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It is shown that extremal magnetic black hole solutions of N=2 supergravity coupled to vector multiplets
X" with a generic holomorphic prepotential F(X*) can be described as supersymmetric solitons which inter-
polate between maximally symmetric limiting solutions at spatial infinity and the horizon. A simple exact
solution is found for the special case that the ratios of the X are real, and it is seen that the logarithm of the
conformal factor of the spatial metric equals the Kahler potential on the vector multiplet moduli space. Several

examples are discussed in detail.
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L. INTRODUCTION

Black holes seem to be a never-ending source of sur-
prises. While much has been learned about their behavior,
much remains to be understood, even at the classical level. In
this paper we study the classical supersymmetric solutions in
a general theory with N=2 supersymmetry. Previous work
on this subject can be found in [1,2]. The solutions appear to
have a richer structure than the more thoroughly studied
N=4 case. In Sec. Il we recall some aspects of N=2 super-
gravity. In Sec. III the magnetic solutions are described in
terms of trajectories in the special geometry of the N=2
moduli space which terminate at a supersymmetric fixed
point at the horizon. In Sec. IV we find that the equations can
be integrated for a restricted but large class of cases. An
intriguing relation between the Kahler potential on the
moduli space and the metric conformal factor emerges. Some
simple examples are worked out in detail in Sec. V. We do
not attain a complete characterization of the classical geom-
etry of N=2 black holes in this paper, but we hope that our
results prove useful for future efforts in this direction.

II. SPECIAL GEOMETRY AND N=2 SUPERSYMMETRY

We study N=2 supergravity coupled to n N=2 vector
multiplets in the framework of special geometry [3—6]. In
this section some formulas that will be needed in the follow-
ing are recalled. Further details can be found in [4] whose
notation we adopt. The supergravity theory is defined
in terms of a projective holomorphic section
&MY, —i2F \(¢)), A=0,1,...,n, i=1,...,n, of an
Sp(2n+2) vector bundle over the moduli space param-
etrized by ¢’. (We note that alternate conventions are often
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employed in which the definition of F, differs by a factor of
2i.) In some cases the theory can be described in terms of a
holomorphic function F(X) of degree two:

. . J
FA(@')=F X(¢')= EJ?KF(X)' 1

Given a prepotential F(X), or a holomorphic section
(XA, —i/2F ,), one can construct the entire scalar and vector
parts of the action.

It is convenient to introduce the inhomogeneous coordi-
nates

X ()

A:—
23008

Z%=1. (2)

We assume Z( ;) to be invertible, so that, in special coor-
dinates, 9Z%/ IPpi= 5?. In this case the complex scalars
Zi=¢' (i=1,...,n) represent the lowest component of the
n vector multiplets of N=2 supersymmetry. The Kahler po-
tential determining the metric of these fields is

K(Z,Z)=2In|X°|=—In[N,s(Z,Z) Z"Z*]

=—In3[f(2)+f(Z)+ %(zf—z"")<f,~—f,«>(],)
3

where N s=1/4(F s+ FAs) and f(Z)=(X°)"2F(X). In
the conformal gauge [4],

NasXAXx*=1. (4)

The graviphoton field strength, as well as the field strengths
of the n Abelian vector multiplets, are constructed out of
n+1 field strengths F ﬁ,,z a#W’,}— (?sz . The graviphoton
field strength is
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A
+ _4NAEX ﬁv+2 (5)
,uV_-NUXIXJ 7378

where the superscript + (—) denotes the (anti-)self-dual
part. This defines the central charge of the theory, since it
enters into gravitino transformation rules. The vector field
strengths which enter the gaugino supersymmetry transfor-
mations are

Fan=F ) =X\ T), (6)

The anti-self-dual vector field strengths F~ are part of the
symplectic vector

ﬁfA
. , 7
—2i0 ys F7*=iG} @

where again the expression for the matrix ./ ',y is derived
from the prepotential F(X) [4—6]. The vector part of the
action is then proportional to

Re I:"_AGX, 8)

and the graviphoton field strength can be written in the mani-
festly symplectic form

T,,=2X Gy, +F\F, 9)

The Lagrangian for the scalar components of the vector mul-
tiplets is defined by the Kahler potential as

8ij 9,.9" 3,8 g+, (10)
where g#” is the space-time metric, and
8ij=0:9;K(¢, ). (an

The gravitino supersymmetry transformation law, to lead-
ing order in Fermi fields, is

OYo=2V €~ sy T\ v, PeptiA e®,  (12)

where a,f=12 are SU(2) indices and A,=i/
2N s[X20 X 2-(9 X M X*]. The gaugino transformation
law is

502= 27"VMXAEH+ i y”)‘ﬁ;\’\enﬂeﬂ+ 2iy"A €,
(13)

Bogomolny-Prasad-Sommerfield (BPS) states of the
N=2 theory have a mass equal to the central charge z. It
follows from the supersymmetry transformation rules that
this is simply the graviphoton charge [6]

i

A
M=|ZI= qs\e)XA- zq(m)FA

= K2

g o
95 +q\ 9z + g(q?m)Z’—qém))fi—iq?mf‘,
(14)

where g(®) and q(m) are electric and magnetic charges asso-
ciated to i ¥ and F and comprise a symplectic vector. Dual-
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ity transformations of the N =2 theory correspond to differ-
ent choices of the symplectic representative (X, —i/2F ,) of
the symplectic geometry.

