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Effective energy for (2+1)-dimensional QED with semilocalized static magnetic fields:
A solvable model
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We evaluate the exact (2+1)-dimensional QED effective energy for charged spin-0 and spin-2 fields in the

presence of a family of static magnetic field profiles localized in a strip of width X. . The exact result yields an

infinite set of relations between the terms in the derivative expansion of the effective energy for a general
magnetic field. Upon addition of the standard Maxwell magnetostatic energy, the minimum energy configura-
tion at fixed Aux corresponds to a uniform magnetic field.

PACS number(s): 11.10.Kk, 11.10.Ef, 12.20.Ds

The effective action and the effective energy are impor-
tant tools for the study of quantum electrodynamics [1,2].
Using the proper-time technique, Schwinger showed [1] that
the QED effective action can be computed exactly for either
a constant or a plane wave electromagnetic field. This result
was later adapted to (2+1)-dimensional QED (QED2+t)
with constant fields by Redlich [3].For more general electro-
magnetic fields one generally performs some sort of pertur-
bative expansion, such as the derivative expansion [4] which
yields the large distance behavior of the theory. This ap-
proach was recently applied to QED2+i [5], showing, (for
example) for the special case of zero electric field and static
magnetic field, that while the zero derivative term increases
the effective energy, the next order correction term with two
derivatives tends to decrease the effective energy. The ques-
tion of vacuum stability is inaccessible in a derivative expan-
sion, so more powerful tools are required to study it. In this
paper we make a first step towards the nonperturbative un-
derstanding of such a system by considering a new exactly
solvable model which has a spatially varying magnetic field.
We expect our model to be relevant for recent investigations
of symmetry breaking [6,7] and finite temperature effects
[8,9] in QED2+i.

We show that the QEDz+t effective energy for charged
spin-0 and spin-2 particles of arbitrary mass can be computed
exactly in the presence of time-independent but spatially
varying magnetic fields of the form

extent in the Y direction and of width X in the x direction. In
the limit X ~ea the magnetic field in (1) tends to a uniform
one of strength B. The constant strength B sets a length scale
1/geB known as the magnetic length, and the derivative ex-

pansion regime corresponds to )i.&&1/geB. In practice, the
system will be considered in a box in the y direction of size
L. The total flux 4 of the magnetic field is then finite:
tIi=eBXL/m We sho. w that the effective energy has a
simple exact integral representation involving elementary
functions for all values of mass m, width k, electric charge
e, and strength B.

The motivation for the choice of these particular profiles
for the magnetic field resides in the fact that they may be
fairly representative of the type of inhomogeneity that we
expect in the system, while still being exactly solvable. They
have been chosen here in the form of stringlike flux tubes
with finite width and infinite length. While we cannot, of
course, analyze exactly the dynamics for arbitrary magnetic
field configurations, the exact solution will permit us to study
the system nonperturbatively within this family of profiles
and gain rigorous constraints on the derivative expansion for
more general fields.

The starting point for the evaluation of the effective en-

ergy in the presence of the magnetic field (1) is the func-
tional determinant expression of the effective action, which
we quote in Minkowski space-time:

B
B x,y)=

[cosh(x/k)]
i d x M =~In Det{D„D"+m+eg""F„„ie)—

(2)

Here, the magnetic field is localized in a strip of infinite
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Here, M are the effective Lagrangians for bosons (+) and
fermions (—) of electric charge e in the presence of a gauge
potential A ~ with D„=8~+ i eA„.The Lagrangian M with
X~"=(i/4)[y~, y'] produces the effective action for a four-
component spinor consisting of two-component spinors of
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masses m and —m, respectively, whereas M+ with
g~+"——0 produces the effective action for spin-0 complex
scalars with mass m. Both systems are invariant under parity
and time reversal. The determinants are understood to be
regulated by Pauli-Villars masses in the ultraviolet, which
will not be exhibited explicitly. Also, we calculate the effec-
tive action relative to that for zero electromagnetic fields and
therefore drop all contributions independent of the fields.
The effective energy for static magnetic fields is then given
by 8'~ = —Jdxdy

