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Using a toy model Lagrangian we investigate the formation of vortices in first order phase
transitions. The evolution and interactions of vacuum bubbles are also studied using both analytical
approximations and a numerical simulation of scalar 6eld dynamics. A long-lived bubble wall bound
state is discovered and its existence is justi6ed by using a simpli6ed potential for the bubble wall
interaction. The conditions that need to be satisfied for vortex formation by bubble collisions are
also studied with particular emphasis placed on geometrical considerations. These conditions are
then implemented in a Monte Carlo simulation for the study of the probability of defect formation.
It is shown that the probability of vortex formation by the collision of relativistically expanding
bubbles gets reduced by about 10% due to the above-mentioned geometric effects.

PACS number(s): 11.27.+d, 11.15.Ex, 64.60.@h, 98.80.Cq

I. INTRODUCTION

Symmetry-breaking phase transitions in the early Uni-
verse can give rise to topologically stable localized en-
ergy concentrations known as topological defects (for re-
cent reviews see Refs. [1—3]). These defects can be points
(monopoles), lines (cosmic strings), or surfaces (domain
walls) depending on the homotopy of the vacuum mani-
fold of the broken phase [4].

In general when a symmetry group G is spontaneously
broken to a smaller group H, defects can form if the re-
sulting vacuum inanifold M = G/H has nontrivial homo-
topy. Cosmic strings (vortices in two space dimensions)
form when the first homotopy group of M is nontrivial:
i.e. , vri(M) g l.

Consider for example the Lagrangian density describ-
ing the dynamics of a complex scalar field 4 = C i + i@2..

l: = —8„4*0"4 —V(i@i),

where V(]4~) is minimized for ~C'] = o g 0 [e.g. , V(4) =
—"()4(2 —o.2)2]. The set of potential minima of V([C()
(C = oe' ) has the topology of a circle Si. In a cos-
mological setup, according to the Kibble mechanism [5],
there will be (by causality) field configurations that span
the whole vacuum manifold as we go around a large circle

Electronic address: melfogalileo. sissa. it
t Electronic address: leandrosOmitlns. mit. edu

in physical space (i.e. , asymptotically 4 m o e'e where 0
is the azimuthal angle in physical space). Such configu-
rations will inevitably form [6] (but see Ref. [7] for poten-
tial loopholes in the gauge case), with probability about

[8], when causally disconnected domains of the Uni-
verse merge as the causal horizon expands. The asymp-
totic behavior 4 —+ ere' implies by continuity of 4 that
there will be a point inside the large circle where 4 = 0.
This point (and its neighborhood) being outside of the
vacuum manifold will be associated with topologically
trapped energy density. This configuration is the topo-
logically stable vortex [9]. Extended to three dimensions
this object becomes a line defect, the cosmic string.

In the above-simplified Lagrangian (1) no gauge fields
are involved and the broken syminetry is a U(1) global
symmetry leading to the formation of global vortices. The
price to pay for considering a simple U(1) global rather
than a U(1) gauge symmetry [9] is that the total energy
of an isolated global vortex diverges logarithmically. This
however is not a problem in systems where a physical cut-
ofF scale is built in, like multivortex systems where the
cutofF scale is the intervortex separation, or cosmological
setups where the cutofF is the horizon scale. For simplic-
ity in what follows we will consider sytems with global
rather than gauge symmetry breaking.

The above picture of string formation when regions of
the size of the horizon at the phase transition become
causally connected is characteristic of systems undergo-
ing a second order phase transition ( [10],see [ll] for a re-
cent discussion). In systems undergoing first order phase
transitions, vortices can form by the merging of expand-
ing vacuum bubbles with scalar field phases such that the
whole vacuum manifold is covered after the bubble colli-
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sion and phase interpolation. Consider, for example, an
area LA of a two-dimensional system undergoing a first-
order phase transition during a time interval LT. There
are three basic conditions that need to be satisfied for a
vortex to form within the area AA during the time AT:
(1) The nucleation of at least three bubbles inust take
place during AT; (2) the nucleated bubbles must have
phases such that geodesic interpolation leads to complete
coverage of the vacuum manifold S; (3) the initial geo-
metric configuration of the three nucleated bubbles must
be such that the collision of all three bubbles occurs be-
fore the phase interpolation process can spoil the previ-
ous condition. Thus, the probability for a vortex to form
within LA during the time interval LT may be written

