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Duality symmetric actions with manifest space-time symmetries
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We consider a space-time-invariant duality symmetric action for a free Maxwell field and an
SL(2,R) X SO(6,22)-invariant effective action describing a low-energy bosonic sector of the heterotic string
compactified on a six-dimensional torus. The manifest Lorentz- and general coordinate-invariant formulation
of the models is achieved by coupling dual gauge fields to an auxiliary vector field from an axionic sector of

the theory.

PACS number(s): 11.15.—q, 11.25.Mj

L INTRODUCTION

The understanding of the important role played by duality
in (super-)Yang-Mills theories [1-3], supergravity, and the
theory of strings [4—8] has allowed one to gain new insight
into the structure of these theories and to find a deep rela-
tionship between their different (dual) versions. If target
space duality (T duality) and S' duality (which is the gener-
alization of the electric-magnetic duality) are the exact sym-
metries of string theory [4—6], it is natural to assume that
there should be a version of the theory where these duality
symmetries are manifest.

A T-duality symmetric string action was proposed by
Tseytlin [9] and generalized to a case of the heterotic string
by Schwarz and Sen [10]. This required modification of
space-time transformations of fields. Note, however, that ef-
fective supersymmetric field actions which describe the low-
energy behavior of superstrings do have a global noncompact
symmetry related to T duality, while S duality is only a sym-
metry of the equations of motion [11-13].

In [13] Schwarz and Sen proposed models for describing
antisymmetric gauge fields in D-dimensional space-time,
where S-duality symmetry was lifted to the level of action,
their results being the generalization of earlier work by Flo-
reanini and Jackiw [14] and Henneaux and Teitelboim [15]
who constructed actions for describing self-dual tensor fields
in (4p + 2)-dimensional space-time (p=0,1, ... ). The gen-
eral feature of the models [9,10,13—15] is that, because of
the explicit fixing of the time direction, they lose manifest
Lorentz and general coordinate invariance, which, however,
are replaced by some modified transformations. This is an
example of how duality affects the symmetry structure of the
theory.

In addition, one may try to look for a formulation of du-
ality symmetric actions in which conventional space-time
symmetries are restored. An attempt to do this for a duality
symmetric version of Maxwell theory! [13] was undertaken
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in [17]. Having been inspired by this paper we proposed in
[18] a manifestly space-time and duality symmetric formula-
tion of (supersymmetric) Maxwell theory by enlarging the
Schwarz-Sen model [13] with an auxiliary vector field
u,,(x) and an antisymmetric tensor field A,,,(x)
(m=0,1,2,3) in such a way that upon solving for equations
of motion and gauge-fixing additional local symmetries as-
sociated with the auxiliary fields the model [18] could be
reduced to that of Schwarz and Sen. The physical nature of
u,,(x) and A,,,(x) was supposed to be a relic of a gravita-
tional vielbein and an axionlike potential, respectively.

In the present paper we further develop the duality sym-
metric model of [18]. In particular, we will show that the
model indeed has a local symmetry (anticipated in [18]) al-
lowing one to choose u,,(x) to be a constant unit-norm time-
like vector and, thus, to demonstrate that the duality symmet-
ric models [13], with their nonconventional space-time
symmetries, correspond to a definite gauge choice for auxil-
iary fields in corresponding duality symmetric models with
ordinary Lorentz and general coordinate invariance. Using
the example of a model for two Abelian gauge fields in
D=1+3, we shall show that duality between these two
fields arises due to their specific coupling to a pseudoscalar
sector of the theory through the field u,,(x), and the latter
can be gauge fixed to a constant timelike vector by use of a
local counterpart of a Peccei-Quinn symmetry of axion mod-
els. Thus u,,(x) can originate, in fact, from the pseudoscalar
sector of the theory and, at the same time, carry some prop-
erties of a local Lorentz frame field. In Sec. III we will
present a space-time and SL(2,R) X O(6,22)-invariant effec-
tive action which describes a low-energy limit of a toroidally
compactified heterotic string.

