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We propose a variant of hybrid inflation which is applicable in a wide class of supersymmetric grand unified

models. The observed temperature perturbations of cosmic background radiation can be reproduced with

natural values of the parameters of the theory and a grand unification scale which is consistent with the

unification of the minimal supersymmetric standard model gauge couplings as measured at CERN LEP. The
termination of inflation is smooth and does not produce any topological defects. Finally, we present a specific
supersymmetric model where our smooth hybrid inflationary scenario is realized.

PACS number(s): 98.80.Cq, 12.60.Jv

The usual realizations of the new and chaotic inflationary
scenarios [1] invoke a very weakly coupled gauge singlet
scalar field known as the inflaton. The extremely weak cou-
plings of this field, which are necessitated by the smallness
of the observed temperature fluctuations in the cosmic back-
ground radiation (CBR), are certainly unsatisfactory because
they create an extra "hierarchy" or "naturalness" problem.
Recently, Linde [2] has proposed a new realization of the
chaotic inflationary scenario based on a coupled system of
two scalar fields, one of which may not be a gauge singlet.
The great advantage of this hybrid inflationary model is that
it produces the observed temperature fluctuations in the CBR
with natural values of the coupling constants. However, in-
flation terminates abruptly and is followed by a "waterfall"
regime during which topological defects can be easily pro-
duced. Consequently, in the cases where these defects in-
clude superheavy magnetic monopoles or domain walls we
end up with an unacceptable cosmology. Of course, this is
not the case with the original hybrid inflationary model [2).
Hybrid inflation has been adjusted [3] so that it becomes
applicable in a wide class of supersymmetric (SUSY) grand
unified theories (GUT's) based on semisimple gauge groups.
The magnitude of the temperature fluctuations in the CBR
turns out to be directly related to the grand unification scale
M&. However, values of Mz consistent with the unification
of the gauge couplings [4] of the minimal supersymmetric
standard model (MSSM), which is favored by recent data

from the CERN e+e collider LEP, tend to give values of
the temperature fluctuations in CBR considerably higher than
the values allowed by observations. Also, the scheme heavily
relies on radiative corrections.

In this paper we propose a variant of Linde's potential
which can also be derived in a wide class of SUSY GUT's
based on semisimple gauge groups. Instead of the renormal-
izable trilinear coupling in the superpotential we utilize the
first nonrenormalizable contribution. All our analysis is done
at the tree level and no radiative corrections are needed. Al-
though we get only a slight variation of Linde's potential, the
cosmological scenario obtained is drastically different. Al-
ready since the beginning of inflation, the system follows a
particular valley of minima which leads to a particular point
of the vacuum manifold. So our inflationary scenario does
not lead to production of topological defects. Also the termi-
nation of inflation is not as abrupt as in the hybrid case. It is
quite smooth and resembles more the cases of new or chaotic
inflation. The main advantage of our smooth inflationary sce-
nario is that the measured value of the temperature fluctua-
tions of CBR can be reproduced with natural values of the
parameters and with a GUT scale M& consistent with the
unification of the MSSM gauge couplings. It is also remark-
able that the scale controlling the nonrenormalizable terms in
the superpotential turns out to be of order 10 GeV. The
spectral index of density fluctuations is close to unity.

We consider a SUSY GUT based on a (semisimple) gauge
group G of rank «5. G breaks spontaneously directly to the
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standard model (SM) group Gs at a scale M&- 10 GeV. We
assume that below M& the only SM nonsinglet states of the
theory are the usual MSSM states in order for the successful
MSSM predictions for sin 8 and n, to be retained. The
theory could also possess some global symmetries. The sym-
metry breaking of G to G& is obtained through a superpoten-
tial which includes the terms

4p, M2=-X=3 2 for o )&p,M,

Let us now take a closer look at the potential in Eq. (4).
For any fixed value of o., this potential, as a function of
X, has a local maximum at X = 0 and an absolute minimum

lying at

W=S —p, +
M

V= p, —
z +4lsl 4 (l Pl +

l +l )+D terms,
(wk)'

(2)

where the scalar components of the superfields are denoted
by the same symbols as the corresponding superfields. Van-

ishing of the D terms is achieved with
(D-flatness condition). The supersymmetric vacuum

&s&=o &&&&4&=-pM 1&4»I=I&4&l (3)

lies on the D-flat direction P*= ~ P. Restricting ourselves
to this particular direction and performing appropriate gauge,
discrete, and R transformations we can bring the complex
s, P, @ fields on the real axis, i.e., s—= a/+2, /=/=~X,
where a. and x are real scalar fields. The potential in Eq. (2)
then takes the form

4 I2 X6 2
2

16M i 16M (4)

and the supersymmetric minima correspond to

1&x&I =2(pM)'"

The mass acquired by the gauge bosons is M+= g(pM) ~,
where g is the GUT gauge coupling. The vacuum manifold
of the theory, which is obtained from the minimum in Eq. (5)
by performing all possible gauge and global transformations,
may have nontrivial homotopical properties in which case
the theory predicts the existence of topological defects.

