e-dimensional part). We also see explic- 
itly why the ?%$ factorization scheme will lead to regu- 
larization scheme-independent results; all the regulariza- 
tion scheme-dependent parts are subtracted. Of course, 
if one has longitudinal or trtinsverse polarization, all the 
above holds with 

x&J -+ Ap-IX&)> P&J,~) + A,qP,,h4. 

(75) 

For conciseness, we will drop the Ai~l’s with the under- 
standing that the same argumentation holds for the po- 
larized cases. 

It is now clear how to convert results calculated in 
DRED to the corresponding DREG MS results, if de- 
sired. One simply replaces [defining P;(z) E P;“(z) + 

PZJ(l -z)] 

P;“,(z) + P;(z) -&P;(z) (76) 
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in the factorization counterterm. 
Or, to convert from DREG to DRED (i.e., ?i?$), sim- 

ply replace 

P;(z) --t P;(z,E) = P;(z) +EP;(t) (77) 

in the factorization counterterm. Hence, one can go from 
any n-dimensional scheme to any other using (76) and 
(77). l+om the previous argumentation, it is clear that 
polarization poses no difficulty in this approach. This 
procedure is equivalent to expressing the parton distri- 
butions and fragmentation functions of one scheme in 
terms of those in the other, as will be shown in the next 
section. 

Up until now, we have used the Drell-Yan process 
as an example. We now show that the argumentation 
here applies to all QCD processes at one loop once the 
UV sectors have been made to agree (if coupling con- 
stant renormalization is required). The renormalization 
of the parton distributions is process independent, since 
the same collinear configurations o&w in all processes. 
This is because they are related to hadronic emissions (or 
fragmentation into hadrons) which occur in a process- 
independent manner and can be constructed from a uni- 
versal set of subdiagrams containing the configurations 
having collinear divergences with respect to the partic- 
ular parton. The only difference then, from one process 
to the next, is the soft singularity structure. But the 
soft singularities cancel via the Bloch-Nordsieck mecha- 
nism [23] [or Kinoshita-Lee-Nauenberg (KLN) theorem 
[24]] such that the singular cross section for soft emis- 
sions is proportional to the Born term with (minus) the 
same overall factor as that coming from the loops. Hence, 
the scheme dependences of O(E) which multiply the l/e 
singular terms, cancel exactly between the loops and the 
soft bremsstrahlung contributions. 

Thus, the only scheme dependence may come from 
the noncancelling mass singularities, whose structure is 
process independent. Hence, all the argumentation here 
applies to all QCD processes at one loop; extension to 
higher orders should be analogous. Also, the same con- 
clusions concerning the regularization scheme indepen- 
dence in the MS, scheme apply to all one-loop QCD pro- 
cesses. 

V. DRED PARTON DISTRIBUTIONS 
AND FRAGMENTATION FUNCTIONS 

It is straightforward to show how to relate the DRED 
parton distributions and fragmentation functions to 
those in DREG (MS). This is useful if one wishes to work 
strictly in DRED, but make use of the abundant sets 
of DREG parton distributions and fragmentation func- 
tions. First, we will consider the parton distributions, 
again dropping the Ai~l’s for conciseness. 

We will make use of the fact that DRED is equivalent 
to the MS, scheme ofDREG. Noting that the, bare parton 
distribution, ff,+Jz), on the left-hand side (LHS) of (40) 

is factorization scheme independent, we obtain 
(73) 

or 

f;Y (z) = $2 (2) 
‘dy ns 

= fiy,“b, - c 5 J -fj/a(Y)P;wY) 
j 27r iE Y 

+o(af). (79) 
From (42), we may immediately write for the fragmenta- 
tion functions 

= D?;(z) - 7 2 ~l~D~~(y)P;(z,y) 

+o(a:). (80) 

Noting (76) and (77J we see explicitly that going corn 
DRED to DREG MS simply amounts to expressing the 
DRED (or m=) parton distributions and fragmentation 
functions in terms of the DREG m ones, and vice-versa 
from series inversion. 

VI. NUMERICAL RESULTS 

Here we present asymmetries and cross sections for the 
Drell-Yan process in p-p collisions at energies relevant to 
RHIC. In general, we use the two-loop m expression 
for a.(&, with four flavors and A = 0.2 GeV, except 
in the transversely polarized cross sections where we use 
the one-loop expression in order to be consistent with [6]. 
Also, we take $ = Mj = M’. For the unpolarized cross 
sections, we use the DREG subprocess cross section con- 
voluted with the unpolarized parton distributions of [25] 
(S&S-MS). For the longitudinally polarized case, we use 
the MS,, (or DRED) subprocess cross sections, since they 
are physically consistent (and regularization scheme in- 
dependent), convoluted with the longitudinally polarized 
p&on distributions of [ZS] [Set 1, SU(3) symmetric sea] 
which fit well the recent DIS data [27] except at very low 
2: not covered for the kinematics considered here. 

For the transversely polarized subprocess cross sec- 
tions, we again use, the ?%& result. For the transversity 
distributions, we choose for the valence distributions (at 
Q; = 4 GeV’) 

A~F,,&z, Q;) = 2.1 ~‘.~(l -z)=, (81) 

ATF&z, Q;) = -0.76~+~~(1 - z)~.~, (82) 

and for the sea-quark distributions 

A+,&,Q;) = -0.12~‘.~(1- z)=, 4 = u,d,s (63) 

(one-half the value used in [6,28]). These satisfy the 
upper bound proposed by So&r 1291. As well, the va- 
lence distributions are consistent with bag model predic- 
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tions. The small- and large-z behavior is consistent with 
the longitudinal and unpolarized cases. There are no 
other definite constraints we may impose. Q2-dependent 
parametrizations for the longitudinal and transversity 

distributions are given in [2&J]. We use one-loop evolu- 
tions, as two-loop polarized split functions do not yet 
exist. 