II. DUALITY SYMMETRIC MAXWELL ACTION

Let us start with an action describing a free Maxwell field
A, (x) and a pseudoscalar (““axion”) field a(x) in D=1+3
Minkowski space:

1 1
S=f d4x{ - ZF,,,,,F"’"—' ‘2—[3ma(x)_um(x)]

X[ama(x)‘um(x)]_epqmnupanmn > (1)

where the first term is the ordinary Maxwell Lagrangian with
F,,=0,A,(x)—3d,A,(x) and the last two terms form the
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Lagrangian which, upon solving the equations of motion for
u,,(x) and using a local symmetry of (1) under transforma-
tions,

da(x)=¢(x),

produces (see, for the details [19—23] and references therein)
the free Lagrangian for the scalar field a(x)

Ot (X) = 0 (%), 2)

L=-— %&ma(x)o'*'”a(x), 3)

or its dual
1 [m AR
L= 3 OmAnpd"A"P, 4)

with the duality relation between a(x) and the antisymmetric
field A,, to be

da(x)= El’””PémA,,p. (5)

The role of u,,(x) in (1) is to be the gauge field of the
symmetry (2) and to ensure (5) on the mass shell.
In addition to (2) the action (1) is invariant under the
Abelian gauge transformations of A,,(x) and A,,,(x):
OA(x)=0,b(x), OA,,=0[mbu(x). (6)
Note that without violating local symmetry (2) one can

couple fields from the pseudoscalar sector of (1) to the gauge
field in an axionlike fashion:

Sim=—f d4x(¢9ma—um)e'”"11’A,,F,p. 7)

The sum of (1) and (7) is explicitly invariant under (2). It is
also invariant under the gauge transformations (6) if one re-
quires that the variation of A,, acquires the contribution
6y pn=b(x)F,,, . Eliminating either u,, and A, or u,, and
a(x) by use of equations of motions and local symmetries
one gets the dual versions of the axion theory [20-23].

Now the question arises whether it is possible to replace
(1) with an action which would be duality symmetric in the
Maxwell field sector, still possess ordinary Lorentz invari-
ance, and be equivalent (at least classically) to the action (1).
The answer turns out to be positive [18].

From [13] we learn that for making the electric-magnetic
duality manifest at the level of action one has to double the
number of Abelian fields [introducing A (x) (@=1,2)] and
construct a duality symmetric action in such a way that equa-
tions of motion obtained from this action lead to the vanish-
ing of the self-dual tensor

1
Wnn:%'BFﬁn_F;gzzemnpq

FBF,(§)

where £*F= — #P* (£12=1) and F} "=
‘When

1 lpa
2 EmnlpF .

Fun=0 &)
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one of the Abelian fields becomes completely determined
through another one, and for the latter we get the free Max-
well equations by differentiating (9). Then the duality (9)
between the two gauge fields reduces to the duality between
the electric and magnetic strength of the gauge field which
has been chosen to be independent.

The duality symmetric action proposed in [13], which
gives (9), has the form

— 1 4 ia BB iapa
S__E d*x(B'*£*FE7+B'*B}), (10)
where

1 .
Ef=F3=03,Af—d:A§, B”"=§a”"F]?'k=s”k6-4,f,
(11)

and i,j,k=1,2,3 are spacial indices. The action (10) is in-
variant under modified space-time transformations of A{" (in
the gauge A5=0):

A =x"v* 9 AT+ vixk I AT+ vixk PR (12)

where the first two terms describe the ordinary Lorentz
boosts along a constant velocity v’ and the third term van-
ishes on the mass shell (9).

The model constructed this way [13] is classically and
quantum mechanically [24] equivalent to the free Maxwell
theory.

The covariantization of (10) is achieved by coupling the
self-dual tensor (8) to the auxiliary field u,,(x) from the
pseudoscalar part of the Lagrangian (1) as follows:

1 1
— 4 _ _rpa amn m np
S fd x( 3 F, .F +ﬁ(_ulu )u FonF " Pu,
1 i m mn,
—5(8ma—um)(o7 a—u™)—e""Pu,d,A,,|. (13)

Action (13) differs from that considered in [18] at the
following point. In [18] u,,(x) was required to have the
negative unit norm

u’=u,u

M= —ugupgtuu;=—1 (14)
and played the role of a component of a local Lorentz frame.
In (13) we weakened the normalization condition by intro-
ducing the norm of u,(x) only into the term containing
Fmn - We shall demonstrate the relationship between the two
versions of the model later on.

The necessity to introduce the norm of u,(x) into the
F o, term is dictated by the requirement to preserve the local
symmetry (2). The action (13) is invariant under the trans-
formations (2) provided A, (x) and A,,,(x) are transformed
as follows:

o(x

saa =20 _e(x)
u

-~ Wh?