Here P, P is a conjugate pair of left-handed SM singlet su-
perfields which belong to nontrivial representations of the
gauge group G and reduce its rank by their vacuum expec-
tation values (VEV's), s is a gauge singlet left-handed super-
field, p, is a superheavy mass scale related to M&, whereas
M is a mass scale of the order of the "compactification"
scale M, -10 GeV which controls the nonrenormalizable
terms in the superpotential of the theory. The superpotential
terms in Eq. (1) are the dominant couplings involving the

superfields s, P, P consistent with a continuous 8 symmetry
under which W~e' W, s~e' s, PP~PP, and a discrete
symmetry under which @P changes sign. Moreover, we as-
sume that the presence of other SM singlets in the theory
does not affect the superpotential in Eq. (1) which is respon-
sible for the nonzero VEV's of the fields P, P. This, if not
automatic, is very easily achieved in the case of semisimple
gauge groups. The potential obtained from W in Eq. (1), in
the supersymmetric limit, is

and X =4p,M, for o. &(p,M. The value of the potential
along the maxima at X =0 is constant, V,„(X = 0) = p, ,
whereas along the valley of minima, for o- )&p,M, it is
V;„(a.)=p, [1—(2/27)(p, M /a )].

We are now ready to turn to the discussion of the cosmo-
logical evolution of this system. We assume that after "com-
pactification" at a cosmic time r, -(3/8m)' Mp/M, , where
M p = 1.2X 10 GeV is the Planck mass, the universe
emerges with energy density of order M, . We then, as usual,
follow the development of a region of size I,-t, where the
scalar fields X and o. happen to be almost uniform with
la. l~& lxl. Under these circumstances one can easily see that
initially the last term in Eq. (4) is the dominant contribution
to the potential energy of the system. Thus, the initial equa-
tions of motion for the X and o. fields read

2 5

X+3KX+ 8M4 (7)

and

X o
o+3Ko+ 4 =0, (8)

with H being the Hubble parameter and overdots denoting
derivatives with respect to cosmic time. Assuming for the
moment that o. remains approximately constant, we see that
the frequency of oscillation of the X field, which is of
order x la. l/M (x is the amplitude of the oscillations of
x), is much greater that the Hubble parameter
H=(7r/6) (x lal/MpM ), for x (Mp. So x initially
performs damped oscillations over the maximum at X=O.
For

l
rrl &)Mp, the "frequency" of oscillation of the a. field,

which is of order x /M, is much smaller than H. Thus, our
hypothesis that o. does not change much is justified. When
the amplitude of the x field drops to about (p, M /la. l)',
the p, 4 term dominates the potential in Eq. (4) and the
Hubble parameter becomes approximately constant and
equal to H=(8m/3) ~ p, /Mz and remains so thereafter till
the end of inflation. However, the form of Eqs. (7) and (8)
still holds till x drops to about pM/la. l. The "frequency"
of the o. field remains much smaller than K, for
( ™pl~/l)'" —x —pM/l~l (lal&Mp)»d Eq. (8) «-
duces to

X o
3Ko+ 4 =0.

As is easily shown, o. again remains almost constant within
one expansion time, i.e., lb, a/a. l(&x M~/p, "M
-(Mp/la. l) (1.The frequency of the x field -x lal/M
remains greater than H, for x~~ pM/(M &la l)

~ ~ pM/la.
l

and X still performs damped oscillations. For smaller values
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of the y field [pM/(Mplal)'/ y pM/lal], the Hubble
parameter overtakes and y enters into a "slow roll-over"
regime controlled by the equation

3ay
3Hj+ 4 =0. (10)

Equations (9) and (10) then imply that 3o. —g = const.
Thus, y keeps dropping without any essential change in o.
and, as one can deduce from Eq. (10), reaches a value
-pM/lal in a cosmic time interval At-(a/Mp) H
&)H '. After that, the y term in Eq. (4) comes into play
and the equation of motion of the p field becomes