For the family of magnetic fields in (1), we may use the
translation invariance of the problem in time and in the y
direction to work in an eigenbasis of frequency eo and y
momentum k. Then the operator D D"+m +eX~'F„„co-
incides with the Schrodinger operator of a solvable one-
dimensional quantum-mechanical system. (Recall that the
solvability of the constant field case is based on its relation to
the solvable one-dimensional harmonic oscillator system
[10].) To see this, we choose the gauge potential A„=Oand
A~= XBtanh(x/li. ), which reproduces the magnetic field in
(1):

d'
dc@ lnDet~ —

2 + Vk(x) + cu
dx

(5)

I f +00 )+00F.=~
2 dk

—00 Q —00

[Notice that we actually compute the difference between
F and the corresponding free field (B=O) case; thus we
may drop terms independent of B.] Integrating by parts in
co and omitting 8-independent terms, the effective energy
may be recast as

strip, but for small x momentum, it will instead be rejected
off the strip and return to —~.

The evaluation of the determinants in (2) thus reduces to a
spectral problem for the Schrodinger operator in (3a). Note
that this Schrodinger operator has both a discrete and a con-
tinuous spectrum, in contrast with the constant B field case
for which the spectrum is purely discrete. It is convenient at
this point to analytically continue frequencies to imaginary
values, ~~i cu, as usual; the effective energy is then given
by

D„DI"+m +eX~ F„„=— 2+ Vp(x) —0~, (3a)

2I. "+

4~ g
dk dao co Tr G „zz. (6)

1) r

Vr.(x) = ——
2 y —— 1 — tanh—2

4r l ~r

x) 1 / xi
+—n 1+tanh —+—n 1 —tanh —. (3b)2 "( k 2 i kr

Here, the following assignments for the parameters of this
potential have been made, with o. denoting the spin projec-
tion eigenvalue + 1 for spin up fermions and —1 for spin
down fermions:

The resolvent Green function Gz k is the inverse of the
Schrodinger operator, for general complex parameter E:

d2

dx 2+ Vk(x) E, G~ I,(x,x—') = 8(x —x').

It is standard to obtain Gz k(x,x') by matching the indepen-
dent solutions of the homogeneous equation, which are pro-
portional to hypergeometric functions in terms of the new
variable g= [1+tanh(x/k)]/2:

ui(x) =( (1 ()PF(z+ -' ——y, z+ -'+ y; I+2n;(),
(8a)

nk= g(k eBk) +m, — (4a)

—,'$1+4(eBX )

2I+eB& o.

(+ ) bosons,

( —) fermions.

u2(x) =( (1—$)PF(z+ 2
—y, z+ 2+ y;1+2p;1 —().

(8b)

Here, n and p are defined as the roots with positive real
parts of the equations

The one-dimensional Schrodinger operator (3a) is of the su-
persymmetric quantum mechanical form [11], but with a
k-dependent superpotential Wk(x) = li.Btanh(x/)i. )—k. The
k-dependent potential Vk(x) is of the modified Poschl-Teller
form, with asymptotic energy barrier heights a & as
x~ ~ ~; the corresponding incoming and outgoing momenta
are then just ~ k, while ~ is merely an overall shift in
energy. The origin of the difference between the two asymp-
totic energy barriers may be simply understood in terms of
classical electrodynamics. As a particle of charge e enters the
magnetic strip from —~, its kinetic energy is conserved
while its momentum in the y direction behaves as
pY(x)=pY( —~)+eBli.[tanh(x/k)+1)]. If the momentum in
the x direction is large enough, the particle traverses the

n=2/n r. E, p= gnI, —E, z=n+—p. —

W= u,'(x) u2(x) —u, (x)u2(x)

2 I (1+2n) I'(1+2P)
~ I (z+ —y. )I (z+ —,'+ y. )

(10)

and the Green function Gz I, is therefore given by

With these conventions, ui is regular at g= 0 (i.e., as
x~ —~), whereas uz is regular at /=1 (i.e., as x~+~).
The Wronskian of these solutions is a constant, given by
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u, (x)uz(x')
GE «(x,x') = 8(x' —x)

I' + co fco' 1

ui(x') u2(x)+ 0(x —x')
—( + — ) ][ —( — — ) ]

x[4(z+-,' r.)—+ 0(z+-,'+ r )]. (16)
All information concerning the spectrum of the Schrodinger
operator is contained in the trace of the Green function
Gz k. We first compute

The integration over k can be performed and we end up with
the remarkably simple expression

Tr G~ I,
=

J —oo

+ oo

dx GE «(X,X) = dx ui(x)u2(x).
Wg

(12)
L 7 z(z —zo)F.=~, dz gz'-z,'+() m)'