FBFB un,

mn

SA pn Fru, FPsy 7P,

(15)
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Then, since the solution to the equation of motion of A,,,,
obtained from (13), is

U (X) =3, f(x), (16)

where ¢(x) is a scalar function, we can use the transforma-
tions (2) to put® u,,= 62 . In this gauge the action (13) re-
duces to (10), and the transformation of Ay, in (15) (with
@=x'v") is combined with the corresponding Lorentz trans-
formation producing (12).

We see that u,,(x) plays a double role. On the one hand it
is the gauge field of local Peccei-Quinn symmetry and on the
other hand it corresponds to a component of a local Lorentz
frame.

The action (13) has another local symmetry [18] [which
generalizes that of (10) [13] ] under the following transfor-
mations of A;, and A, :

A, —Antu,e%(x), 17)
¢ e
Apn— A — Pz ﬂpul’un+ Pl ﬁ’,‘fpu”um .

This symmetry allows one to reduce the general solution
of the equations of motion of A

e'”‘”"&m(u,,ﬁgru’)=0 (18)

to Eq. (9) (see [13,18] for the details). In the gauge where
Fn=0, the equations of motion of u,, lead to the same
expressions for a(x) and A,,, that follow from (1).

To transit from (13) to (1) we must solve Egs. (18) for one
of the gauge fields in terms of another one and substitute the
solution back to (13) [13,18]. If we skip the kinetic term for
a(x) in (1) and (13), A,,,, becomes a pure gauge as well, and
the three actions (1), (10), and (13) become classically
equivalent and describe dynamics of a single Maxwell field.

Now we shall demonstrate how the action (13) is related
to the version considered in [18]. There the vector field u,,
[in (13)] was subjected to the normalization condition (14)
(we shall denote the normalized vector as u,,). This caused a
problem of establishing the explicit invariance of the model
under the transformations (2), (15). To ensure this invariance
one should couple (13) with the normalized #,, [18] to scale-
invariant gravity [25]. Then the action takes the form [we
skip, for simplicity, the kinetic term of a(x)]

1 1
S= J d*xy= g( — g P 2 TP,

1 .
— —=—€""",0,A ,,, +*R®*+ 69, P5"D |, (19)
-8
where g,,,(x) is a metric, g=detg,,,, R(x) is the scalar
curvature, and ®(x) is a conformal scalar field. The action

(19) is invariant under (2), (15) provided g,,,(x) and ®(x)
subject to the scale transformations

2To escape singularities we should require the norm of u,, to be
nonzero.
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08 mn(X) = (4" 00 @) gmn(%), 6D (x)=— (4", ) P(x).

(20)
Making redefinition of the metric and #,, as

1
() = i @)

gmn(x)_)q)2gmn’
[which preserves the condition® (14)] we can rewrite (20) in
the form which describes coupling the model to the Einstein
gravity:

s= [ d*x\g| — 2 Fe Fomns - imge gunng
8 g mn 4u mn' up

1
— == O™, A, +R

. 22
7 (22)

The only place where ®(x) is present in (22) is the term
P eI ,0,A,,, . Then, putting ®(x)it,,(x)=u,(x), mak-
ing use of (14) and, taking the flat limit we get the action
(13).

This concludes the establishment of the links between dif-
ferent versions of the duality symmetric formulation of free
Maxwell theory.

III. LOW-ENERGY EFFECTIVE ACTION
IN STRING THEORY WITH MANIFEST SL(2,R) X 0(6,22)
AND SPACE-TIME SYMMETRY

In this section we present manifest space-time-invariant
generalization of the SL(2,R)X0(6,22)-invariant low-
energy effective action [13] describing heterotic string theory
compactified on a six-dimensional torus [12,26]. To do this
we should introduce 28 dual pairs [27] A;¢ (a=1,...,28)
of Abelian gauge fields and couple them to scalar fields in an
SL(2,R) X O(6,22)-covariant way. This is achieved by modi-
fying the self-dual tensor (8) as

Foi= FoPLFE) — (L 2 L5)*P(LTML)* F 1 *

J-g

= S (= ) B LMY g 7PP79, (23
where 2 X2 matrix-valued scalar field
1 1 Ai(x)
%:X;G")(Mx) A3+A3)” @4
satisfies the conditions
M=, MBM=ZF. 25)

M, %, and A,® transform under the global SL(2,R) trans-
formations w as

Mo Mo, 0FoT=% A,=0TA,. (26)

3Note that one can introduce (14) into (19) with a Lagrange mul-
tiplier which transforms under the scale transformations in an ap-
propriate way.
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The 28X 28 matrix-valued scalar field M(x) satisfies the
conditions

MT=M, MTLM=L, 27
where
0 Iy O
L=|1s O 0 |. (28)
0 0 —I

Under a global O(6,22) rotation M, L, and A, transform as

|

8 mn

s=fd4x\/—_g

1 1
+ ggmnTr(ﬁmMLﬁnML)“ Tgepq’””upanmn+R .