8~+3H8~+m (a) 8'N=O,

where 8N is the deviation of y from the minima in Eq. (6)
and m (a)=4p, /3a is the o.-dependent mass squared of
the y field along the valley of these minima. For lal &)Mp,
m~(a)(&H, and Eq. (11) reduces to

3HBN+m (a) 8~=0. (12)

Thus, y reaches the minimum in a time interval

) 2

At-6~ H '
(Mp)

(13)

8p, M
3Hcr+ 5 =0, (14)

which gives

2p,MM~ )
1/3

o.= N'/ (o.),
3 2m)

(15)

where N(o) =Hht is the number of e-foldi—ngs from the mo-
ment at which the o. field has the value o. till the end of
inflation. Inflation ends when the "frequency" of the o. field
becomes smaller than 3H/2, i.e., at

within which the o. field stays essentially unaltered as one
can see from Eq. (9).To summarize, so far, we have seen that
within a time interval given in Eq. (13) the y field falls into
the valley of minima in Eq. (6) and relaxes at the bottom of
this valley whereas the o. field still remains unchanged and
much greater than Mz. Of course, this does not automati-
cally mean that y follows the valley of minima at subsequent
times but, as we shall soon see, it turns out that it actually
does.

One could also reach the same conclusion starting with
field values considerably smaller than Mz. This requires that
the initial energy density be —p, for o. to be slowly varying.
Consider the situation where the initial value of o. is close to
M. It is then easy to show that, for initial values of y much
smaller than (4 /3 m(pM) '/ /M p)

'/ (pM) '/ but still greater
than the value given in Eq. (6), the y field performs damped
oscillations and ends up at the bottom of the valley of
minima with o. remaining essentially unaltered.

To discuss the further evolution of the system let us, for
the moment, suppose that y, at subsequent times, follows the
valley of minima in Eq. (6). Equation (9) then reads

2M,a——ao—= „(p,M)" ~(p,M) "2. (16)
(9v m'(pM) /

)

For lal)MP, the evolution of y is governed by Eq. (12)
and the time needed to reach its minimum [see Eq. (13)] is
much smaller than N(a)H from Eq. (15) which is the time
required for o. to change significantly. Also the quantum
fluctuations of y in de Sitter space, BN=H/27r, are not
strong enough to surpass the barrier at y = 0 if
a(& $27r(M/p)MP. For a~MP, m~~H, the quantum
fluctuations of y stop and we go back to Eq. (11) which
describes damped oscillations about the minimum in Eq. (6)
with damping time H much smaller than N(o)H . Thus,
we conclude that our starting assumption that y follows the
valley of minima is correct. Note that, due to supersymmetry
breaking, the g and o. fields acquire additional masses of
order M, -1 TeV. It is easy to check that this mass contri-
bution is never important for the evolution of the g field.
However, it plays a role for the o. field if its initial value

happens to be greater than o.,—= (2/+6)(M/M, ) / p, . This in-
troduces only unimportant complications to the above dis-
cussion which we will skip. In any case, as soon as o. drops
below o., its SUSY-breaking mass becomes subdominant.

The contribution of the scalar metric perturbation to the
microwave background quadrupole anisotropy (scalar Sachs-
Wolfe effect) is given [5] by

( hT~ ( 327ri

T ) I 45 ) Mp(BV/Ba)

( m~'/2
(17)

where the right-hand side is evaluated at the value of the o.
field where the length scale k, which corresponds to the
present horizon size, crossed outside the de Sitter horizon
during inflation. The derivative (BV/Ba) is, of course, calcu-
lated on the valley of minima of Eq. (6) and substituting o. in
terms of N(o)from Eq. (15.) and p, in terms of M~, we
obtain

(b, T'j
5

—1/26 1/3 —1/3N5/6 —1P/3M 1P/3M —4/3M —2T)Hgxp
(18)

(aT~ V'/2
=0.78 2 =4.1&&10

l Ti Mp2
(19)

The amplitude of the density fluctuations on a given length
scale k as this scale crosses inside the postinAationary

where N& is the number of e-foldings of the present horizon
size during infiation. Taking N&=60, M&=2X 10 GeV,

g =0.7 (consistent with the MSSM unification), and
(b, T/T)=5X10 from the Cosmic Background Explorer
(COBE) we get M=9.4X10 GeV and p, =8.7X10 GeV.
We ignored the gravitational wave contribution (AT/T)r to
the quadrupole anisotropy since it turns out to be utterly
negligible relative to the scalar component:
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horizon is proportional to Nk'-', =N~ [/ t(Mpc)/104]s'6+H,

where N&-i is the number of e-foldings of this scale during
inflation [see Eq. (18)].The spectral index is then given by

