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Cosmic colored black holes
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We present spherically symmetric static solutions (a particlelike solution and a black-hole solution) of the

Einstein-Yang-Mills system with a cosmological constant. Although their gravitational structures are locally
similar to those of the Bartnik-McKinnon particles or the colored black holes, the asymptotic behavior be-
comes quite different because of the existence of a cosmological horizon. We also discuss their stability by
means of a catastrophe theory as well as a linear perturbation analysis and find the number of unstable modes.
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Self-gravitating structures with non-Abelian fields have
been intensively studied from various points of view since
Bartnik and McKinnon (BM) particle [1]and colored black-
hole solutions [2] were found by the numerical method.
Since such new types of solutions with non-Abelian hair
show a variety of features and have many interesting prop-
erties, studying them may reveal new important aspects in
general relativity such as the no hair conjecture or a stability
analysis via a catastrophe theory [3,4]. Those objects may be
very small even if they exist and they would be important
only in the early history of the universe [5,6]. In the early
universe, however, we usually expect a vacuum energy,
which is equivalent to a cosmological constant. From an ob-
servational cosmological point of view, some astrophysicists
have pointed out that a small cosmological constant may
explain the observed number counts of galaxies [7]. We
therefore have wondered why a self-gravitating non-Abelian
structure with a cosmological constant has not been studied
yet. Such non-Abelian structures might have been formed in
the early universe and might have played an important role
in cosmology. Hence it may be worthwhile studying such
objects.

In this Rapid Communication we present both particlelike
and black-hole non-Abelian solutions with a cosmological
constant. Here we will consider only a localized object, such
as the BM solution or the colored black hole, in the universe
with cosmological constant. Then we assume the cosmologi-
cal horizon, inside of which a localized object exists. Then
the spacetime approaches the Schwarzschild —de Sitter solu-
tion or the Reissner —Nordstrom —de Sitter (RNdS) solution
asymptotically near the cosmological horizon. Hence a new
solution is a direct generalization of a RNdS solution from
the U(1) gauge field to the SU(2) gauge field [8].We study
structures and thermodynamical properties of new solutions
and also discuss their stability by means of a catastrophe
theoretical method as well as a linear perturbation analysis.

We start with the action

1 1S= d xg g(R —2A) —— 2TrF2, (1)16mG 16mg
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where the SU(2) Yang-Mills (YM) field strength F is ex-
pressed by its potential A as F=dA+AAA and g is a cou-
pling constant of the YM field.

Since we are interested in the case where the YM field is
localized and the spacetime approaches asymptotically the de
Sitter solution because of a cosmological constant A, the
metric of the spherically symmetric static spacetime is writ-
ten as

( 2Gm(r) A
ds = 1 ——r' e '""&d~'

)

I'

+I 1—2Gm(r) A——r ~ dr +r (d8 +sin Hdt)t ).3 )

(2)

As for a SU(2) YM potential, we adopt the following
form

A = w(r) rid 8+ {w(r)r2+ cotHr3)sin&de, (3)

which is the same as that of the colored black hole and is
obtained from the most generic spherically symmetric one
with the ansatz of being static and having no "electric"
charge.

The field equations derived from (1) are

I =~1—2m 1 iw' (1—w )
r 2 +

r 3 ) cr 2ct r

2w

2m 1——r' e '~'
r 3

)

w(1-w ) =0,
r2

where we have used dimensionless variables normalized by
A and G as r= ~Ar, m=—~AGm. Aprime denotes a deriva-
tive with respect to r. a=g//GA is a normalized coupling
constant, which is only one parameter appearing in those
basic equations.

We consider two classes of solutions: One is a particlelike
solution (first class) such as the BM solution and the other is
a black-hole solution (second class) such as the colored black
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hole. Before showing our results, we have to discuss bound-