Ptot(AA, AT) = B Pph „(B)S(B,v),

where B = I"
& LT is the probability for a true vacuum
Ab b

bubble of area Ab„b to form within AA during time AT,
P~h „(B)is the probability that a geodesic interpolation
of the bubble phases completely covers the vacuum mani-
fold. The dependence on the probability B exists because
Pph „(B)is larger for clustered defects and therefore it
increases with B. The suppression factor S(B,v) de-
pends on the bubble formation probability and the bub-
ble wall expansion velocity e, and is the probability that
the initial configuration of bubbles will be such that the
third condition is satisfied.

The factor Pph „(B)has been calculated in previous
studies and found to be between 0.25 and 0.31 depend-
ing on the number of clustered vortices. One of the
main goals of this work is to find the suppression factor
S(B,v) for relativistically expanding bubbles (v 1).
The case when bubbles expand in the presence of plasma
[14] (v ( 1) is significantly more complicated [16] and
will be included in a separate publication [15].

In the next section we derive and solve numerically
(and analytically in the thin bubble wall limit) the in-
stanton equations for bubble formation. We use a simple
scalar field potential with vacuum manifold S describing
a first order phase transition. The obtained scalar field
configurations are then evolved by using a numerical sim-
ulation based on a second order accurate leap&og algo-
rithm [17]. We first focus on the bubble interactions and
study their dependence on the phase difference between
the two bubbles, both numerically and in the context of
a simple analytic model. After justifying analytically the
numerically observed existence of long-lived states of re-
pelling walls in the limit of a large phase difference, we
show that no metastable states exist in the model con-
sidered. Thus all colliding bubbles eventually merge and
the existence of metastable embedded walls need not be
a consideration for studying vortex formation. The for-

II. BUBBLE EVOLUTION AND INTERACTIONS

Consider a complex scalar field 4 = [4[e', in a (2+1)-
dimensional spacetime, whose dynamics is determined by
the Lagrangian (1) and a symmetry-breaking potential

(3)

wltll t + 0 (Fig. 1).
The false vacuum (4 = 0) of the potential (3) decays

via bubble nucleation to the true vacuuum ([4[ = o'il =
o 4[3+ s + g(3+ s)2 —8]). The two-dimensional field
configurations of the bubbles nucleated during this first
order phase transition can be obtained [18] (see also [19]
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mation of relativistic phase waves after bubble collisions
is also seen in our simulations, confirming expectations
&om previous studies.

In Sec. III, we focus on the probability of vortex for-
mation during three bubble collisions. We first briefly
discuss the factor P~h „(B)and show how its depen-
dence on the vacuum decay rate I', which has been ig-
nored in most previous studies, can be used to explain
previous numerical results [13] that seemed puzzling at
the time of their derivation. We then focus on the geo-
metric suppression factor S(B,v 1) and first derive the
geometrical conditions under which the vortex formation
is suppressed. These conditions are then tested by us-

ing dynamical simulations of three bubble collisions, and
a Monte Carlo simulation is constructed based on these
conditions to obtain the dependence of the suppression
factor S on the mean interbubble distance and there-
fore on the bubble formation probability B. Finally, in
Sec. IV we conclude and briefly discuss extensions of this
work that are currently in progress.
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Subcritical bubbles [12] can also play a minor role in vor-
tex formation [13] but those effects are ignored within our
approximation.

(b)

FIG. 1. The potential for (a) s = 0.2 and (b) s = 0.0,
normalized at 0 at the true vacuum.
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for a review) by solving the Euclidean field equations $ = C'/o, x = Xm, and t = t m (8)

O'C 2 84 BV([O~)
clp' p Bp 8~4)

+— (4)

with p2 = ~x[ + 7, w being Euclidean time. The initial
configuration of the field after tunneling has therefore an
O(3) symmetry. This symmetry of the initial bubbles
will become O(2+1) symmetry in Minkowski spacetime,
where p = [x~ —t . Solutions satisfy the boundary
conditions

0P-+0 as pm oo and -+0 as pm0.
Bp

Analytic solutions to (4) can be found in the so-called
thin-wall approximation, i.e., for e (& 1, when the energy
difference between the minima is much smaller than the
height of the potential barrier. For the potential (3), the
thin-wall solution is of the form [20]

~O~ = — 1 —tanh — (p —Ro)).