5
n=1 — =0.97 (for NH=60),

3NH
(20)

which is very close to the Harrison-Zeldovich value (n=1)
and lies in the central range of values preferred by observa-
tions. We can also estimate the value of the o. field at the end
of inflation [see Eq. (16)] o.o=1.1X10' GeV =5.4M& and
its value when the present horizon size crossed outside the
inflationary horizon [see Eq. (15)] o'H —(9NH/2) op
=2.54o.p=2.7X 10 GeV. The total number of e-foldings
during inflation [see Eq. (15)] turns out to be greater than
10', for initial ~o.~=Mp, and SUSY breaking becomes ir-
relevant if the initial value of the o. field does not exceed
o.,=5.8MP (for M, =1 TeV).

The termination of infiation is not as abrupt as in the
hybrid infiationary scenario where the slow rollover regime
is followed by the "waterfall. " In our case, after the end of
infiation the o. and y fields enter smoothly into an oscillatory
phase about the global supersymmetric minimum of the po-
tential in Eq. (5) as in the "new" inflationary scenario.
The frequency of the oscillating fields is m = m~
=2+2(~™)'~p, =7.6X10 GeV. These fields should
eventually decay into lighter particles and "reheat" the uni-
verse so that its baryon asymmetry can be subsequently pro-
duced. We will postpone until later the discussion of these
important issues because it depends strongly on the details of
the particle physics model one adopts.

Our inflationary scenario, in contrast to the hybrid one,
produces no topological defects in the universe. This is be-
cause the o and y fields during inflation follow everywhere
the same valley of minima which leads to a specific point of
the vacuum manifold of the theory. As we discussed earlier,
the y field stays close to the bottom of the valley and is
unable to fIuctuate over the maximum at y=0. Also, for
~o.~=M&, its mass is greater than H and, consequently, suf-
fers no quantum fluctuations in de Sitter space. In hybrid
inflation, the choice of the vacuum is made at the "waterfall"
after the end of inflation and, thus, topological defects can be
easily produced.

It is well known that, as soon as one replaces global by
local supersymmetry, the potential of the theory changes
drastically and infiation becomes, in general, impossible.
This is, to a large extent, due to the generation of a mass for
the infiaton which is larger than H. In our model, one can
easily check that no such mass is generated provided we
employ the canonical form of the Kahler potential. This fact
allows us to hope that, although, our discussion is not ex-
pected to remain unaltered, the modifications necessitated by
the inclusion of supergravity will not destroy the whole pic-
ture.

To construct an example of a SUSY model with the usual
successful MSSM predictions of sin 8 and a, where our
smooth hybrid inflationary scenario is naturally realized, we
consider a model with gauge symmetry group the subgroup
G=SU(3), x SU(2)& X SU(2)+X U(1)s L X U(1)T of E6
and a global symmetry group CXB~XB2XR commuting

with G. C is a Z2 matter parity, B& and B2 are Z4 symme-
tries, and R is a U(1)R symmetry under which the superpo-
tential W~e'~W. The coupling constants of the five factors
in G are assumed to be equal at a scale M, -10 QeV,
probably related to a more fundamental theory. Let
q, q', l, l', h, g, g', N denote chiral superfields transforming

under G as (3,2, 1,+1/3, +1), (3,1,2, —1/3, +1), (1,2, 1,
—1,+1), (1,1,2,+1,+1), (1,2,2,0,—2), (3,1,1,—2/3, —2),
(3,1,1,+2/3, —2), and (1,1,1,0,+4), respectively. Also let
s denote a gauge singlet. The superfield content of the
model consists of three q;, three q,', three l;, three l', , one

h, one h, one g, one g, one g', oreg', one lp, one lp, one

lp, one lp, four q&3+ ) four q, four q(3+ ) four q', one

No, one No, three N;, three N;, and one s (i= 1,2,3 and
m= 1, . . . ,4). Under C, all superfields remain invariant ex-
cept q;, q', , l;, l', . Under the generator of B&, all superfields
remain invariant except Np which changes sign and

lp lp g,g' which are multiplied by i. Under the generator of
B2, all superfields remain invariant except Np which

changes sign and h, g, g which are multiplied by i. Finally
under U(1) R symmetry, all superfields have charge +1/2
except No, g, g'which have charge+ 1/3, s which has charge
+1, and h, lp, lp, Np which have charge 0. With the above
charge assignments, the U(1) R symmetry has color anomaly
and therefore is a Peccei-Quinn symmetry solving the strong
CP problem.