ary conditions of the field functions. Because of the asymp-
totic structure of our spacetime, we expect a cosmological
horizon. Hence we need two boundary conditions both at the
origin (r=0) or at the black-hole horizon (rh) and at the
cosmological horizon (r,). As for the metric functions m(r)
and 8(r), these must be finite in the whole region. We set
8'= 0 at the cosmological horizon. For the YM field, a regu-
larity at the origin requires m= ~1 and ~'=0. We can
choose m=1 without loss of generality. At the black-hole
horizon, we use the same boundary condition as that of the
colored black hole; i.e., w'(rh) is described by w(rI, ) from
the condition for a regular horizon and w(ri, ) becomes a
shooting parameter. At the cosmological horizon, although a
value of ~ seems to be free in the present coordinate system„
it must be analyzed more carefully. It is useful to use a new
coordinate g defined by r =Rsiny (g e [O,m/2]), where R is
a radius of the cosmological horizon locating at y= m/2. The
boundary condition at g= m/2 is expressed by dw/dy=O
because the spacetime approaches the RNdS spacetime as-
ymptotically near the cosmological horizon. However, be-
cause the YM equation in terms of p becomes singular at the
cosmological horizon (y= m/2), we use the previous r coor-
dinate and transform the r coordinate to the tortoise coordi-
nate (r*), defined by dr/dr*=1 2Gm/r A—r /3, on—ly
near the cosmological horizon. It shifts the cosmological ho-
rizon away to infinity (r*—+~) and makes it easy to impose
the regularity at the cosmological horizon. Checking the
boundary condition at the cosmological horizon in terms of
the y coordinate as well, we found new solutions numeri-
cally. We shall discuss a particlelike solution and a black
hole separately.

(1) Particlelike solution. Under the above boundary con-
ditions, we have a trivial analytic solutions: ~=1, m=0,
8'—=0, which is the de Sitter solution.

Nontrivial particlelike solutions we have found are some
kind of extension of the BM solution. We show the profiles
of the field functions in Fig. 1. In the region where the YM
field is located, the new solution is very similar to the BM
solution. We find a family of discrete solutions each of which
is characterized by the node number i of the YM potential.
The asymptotic behaviors, however, become quite different
from those of the BM solution because of the existence of
A. The YM field of the BM solution damps faster than-r and it has no global charge relating to the gauge field.
This is the reason why we classified the BM solution into a
globally neutral type in the previous paper [3].In the case of
the new solutions, however, the YM field does not vanish
and continues to exist over the cosmological horizon. This
produces an effective charge at r = r, defined by

Q,rr= f„gtrF r sin8d Hd P; hence we expected that the

spacetime approaches the RNdS spacetime asymptotically.
We have also found that the effective charge gets large when
the normalized coupling constant a becomes small, i.e.,
when g decreases or A increases.

A new family of solutions has a critical coupling constant
a„-1.75, below which no solution exists except for trivial
ones. That is to say a nontrivial solution disappears when
A gets large and/or g gets small. We can easily understand
this as follows. For a general relativistic fluid with nonzero
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vacuum energy density p„„(or a cosmological constant
A) if pf /p c» 2, the perfect fiuid cannot be localized as an
isolated starlike object, where p& is a fiuid density [9]. For
our new solution, we shall introduce the mean energy density
of the YM field, pv~= M/(3mro). —ro is the effective radius
at which p&NI of the YM field drops by half. Comparing
pv~ with p„,=A/8mG, we find that a new solution does not
exist for the case of pv~/p„„»5. This result is consistent
with the perfect Quid case and we expect that this property
may be universal for any matter with a cosmological con-
stant. The physical reason why there is the critical value
u„may be explained as follows: The size of the self-
gravitating nontrivial structure is ro- ~G/g, while the radius
of cosmological horizon is r, -(3A) ~ . Then, if ro)r, , i.e.,
u~1, no particlelike solution can exist in the de Sitter back-
ground spacetime.

(2) Black-hole solution. Now we turn to the black-hole
solutions. It is easy to check that the Schwarzschild —de Sitter
solution (w = ~ 1) and the RNdS solution (w —=0) are trivial
solutions.

As for a nontrivial black-hole solution (we call it the cos-
mic colored black hole), we plot the mass-horizon radius
relation in Fig. 2. Note that the mass of a black hole M is
defined by

2

M =m(r, )+ Q.rr
2rc

The reason is as follows: A new solution has an effective
charge at the cosmological horizon r, and it approaches the
RNdS spacetime asymptotically. Then the mass function m
includes a contribution of a gauge field. It is plausible to
subtract it in the definition of the mass of a black hole just as
in the RNdS solution. Furthermore, this definition of M pro-