Some care is needed in regularizing this integral at
x = ~ ~; for example, one can multiply the arguments ( and
1 —g in the hypergeometric functions in u, and uz, respec-
tively, by a factor 1 —e for e)0 and infinitesimal. With this
regularization, the integration may be performed exactly in
terms of the Euler psi function P(x) = I''(x)/I (x), and we
find

X [i/(z+ —,
' —y.)+ P(z+ —,'+ y. )], (17)

where zo —=k g(eB k) + m . This expression can be rewritten
in terms of elementary integrals by making use of the fol-
lowing representation of the P function [13]:

Tr G, „=———+ —[i/(z+ —r=)+ i/(z+ + r=)] 1
P(x) = lnx- —-2

2x

P oo tdt

go (t +x )(e ' —1)
' (18)

+f,( )+f,(p), (13)

where f,(n) is a function of u, but not of p, whose precise
form is regulator dependent, but which does not contribute to
the effective energy once we integrate over k. Here and in
the following, it is understood that for the case of four-
spinors (—) both spin states are to be summed over. The
spectrum contains a finite number of bound states, which
arise from the (simple) poles of the P functions in (13) at

z+ ~
—y = —n for O~n(y —1/2 —QIu« —u

E.= (~«, +~'«) —& '(n+l —y-)'
—i'6 Ii'(~« —~'-«)'(n+ -' —r=) '. (14)

(1 11 Bz—+—
8 (n P] BE' (15)

which suggests the change of variable from co to z= a+P
and yields

The same discrete spectrum may be obtained by solving the
homogeneous Schrodinger equation (7) for real E and requir-
ing normalizability of the eigenfunctions [12].The spectrum
also contains a cut starting at o;I, and another cut starting at
u I„corresponding to the two barrier thresholds. For
B= 0, the discrete spectrum is absent, whereas for the con-
stant magnetic field case (i.e., X~~), it reduces to
E„=2eB(n+ 1/2) for bosons and 2eBn for fermions, as ex-
pected.

We now complete the calculation of the effective energy,
using the result of (13) in the expression (6) for the effective
energy. First, since n only depends upon k+eBX, we may
shift k by —eBX in the contribution of f,(u) in (13).Thus,
the regulator-dependent f, terms in (13) yield only
B-independent contributions to the effective energy in (6)
and may be omitted. Next, we use the identity

L,F (L,mk, eBX ) =
2 dt 2, (b —it)

(Ii. m +u ) X.m —iu
X ln . +c.c. I,

V~ km+iu ~ )
'

(19)

where c.c. denotes the complex conjugate, and

g(eBX ) +1/4

eBX

(+ ) bosons,
(20a)

( —) fermions,

t'+2i t b+ —1/4

t +2itb
(+ ) bosons,

(20b)
( —) fermions.

Expression (19) gives the exact effective action for a back-
ground field (1) and is the main result of this paper. For
definiteness, we now concentrate on the fermion case, but
analogous discussions can be made for bosons.

In the limit of vanishing mass, I=0, the only relevant
dimensionless parameter is eBP, and so one finds an as-
ymptotic expansion

The first two terms on the right-hand side in (18) contribute
B-independent terms to F . (It is necessary to sum over
both spin states to see this in the fermion case.) For the third
term, the z integration can be carried out exactly and we
obtain the following finite integral representation for the ef-
fective energy:
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Lk(eB) 1 I (j—3/2)I (j+5/2)
Sm =o (4meBk )~ I (j+1)I (j/2+1/4)I'(3/4 —j/2)

(21)

Lk(eB) ~

S +2~
15 1

((3/2) — g(5/2) 2 + (22)

where ((z) is the Riemann zeta function [13].The first term in this expansion agrees with the uniform 8 field case [3,14],
while the next term agrees with the first-order derivative expansion computation in [5].

For nonzero mass m, there is another dimensionless parameter eB/m which is the ratio of the cyclotron energy to the rest
mass energy. A double expansion of (19) yields

Lm k 1 . (2k+ j—1)! 2eB—2eBk'!-J~
Sar /=o j! k=i (2k)! (2k+ j—1/2)(2k+ j—3/2)

(23)

with M„the nth Bernoulli number [13].Each power in k corresponds to a fixed order in a derivative expansion of the
effective action. The zeroth-order term agrees with the eB/m expansion of the exact constant 8 field answer [3,14], while the
first-order term agrees with the eB/m expansion of the leading derivative expansion contribution found in [5].