The gauge group U(1)T breaks down at a scale Mz
through the VEV's of Np Np. The D-fiat direction

~NO~
=

~NO~ is completely F flat as well, because of the global
symmetries. The large Yukawa couplings of the terms

gg Np h Np and gg'Np could lead to a radiative change of
the sign of the SUSY breaking mass squared term for one
linear combination of the Np and Np bosons at a scale
-Mz thereby generating a large VEV for this combination
along the D — and F-fiat directions. The gauge group
SU(2)zXU(1)s ~ breaks down to U(1)r also at a scale M~
through the VEV's of the neutral components vp and vp in

lp and lp. The relevant superpotential terms are the ones in

Eq. (1) with the role of P and P played by vo and vo,
respectively. The VEV of Np breaks Bi down to a Z2 sub-

group, while Np breaks B2 down to a Z2 subgroup. In addi-
tion the pair of (Np) (No) breaks the U(1) R symmetry down
to a Z2 discrete symmetry. Starting with Np and Np at their
VEV's we end up with the previously studied cosmological
scenario.

We assume that the allowed tree-level mass terms for the
gauge nonsinglets are all -M&. Below the scale M& the
only Gz-nonsinglet states are the ones of the MSSM. Ordi-
nary light quarks and leptons are contained in the

q;, q';, l;, l', fields all having negative matter parity. The elec-
troweak Higgs doublets ht l,ht ' are the SU(2)s-doublet
partners in h with mass —(N~ovovo)//M, . An immediate
consequence of this simple structure is the relation
tanP=m, /mb among the VEV's of htt', h& l and the third
generation quark masses. The g, g pair could, in principle,
mediate proton decay but the global symmetries stabilize the
proton almost completely.
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Because of the appropriately chosen spectrum, the one-
loop renormalization group equations above Mz predict
identical running for the gauge couplings of all the factors in
G. Combining this fact with their assumed equality at M, ,
we conclude that equality of the gauge couplings of Gz at the
scale I& is a justified boundary condition. The successful
MSSM predictions for sin 0 and n, follow immediately.

Returning to the cosmologically more interesting neutral
sector we observe that we have exactly three right-handed
neutrinos contained in the three I';'s which acquire Majorana
masses M„,-M p, /M, from the nonrenormalizable terms

v,'. v,'vo(vo) /M, (i,j=1,2,3). Therefore the v'; Majorana
masses are at most —10 GeV. The simple structure of neu-
trino Dirac mass terms m, leads to the simple relation
tanP=m „ /m, for at least the third generation. Thus, we ex-

T

pect a v, mass m, -( tanPm, ) /M, ~ which makes the v, 's
r j

a significant component of the hot dark matter of the uni-
verse. The unbroken Z2 matter parity C guarantees that the
lowest supersymmetric particle remains stable and contrib-
utes to the cold component of the dark matter together with
the axion.

The above-mentioned terms providing the Majorana neu-
trino masses represent the dominant couplings leading to in-

flaton decay with width I -1/16aM p, M, m, where
m-10' GeV is the inAaton mass. The corresponding "re-
heat" temperature T„--,'(I'Mp)'i —10" GeV. The v,"s pro- .

duced from the inAaton decay generate a lepton asymmetry
[6] which later will be transformed into the observed baryon
asymmetry through the nonperturbative baryon- and lepton-
number-violating effects in the standard model at tempera-
tures —1 TeV.

The only topological defects predicted by this model are
the domain walls associated with the spontaneous breaking
of the discrete symmetries 8& and B2 down to their Z2 sub-
groups. These symmetries are, at the first place, broken by
the VEV's of Np, Np. Our assumption that these fields ac-
quire their VEV's before inflation then leads to the complete
absence of catastrophic domain walls in the universe.

In summary, in the context of SUSY GUT's based on
semisimple gauge groups, we constructed a smooth version
of the hybrid inAationary scenario which can "naturally"
reproduce the observed temperature fluctuations in CBR with
a GUT scale —10 GeV consistent with the MSSM unifica-
tion and a "cornpactification" scale —10' GeV. This inAa-

tionary scenario does not produce any topological defects.
We also presented a specific model where our smooth hybrid
inflation is realized.
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