III. MAGNETIC N=2 BPS BLACK HOLES

In this section we discuss the general form of the super-
symmetric magnetic black hole solutions and their interpre-
tation as interpolating solitons. It has been shown by Tod [2]
in general that, for N=2 theories, a static metric admitting
supersymmetries can be put in the form

ds?=—e?VUdrP+ e 2Vgz2. (15)

For spherically symmetric black hole solutions U will be a
function only of the radial coordinate . By solving the Bi-
anchi identities dF*=0 we then find for the radial compo-
nent of the magnetic field strengths F fEZe, 09f 2¢

I:"ﬁ\=q"/r2 eV, (16)
Inserting (15) and (16) into the gravitino transformation law,

and demanding that the variation vanish for some choice of
€, we derive the following first order differential equation:

4U' =

_ [(ZNq)(ZNq)(ZNZ) |,
(ZNZ)(ZNZ) °° 17)

where U'=9JU/dp, p=1/r, and we employ the notation
(ZN@)=Z"N,s q*.

Equation (17) may be viewed as determining U as a func-
tion of the moduli fields Z*. A vanishing gaugino transfor-
mation further requires that the moduli fields obey

v § §
N \/(ZNZ)(ZNq)(ZNZ) Ao A
(2% 4 N (ZNg) a)-

(18)

Differentiating again with respect to p and substituting (17)
leads to the second order differential equation

(ZNg) 0) [(z4'7?

(ZA)"—((ZNZ) q ZAqO_qA

1 ( (ZNZ)(ZNq)(ZNZ)

Ayr —

2\ " @nnyang ) @r=0. a9
This equation is independent of U and can be viewed as a
generalized geodesic equation which describes how Z
evolves as one moves into the core of the black hole. Initial
conditions for Z are specified at infinity (p=0) correspond-
ing to the asymptotic values of the field. The first derivative
of Z is then fixed in terms of the charge of the black hole by
the supersymmetry constraint (18). Z will then evolve until
it runs into a fixed point. It is evident from (18) and (19) that
these fixed points are at

A

q
Z ilixxed= F > (20)
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where (Z*)’ =0. Each fixed point is typically surrounded by
a finite basin of attraction. The limiting form of the metric at
such a fixed point is found by integrating (17),

C
_U:—
e 7P (21)

where the constant ¢ is given by

_ A
C =\ qI;NAE qzzqo e K(Zﬁxed)/z. (22)

This corresponds to the maximally symmetric charged
Robinson-Bertotti universe. Thus, as in [7], the extremal
black holes may be viewed as solitons which interpolate be-
tween maximally symmetric vacua at infinity and the hori-
zon.

The locations of the fixed points (20) depend on the
charges but not on the asymptotic values of the moduli fields.
Thus if the asymptotic values of those fields are adiabatically
changed, the geometry of the black hole near the horizon
remains fixed. Symplectic invariance implies a similar struc-
ture for many of the dyonic and electrically charged extremal
black holes.

IV. SPACE-TIME GEOMETRY FROM KAHLER
GEOMETRY

In this section we consider a remarkably simple special
class of solutions which exist for a generic prepotential. We
will work in a symplectic basis in which ¢°=0 in order to
simplify the equations. In such a basis the fixed points
Z2% . move to infinite coordinate values. Thus solutions for
which the moduli field is constant at the fixed point (which
corresponds to the Reissner-Nordstrom solution) cannot be
described in this basis.! In the g°=0 basis it is straightfor-
ward to check that (17) and (18) are solved by

e2U(p):eK(Z,2_')—Km’ (23)

and

i

Zi=Z+ % p e K2, (24)

provided that the asymptotic value of Z’ is restricted to obey
Zi=7". (25)

Alternatively we may have

13

zi:z;+i% p e Kol2, (26)

provided that the asymptotic value of Z’ is restricted to obey

zZlL=~ZL.. (27)

'However, by using the manifestly symplectic constraint [6] in-
stead of the superconformal one [4], one can describe the Reissner-
Nordstrom configuration in terms of the Kahler potential, see ex-
ample 5.4.2
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The restrictions imply that these solutions exist only at spe-
cial points in the moduli space where all Z* are either real or
imaginary. More general solutions may be obtained from
these by symplectic transformations.