FIG. 1. The YM potential w and metric functions m, 8' of par-
ticlelike solutions for u=g/gGA=2. 5 (solid lines) and =4.0
(dashed lines) in terms of g. y= m/2 corresponds to the cosmologi-
cal horizon. These solutions have one node in the half-sphere
(0»y» m/2). The behaviors of the functions are similar to the BM
solution near the origin. From this figure, we And that derivatives of
each function with respect to g vanish at the cosmological horizon
and the spacetime has a reflection symmetry.
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FIG. 2. The mass-horizon radius diagrams of the cosmic colored
black holes for n g//=—GA=10.0(a[the black-hole horizon(BH)],
a '[the cosmological horizon(CH)]), =4.0[b(BH), b'(CH)],
=2.2[c(BH), c'(CH)], and =1.9[d(BH), d'(CH)]. We also plot
those of the RNdS black holes for their charges /GAQ = 0.1 and

0.25 (the dotted lines) and the extreme points of all RNdS black
holes (the dot-dashed line). We find that the cosmic colored black
holes for a, a ' and b, b' coincide with the RNdS black holes with
the same charge at the cosmological horizons, while the cosmologi-
cal horizons for c' and d' finish on the extreme line.

vides the conserved Abbott-Deser mass (AD mass) [10] for
the RNdS black hole, although it is not certain whether this
is true for the present cosmic colored black holes.

For the RNdS solution, there are in general three hori-
zons: an inner horizon, a black-hole horizon, and a cosmo-
logical horizon (the dotted lines in Fig. 2). In Fig. 2, the solid
lines denote the black hole and the cosmological horizons
(rh&r, ) of the cosmic colored black holes. In the limit of
rI, ~O, these branches end up with particlelike solutions. The
behaviors of solutions depend on the coupling constant n.
For a large coupling constant n&2.3, the black-hole branch
reaches that of RNdS solutions, and makes a bifurcation
point. This behavior is similar to a family of monopole black
holes in the Einstein-Yang-Mills-Higgs system [4], where a
family of monopole black holes merges to the Reissner-
Nordstrom black-hole branch. The monopole black hole has
interesting properties depending on their self-coupling con-
stant X such that there are two types of nontrivial solutions
for small X., one of which is more stable than the other. One
may expect that the cosmic colored black hole has similar
properties, but this turns out to be forbidden by catastrophe
theory. This is so because a family of monopole black holes
constructs a swallow tail catastrophe, which needs at least
three independent parameters, while the present system has
only two parameters, i.e., n and a radius of the black-hole
horizon.

For a small coupling constant u(2.3, the cosmic colored
black-hole solution is not bound up with the RNdS branch
but disappears on the way. We can understand the reason for
this by looking at the branch of the cosmological horizon.
The end point of the branches merges to the extreme line of
the RNdS black holes, where the black-hole horizon and cos-
mological horizon coincide with each other. When the mass

FIG. 3. The mass-temperature diagram of the cosmic colored
black holes for cr = 10.0 (solid lines), =4.0 (dotted lines), and =2.0
(dot-dashed lines). We also plot those for the RNdS black holes
with the same charges. For the large coupling constant n (e.g. ,
10.0), the specific heat will change its sign two times, but there are
no changes for small cr (e.g., 2.0). The temperatures of both black
hole and cosmological horizons of RNdS black holes intersect at the
point F. , but the cosmic colored black holes do not have such a
point. This will change the fates of two types of black holes.

of a cosmic colored black hole gets large, the radius of its
cosmological horizon would become smaller than that of ex-
treme RNdS black holes. However, although a cosmic col-
ored black hole is different from the RNdS black hole, the
asymptotic behavior should be the same. Hence it is likely
for cosmic colored black holes to disappear at the extreme
point of the RNdS black hole. When the coupling constant
gets smaller even further (cr & n„-1.75), the cosmic colored
black hole does not exist as the particlelike solution.

To discuss the thermodynamical properties of the cosmic
colored black hole, we plot temperatures at both black hole
and cosmological horizons of the cosmic colored black holes
in Fig. 3. The temperature at the cosmological horizon has a
similar mass dependence to that of the RNdS black-hole
qualitatively, while there is a big difference for that at the
black-hole horizon. In the RNdS black-hole case, when the
mass of a black hole gets small, a sign of the heat capacity at
the black hole horizon changes from negative to positive,
and the temperatures at both horizons coincide at a point E in
Fig. 3. In the limit of the extreme black hole, the temperature
vanishes. On the other hand, for the cosmic colored black
hole when the mass of the black hole gets small, its tempera-
ture diverges though there is some range where the sign of its
heat capacity becomes positive. This behavior is similar to
that of the colored black hole. This may be understood by the
same mechanism explained in Ref. [11].