19V
4 —'7'4 = —

~ (7)

where the dimensionless variables

where Ro ——I/(~Ao e) is the bubble's initial radius, found
by minimizing the total energy.

In the general, or thick-wall case, solutions to (4) with
the boundary conditions (5) can be obtained numerically
using a relaxation technique [17]. An arbitrary constant
phase is then assigned in the interior of each bubble and
the resulting configurations are evolved by solving the
dynamical field equations

with m = ~Ao, were used. For this part of the code,
a second order leapfrog scheme [17] was iinplernented on
a 400 x 400 lattice, using as a reference the algorithm
of Ref. [6]. Energy was conserved in all simulations to
within 5%%u&& for the evolution time scales.

Defining the bubble walls as p = Ao, we see that the
O(3 + 1) symmetry forces the bubbles to expand, ap-
proaching the speed of light on a time scale determined
by the initial radius Ro ([xb„b~ = Ro + t ). Because of
I.orentz contraction, thick-wall bubbles rapidly become
thin-walled. ones. As a consequence, interactions between
bubbles occur almost always in the thin-wall regime, but
we have kept thick-wall bubbles as initial conditions for
our simulations for generality. For the figures presented,
we have used e = 0.8 unless specified otherwise.

It is evident &om the simulations that the two-bubble
interactions are strongly inBuenced by the difference be-
tween the field phases. Walls of bubbles with phase dif-
ferences Lo. vr tend to repel each other at short dis-
tances, thus delaying the time of merging of the walls.
As bubbles approach, this causes the walls to separate
and come in contact again, producing an oscillating false-
vacuum wall, as can be seen in Fig. 2. This domain wall
eventually decays, its lifetime depending on the phase dif-
ference. The e8'ect is clearly observed when Ao. & 0.9'.
For phase difFerences of La vr, we have found lifetimes
of 10 [in the dimensionless units of Eq. (8)]. Points in
the wall located in the line joining the bubble's center
oscillate with a period T 4 (e = 0.8). Notice that this
oscillatory state occurs before the bubbles merge, and is
not to be confused with the oscillations of the field's mag-
nitude that occur during bubble merging and after the
phase interpolation has occured, as reported in [21,22].
The origin of the e8'ect in this case is the balance be-
tween the repulsive force originating &om the phase dif-
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FIG. 2. Three-bubble interactions. Here
and in the following 6gures the 6eld's phase
is indicated by the arrows, its magnitude by
the contours and the size of the arrows. A
metastable wall has been formed between the
uppermost bubbles at t = 70, in (a), and
starts decaying at t = 90, in (b). Phases are
1.3m, 0, and m, clockwise. In (c) plot the posi-
tion of the wall of one bubble against time, in
a two-bubble collision with opposite phases
(differing by 0.9995vr), showing the oscillat-
ing stage before merging. In (d) the field's
magnitude is plotted, for the same geometry
as (a) and (b), at t = 80, showing the wall on
one interface and the oscillations after merg-
ing in the other.
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ference between colliding bubbles and the attractive force
of the scalar Geld. potential. On the other hand, in the
oscillations discussed in Refs. 121,22] only the attractive
potential force is relevant since the phase difference on
opposite sides of the oscillating false vacuum is zero.

To better understand the numerically observed long-
lived oscillating states we consider the problem in the
planar approximation and write the equations of motion
of bubble walls located at x = +$(t) as

where o is the mass per unit area of the wall, and TV the
static interaction energy between the walls, per unit area.
Writing the field as P = I/le', we have (primes denoting
derivatives with respect to the spatial coordinate)

(10)

As a first approximation, consider V(P), 1/1 and I'll' as
constants in the region between the bubble walls and
n' = An/2(. The force between the walls will be

(+) —(I@ I) + 1@1

4 2

141= - 1+t»hl
I

+- 1-t»hl(x —( g (x+(l
2 ( 2 ) 2 ( 2 )

(12)

and n' = Ka/2g. The resulting potential energy W is
plotted in Fig. 3 for different values of Ao. and e, as
a function of (. Reducing e has the efFect of reducing
the false vacuum potential energy, allowing the repul-
sive term to dominate at greater distances. The effect
of increasing La is that of displacing the minimum of
the potential to higher values of (. The approximation
is expected to be valid only for ( & 1, i.e. , before the
bubbles begin to merge. Our simulations have shown
that the gradient is actually locally time dependent and
the initially binding potential of Fig. 3 eventually gets
dominated by the attractive terms as the phase gradient
decreases locally.