We define the asymmetries 

and 

noting that 

do 1 du 

dM=d& = % dM2’ 

(64) 

(35) 

(8‘4 

Figure l(a) presents AT for fi = 100 GeV, in the 
range 0.05 5 fi 5 0.5. The largest value for -AT is 
8%. We notice that for the qq subprocess, AT is rea- 
sonably perturbatively stable, unlike the cross sections 

-0.08 

-- ,,” 
-. ML0 (qg) 

- NLO Is? + 99) 

0.1 0.2 0.3 0.4 0.5 

0.1 0.2 0.3 0.4 _ 0.5 

(b) JT 

FIG. 1. (a) Transverse asymmetry, AT, in leading or- 
der and in next-to-leading order; (b) corresponding next- 
to-leading order polarized cross section vasus J; at fi = 
100 GeV. 
FIG. 2. (a) Transverse asymmetry, AT, in leading or- 
der and in next-to-leading order; (b) corresponding next- 
to-leading order polarized cross section versus Js at & = 
200 GeV. 

which increase by 50 - 100% under HOC [6]. Inclusion of 
the qg subprocess makes the asymmetry somewhat more 
negative since the qg subprocess contributes negatively 

as noticed in [l, 21. 
Figure l(b) presents the corresponding polarized cross 

section, -ATdu/dM’d&. The sharp dropoff with in- 
creasing J; is a combined result of the softness of 
ATF@I~, the l/M4 behavior of the cross section, and the 

decreasing integration region with increasing 6. 

Figure 2 presents the corresponding quantities for 
d.? = 200 GeV and 0.05 5 fi 5 0.25 (away from the 
Z-exchange region). Similar features hold, except the 
cross sections are somewhat smaller because of the l/M4 
suppression (which amounts to 2/M3 in ATdu/dMd&). 

In Figs. 3 and 4 we present the corresponding plots for 
AL and -Adu/dM’. The largest value for -AL is 16%. 
As expected from h&city conservation, the qq subprocess 
exhibits great perturbative stability. Inclusion of the qg 
subprocess, however, upsets this stability since it con- 
tributes with sign opposite to that of the qq subprocess 
(in both the polarized and unpolarized cases) and is rel- 
atively large in the polarized case. Hence, the net asym- 
metry becomes somewhat smaller in magnitude. This 

I 
, -- 1.0 ML0 (qij) 

-0.02 - ML0 (l/l/ ~1 9!/) 

A, 
-0.04 z 

'.+. 
.. .' 

-0.06 

b 
-0.08 

0.05 0.10 0.15 0.20 0.25 
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would not be a problem in p-fl collisions, where one is 
probing valence-valence distributions. For p-p collisions, 
the smallness of AF, makes the QS subprocess more sig- 
nificant. A smaller polarized gluon distribution and/or a 
larger polarized sea-quark distribution would reduce this 
effect. Still, for the larger J;, measurable asymmetries 
are obtained. 

For a discussion of the perturb&w stability of the 
longitudinal asymmetry in p-p direct photon production, 
see [30,28]. There it was noted that the asymmetry is 
pertwbatively stable if the polarized gluon distribution 
is sufficiently large so that the qg subprocess dominates. 
This contrasts with the pp Drell-Yan process, where a 
large polarized gluon distribution destabilizes the asym- 
metry. 

VII. CONCLUSIONS 

We have presented complete next-to-leading order an- 
alytical results for the Drell-Yan process with unpolar- 
ized, longitudinally polarized, and transversely polarized 

hadrons. These results are in a form valid for all n- 
dimensional schemes. It was shown how one can easily 
convert from results obtained in one scheme to those of 

- NLO (qij 1. 7s) 

-0.20 L 
0.1 0.2 0.3 0.4 0.5 

[a) JT 

(b) 

FIG. 3. (a) Longitudinal asymmetry, AL, in leading or- 
der and in next-to-leading order; (b) corresponding next-to- 
leading order polarized cross section versus J; at & = 
100 GeV. 
another, regardless of the polarization, for one-loop QCD 
processes. This procedure simply amounts to expressing 
the parton distributions and fragmentation functions in 
one scheme in terms of those in the other. As well, the 
origin of the scheme dependences was elucidated. A mass 
factorization scheme, which we call MS., was introduced. 
It was shown that in this factorization scheme, the final 
results are regularization scheme independent and coin- 
cide with those of DRED m. A simple method for con- 
verting p&on distributions and fragmentation functions 
from DREG to DRBD was given. 

For p-p collisions at energies relevant to RHIC, asym- 
metries and cross sections for transversely and longitudi- 
nally polarized collisions were presented. For the trans- 
verse case, the asymmetries reached -8% and exhibited 
reasonable perturb&w stability. For the longitudinal 
case, the asymmetries reached -16% and the qq subpro- 
cess exhibited great perturbative stability. Inclusion of 
the 99 subprocess somewhat lessened the longitudinal 
asymmetries, however. Still, p-p collisions serve as the 
best probe for the polarized antiquark distributions in 
the proton, and they may be extracted with sufficient 
experimental statistics. 

-0.00 

-0.05 

AL 
-0.10 

-0.15 

\ 

.\ 

-0.20 - 
0.10 0.15 0.20 0.25 0.30 

(a) JF 

0.10 0.15 0.20 0.25 0.30 

(b) 
J; 

FIG. 4. (a) Longitudinal asymmetry, AL, in leading or- 
der and in next-to-leading order; (b) corresponding next-to- 
leading order polarized cross section versus J; at 8 = 
200 GeV. 
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