Thus the space-time metric is

dSZZeK(Z’,Zl=Z')—K°° dtZ__e~K(Z',Z’=Z')+KOC de’ (28)

where each Z' solves a three-dimensional harmonic equation
and is given in Eq. (24) or (26). Hence the logarithm of the
spatial conformal factor is identified with the moduli space
Kahler potential.
V. EXAMPLES OF N=>2 BPS STATES
A. Calabi-Yau magnetic black holes
The prepotential is

XAxBx¢
F = idABC XO . (29)

We consider pure imaginary Z4 and real d,pc (correspond-
ing to the classical Calabi-Yau moduli space),

e KD = — 24, ImZ* ImZ® ImZ€, (30)

where Imz*=1/2i(Z* ~ Z*) = 1m(Z*) .+ {,,,/r € ¥/

e d s pcImZAImZ?B Imz€ —1d 5

S\ [ pcmzImzPImz),. )
dppcImZAImZBImzC i a1
[dapcImzZAImZz8Imz )., ) 4 (1)

B. Massive and massless SU(1, n)/SU(n) supersymmetric
white holes

The prepotential is
F(X°.X")=(X°)?— (X', e K&A=1-|Z/2. (32)
Here the Z' are real:

i

Z'=ZL+ qT e K2, (33)
1-|z]?\ ! 1-|z>\ .
d52=<‘1__|7|2> dt*— —1—;—]-2—? dx?. (34)

In particular in the simplest case of i=1 we get

- 2Z.. q a’\"!
8u=8,'= ( I-— =) . (39
To satisfy the supersymmetry bound we require
Z, q
M=———-=0 (36)

-1z

and the geometry is
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&n=8; =\1—-——= (37

(-

r r )
These configurations are nontrivial in the limit when the
Arnowitt-Deser-Misner (ADM) mass tends to zero. It will be
interesting to understand if or when such states can arise in a
physical theory. The limit M —0 can be achieved via
Z »,—0. In this limit the scalar field becomes inversely pro-
portional to the radius r,

zin=1. (38)
r

For N=4 BPS states the analogous massless states have
been studied recently [8—10]. The configuration exhibits a
repulsive (i.e., antigravitating) singularity and was referred
to as a supersymmetric white hole [9]. The difference be-
tween the metric (37) for N=2 and the corresponding metric
obtained in [8,9] for N=4 is that gN~*=(gN=?)"2, This

does not change the repulsive nature of the singularity.

C. SO(2,1)/SO(2) x SO(2, n)/SO(2) x SO(n) BPS states

Here again we consider pure imaginary Z:

>

X -

e KZD =3 1mzs

(Ile)z—aZz (ImZ“)z) . (39)

The metric of the BPS configuration defined by the
Kahler potential is given by

ImZ°*((ImZ')*— (ImZ“)?)

-1
1 [Imzs(amzl)Z—(Imza)z)]J - 4o

8u=8ii =

The configurations presented in this example may contain
both types of supersymmetric states, those with attractive
singularities and those with the repulsive ones, depending on
the choice of the parameters describing the harmonic func-
tions

i
G
z'=z;+i—‘r Ve Kal2 j=I51,a=2,...,n}. (41)

Note that this example actually provides one of the particular
choices of Calabi-Yau magnetic black holes.

D. N=4, 2 pure supergravity black holes from Kihler
geometry perspective

Here we will analyze some previously known supersym-
metric black hole solutions in the framework of the mani-

RAPID COMMUNICATIONS

R5415

festly symplectic formalism [6]. The Kahler potential is dif-
ferent from the conformal gauge (4) and is given by

e KX AN, X3 (42)

1. SL(2,Z) axion-dilaton dyons
It is instructive to analyze the known SL(2,Z)-invariant
axion-dilaton dyonic black hole solution [11] of N=4 super-
gravity as a particular solution of N=2 supergravity coupled
to an N=2 vector multiplet. These solutions have complex
moduli. The prepotential for this theory is F(X)=2X°X".
The holomorphic section includes

X0 X1
—iX1>’ (—iX0> . (43)

For the axion-dilaton black hole X° and X! can be identified
with two complex harmonic functions #;, #, as follows:

Xl=9%,(%), X°=iFH,(%). (44)

XA
i

2

Fo ™

The Kahler potential is
e KON (J4,56,~F,7) =8, '), (4)

in agreement with the metric of the axion-dilaton black hole
found in [11].

2. Reissner-Nordstrom solution

The prepotential for pure N=2 supergravity is
F(X)=(X%)2. The Kahler potential of this theory in the
manifestly symplectic formalism [6] is given by

e KX = xR0 y-1(2)V-Y(F)=e VD (46)

where X°=V~1(¥) is a real (imaginary) harmonic function
for electric (magnetic) Reissner-Nordstrom extremal super-
symmetric black hole [1,2].

In conclusion, we have found a simple relation between
the special geometry describing the couplings of scalars and
vectors in extended locally supersymmetric theories and the
space-time geometry of the black-hole-type solutions in
these theories. It is likely that more general solutions with
complex moduli will be found in this framework.
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