Those thermodynamical properties may allow us to dis-
cuss the evolution of the cosmic colored black holes. If there
is initially a RNdS black hole whose mass is large enough,
its mass gradually decreases via the Hawking radiation be-
cause the temperature at its black-hole horizon is higher than
that at the cosmological horizon. At the point E in Fig. 3
where the two temperatures eventually become equal, how-
ever, the energy cruxes from both horizons balance and the
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FIG. 4. The mass-horizon radius diagram of the cosmic colored
black holes with node number i = 1,2 and the RNdS black holes for
n=10.0. There are two bifurcation points 8; (i=1,2), which cor-
respond to the cusp catastrophes. The solid and the dotted lines
have one and two unstable modes, respectively.

black hole does not evaporate further. On the other hand, this
scenario cannot be applied to the SU(2) YM system, because
af the existence of the cosmic colored black holes. The cos-
mic colored black hole has larger entropy than the RNdS
black hole with the same mass. Hence, the RNdS black hole
shifts to the cosmic colored black hole at the bifurcation
point. After this, since there is no intersection of two tern-

perature curves unlike in the RNdS case, the evaporation
does not stop, but rather it will be accelerated, and finally a
particlelike solution will remain.

Are the cosmic colored black holes stable or not! Here we
use two methods in order to answer this question. One is the
catastrophe theoretical method [12], which is useful in dis-
cussing a relative stability among several families of solu-
tions and is widely applied in various research fields includ-
ing astrophysics. The other is the usual linear perturbation
method, with which we can find unstable modes explicitly
and show the number of such modes.

First we show the former method. We choose the mass M
and the entropy S of the black hole as a control parameter
and a potential function in the catastrophe theory, respec-
tively. The entropy S is related to a radius of the black-hole
horizon as S= mrh, hence, rz is qualitatively equivalent to2.

the entropy S. We show the M —r& relation for a= 10.0 in
Fig. 4. B; (i = 1,2) describe the bifurcation points consisting
of branches of cosmic colored black holes with i nodes and
of the RNdS black hole, and M; (i = 1,2) are masses of black
holes at these bifurcation points B; . The structure at each
bifurcation point in a plane spanned by the control parameter

and the potential function is classified into a cusp catastro-
phe. Since the cosmic colored black hole has larger entropy
than the RNdS black hole, the cosmic colored black hole is
more stable than the RNdS black hole with the same mass by
means of catastrophe theory. Provided that the RNdS black
hole with M~M& has n unstable modes, it will find another
unstable mode at the bifurcation point B, and then has
(n+ 1) unstable modes in the range of M2(M(Mt. On the
other hand, the cosmic colored black hole with one node has
n unstable modes. Similarly, at the point B2, the RNdS black
hole will get another unstable mode while the cosmic colored
black hole with two nodes has (n+ 1) unstable modes, and

so forth. The particlelike solution has the same number of
unstable modes in its branch. Note that if n=O, i.e., the
RNdS black hole with M)M& is stable, then the cosmic
colored black hole with one node is also stable. Hence we
only have to investigate the stability of the RNdS black hole.
However it is impossible to study it by the catastrophe
theory, and therefore we apply the linear perturbation
method. Before showing our results it should be stressed that
the RNdS black hole with a U(1) gauge field is stable.

Here we consider only radial perturbations. Writing down
the perturbation equations and drawing their potential form,
we can see that a cosmological constant has a tendency to
stabilize the unperturbed solution. Analyzing the stability in
detail numerically, however, we find that the RNdS solution
with M~M& has one unstable mode. We have also con-
firmed that the number of unstable modes of the RNdS black
hole increases one by one at the bifurcation points (B;).
Hence we conclude that the cosmic colored black hole with i
nodes has i unstable modes [13].This result does not depend
on the coupling constant u.

In this paper we have investigated a particlelike solution
with a cosmological constant and the cosmic colored black
hole, which are the first self-gravitating non-Abelian struc-
tures with a cosmological constant. The gravitational struc-
ture is definitely changed by the cosmological constant; in
particular, an effective charge appears at the cosmological
horizon. Although the new solution is not stable, we may
expect some important effects in the astrophysical process
caused by the BM solutions and/or the colored black holes
[6].
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