In fact, the specific configurations (1) give some insight in the more general case of a background magnetic field B(x)
depending on one coordinate only. In a derivative expansion of the effective Lagrangian the terms with a total of 2j deriva-
tives, M ', have, up to integration by parts, a unique structure:

~eB x
m

(24a)

! jteB(x)~ eB'(x)
=m F2

Nl
(24b)

i2.l(eB(x)~ eB! ' '~(x) eB'(x) '

m'
)

m' m' Zj=4,6,8, . . . , (24c)

where Bt'l(x) denotes the 1th derivative of B(x). Parity invariance forces F~& 'l(x) to be even (odd) for l odd (even). A
comparison with (23) entirely determines the zero- and two-derivative terms (in agreement with [5]) and gives at each order
(2j)2) a relation among the (2j—2) functions F& ' (x):

1 I (2k —3/2)

k~, S~"2 r(2k+1) (25a)

1 I'(2k —1/2)
F2 '(x) ——X 4 3/2 r(2k) ~2k+2 (2x)

k=1 4m (25b)

r j+ 3/2 —s ~ d ~
'

( —2) '
r 3 2 d

x '+' i[s aj &+i+2(j—1+2—s) aj &+i]Fz& i(x)+x aj &+iFz& (x))l=1 s=1 I 32 (dx]

1 I (2k+ j) I (2k+ j—3/2)= ~, s~" r(2k+1) r(2k) (25c)

where a' are the coefficients in the polynomial of degree 2p,

d z

(1 r2) r g a& ( 2)2p —s —1 r2p —2s (1 r2)s
dt

(26)

d 5 d
4—+ — F!'~(x)+x —F!'j(x)

dX X dx

1 I (2k+ 1/2)
3)2(2k+ 1)

( )
M2k+4 (2x) "

P=1 8m

(27)

As an example, the two functions appearing in the four-
derivative terms (2j=4) obey Thus, Eqs. (25) provide an infinite number of relations



52 EFFECTIVE ENERGY FOR (2+ 1)-DIMENSIONAL QED WITH. . . R3167

among the coefficients of the effective action for any back-
ground magnetic field with translation invariance in one di-
rection.

Finally, we may apply the results on the effective energy
obtained here and in [5] to the study of the full QED2+,
theory around classical electromagnetic configurations. In
[5], the effective energy is obtained for large wavelength
fluctuations in the fields. While the leading order term con-
tributes positively to the energy, the next, two-derivative
term contributes negatively. It was proposed in [5] that this
behavior may drive the system towards a lowest energy state
with inhomogeneous magnetic field. Indeed, assuming flux
conservation, it is natural to consider static fluctuations

BB(x) that leave the total flux unchanged. Under this con-
straint, the energy fluctuation is given by

K[8+ BB(x)]—F(B)

1
d x 11+n (e /geB)2J

X[1,—P (eB) ~c78B/BB~ ])(8B), (28)

where the coefficients n and P are positive functions of
m /(eB), except for bosons with sufficiently small mass as
explained in [5].The coefficient P is typically of order 1, and

within the derivative expansion regime (eB) '~t/8B/BB~
(&1, indicating that the constant background magnetic field is
stable under variations that conserve flux.

In the case of the special family of profiles for the mag-
netic field in (1) we can go beyond the leading order deriva-
tive expansion, using the exact effective energy (19), to-
gether with the Maxwell term, to give the total energy as

5""=LkB + cY (L,mk, eBk )

(29)

with fiux 4 = eBXL/vr. We have shown that the total energy
(29) at fixed fiux t'ai is a positive monotonically decreasing
function of the parameter k. As a result, a system with mag-
netic profile (1) is driven towards a system with uniform
magnetic field. Thus, within this family, we have not found
further support for our suggestion in [5] that magnetic field
inhomogeneities lower the total energy at fixed nonzero flux.

This raises a number of open questions. (a) Are any other
families of magnetic field profiles integrable, within which
nonuniform magnetic fields minimize the energy at fixed
flux? The recursion relations (25) suggest that magnetic field
profiles with x dependence only may be such candidates. (b)
More generally, can inhomogeneous magnetic fields be
found that minimize the energy for fixed flux?
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