It can be rewritten in a simpler form

1
S=fd4x —g(ﬁumF,’f,,‘f’”ﬁ“’“ "Py,

1 1
T epqmnupanmn +R- ngntr( O M L3y ML)
-8

1
+ gg”’"Tr( 3, ML3,ML) (32)

which, upon fixing the gauge u,,=(1/\/— gOO)é?n, A,..=0,
directly reduces to the Schwarz-Sen action [13].

Note that we did not add the kinetic term of a(x) (1), (13)
to the actions (31) and (32). This is because we would like to
identify a(x) with A;(x) which has already entered the ac-
tions (31) and (32) as part of the dilaton-axion matrix .2
(24). The coupling of . to the gauge fields ensures the
manifest SL(2,R) symmetry but breaks local transformations
of Ay(x) [or a(x) in (2)] down to the global Peccei-Quinn
shifts which form a subgroup of the global* SL(2,R) (26).
Such a coupling violates duality between the pseudoscalar
field and A,,, in favor of the former and makes A,, an
auxiliary field, which can be eliminated from (31), (32) by
solving for the equations of motion of u,, and A,,,, and
substituting u,,(x) back into (31), (32) in the form
U= Oy @(x) (16).

It is tempting to look for a version of the low-energy
effective string action which would be manifestly duality
symmetric not only in the gauge sector but in the axion sec-
tor (1), (7) as well. Might it imply a localization of the
SL(2,R)?

“Note that the action (31), (32) is still invariant under the local
transformations of u,, (2), A,,, and A,,, (15).
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M-QTMQ, QTLO=L, A,—Q7A,. (29)

(See Ref. [13] for the details.) The transformation law of the
self-dual tensor (23) under SL(2,R) X O(6,22) is

Fun— 0 1Q 717, (30)

Using the properties of the fields described above one may
convince oneself that the following general coordinate-
invariant action has SL(2,R) X 0(6,22) symmetry:

1 1 1
— —FoYH . Z)*B(LTML)*FB-b mn 4 mumﬂf%“BMabﬂ’b "Pu,— ngntr(dmt%gﬁn%‘ag)

(31)

IV. CONCLUSION AND DISCUSSION

We have constructed the space-time-invariant duality
symmetric action for the free Maxwell theory and the
SL(2,R)X0(6,22) invariant effective action describing the
low-energy bosonic sector of the heterotic string compacti-
fied on a six-dimensional torus. This has been achieved by
coupling the self-dual stress tensor, constructed out of the
dual gauge fields, to the auxiliary vector field from the ax-
ionic sector of the theory.

One can add to the bosonic action (13) the kinetic term
for neutral fermions:

Sp= —if d*x iy o, . (33)

Then the full action becomes supersymmetric [13,18] under
the following transformations with odd constant parameters
e“=i'y5Z"B eP:

5Af,’,=it,—byme“,

1 1
8= P Y Yue® = T U, T Uy, 7, P,
(34)

all other fields being inert under the supersymmetry transfor-
mations.

We see that the supersymmetric transformation law for
the fermion ¢(x) (34) is nonconventional and reduces to the
ordinary one only on the mass shell (9). This reminds us of
the problem with the Lorentz transformations (12) which we
have just solved. Using the same reasoning that lead us to
introducing u,,(x) one may try to find a superpartner of
u,(x) whose presence in the theory gives rise to a local
fermionic symmetry [being a counterpart of (2), (15)] which
involves ¢(x) and leads to (34) upon gauge fixing the local
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fermionic symmetry. This construction may arise from cou-
pling the models discussed above to supergravity, from
which, in fact they originate.

The covariantization procedure for duality symmetric ac-
tions [14,15,9,13] proposed in [18] and developed herein is
applicable to Abelian tensor fields in space-time dimensions
other than D=4 and may turn out to be useful for finding
new dual versions of D =10 supergravity [13].

Note added. After this paper was submitted for publica-
tion the authors became aware that earlier the nonmanifestly
Lorentz-invariant duality symmetric action (10) was consid-
ered by Zwanziger [28] [see also [29] and references therein
for detailed analysis of coupling the action (10) to electri-
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cally and magnetically charged matter fields]. We are thank-
ful to C. Preitschopf for pointing our attention to these ref-
erences.
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