The existence of these oscillatory states leads naturally
to the question of existence of "embedded" metastable
domain walls for this potential. Such domain walls would
be static solutions to the Geld equations

I+I" —(~')'I@l =
~

where P and P' are close but not exactly equal to zero.
That is, the difference in phases produces a repulsive
term dominating at short distances. This simple picture
can be improved by considering the total field configura-
tion as a sum of two bubble configurations, P = I/le'
with 1/1 approximated by the sum of two thin-wall bub-
bles: 1 2—a= —, b=0, C2' 4

(14)

with boundary conditions P —+ 0 as x ~ 0; P -+ og for
x —+ oo. A simple asymptotic analysis suKces to prove
that there is no solution to (13) satisfying the boundary
conditions. As x -+ 0, we can always write 1/1 = Cd, x,
n = | x . However, inserting this in (13) we obtain
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So the asymptotic form of the equations is not satisfied
for a real coefBcient C, and therefore the solution with
the required boundary conditions does not exist. Thus
the only possible domain wall occurs for Ao. = vr, where
the situation is analogous to that of a real field. Then
Eqs. (13) become
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FIG. 3. The potential between two bubble walls as a func-
tion of the interbubble distance for (a) Ao. = n, and e = 0.2,
0.8, and 1.5, and (b) for e = 0.2 and An = vr, 0.75m, and 0.5m.

with the boundary conditions P = +op at x -+ +oo, and
P = 0 at x = 0. The solutions are the domain walls
in this potential. For e nonzero, we can see that its exis-
tence is guaranteed by noting, as usual, that the problem
is analogous to that of a particle moving in the potential
—V(P), with the field representing the particle s position
and the spatial coordinate interpreted as a time coor-
dinate. The "particle" is energetically allowed to start
&om x = +op at t = —oo, and arrive at x = —og at
t = +oo. This is not the case when e = 0, and then only
solitons that go from x = +op to x = 0 are possible. But
as we have seen, even in the case where this domain wall
does exist, the asymptotic analysis above means that it is
unstable under small variations of Ao. (a static solution
does not exist for Ao. g m). As discussed above this was
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also verified by our simulations.
After the two bubbles merge, the situation is the one

already studied numerically in [21] and analytically in
[22]. A phase wave is generated in the contact point,
and. expands inside the bubbles with the speed of light,
interpolating between the original phases. The field mag-
nitude oscillates in the region of contact, with amplitude
that depends in the phase difference, this time being in-
versely proportional: a greater phase difference will result
in a more energetic phase wave, that carries away the
wall's energy more efBciently thus dissipating the vac-
uum oscillations rapidly. These oscillations however do
not affect the phase interpolation: the phase waves are
produced as soon as the interiors of the bubbles come
into contact, and escape at light speed.

III. VOBTEX. FC)H.MATION

We turn now to discuss the probability of vortex for-
mation in a three-bubble collision. As noted in the In-
troduction, the probability of forming three bubbles in
an area LA within a period of time AT is B . In order
to form a vortex, the phase of these three bubbles must
be distributed so that the interpolation following colli-
sion leads to complete coverage of the vacuum manifold
[condition (2)]. The probability for this to happen can
be estimated as follows [8]: Consider a triangular lattice
in a two-dimensional (2D) physical space and assign a
random phase to each point on the lattice. The question
is the following: What is the probability that a vortex
lies within a given triangles The mean phase difference
of two neighboring lattice points of a triangle is clearly
2vr/4. In order that a vortex forms in that triangle, the
whole vacuum manifold must be covered by interpolating
the phases of the three lattice points and therefore the
phase of the third lattice point of the triangle must lie
on the opposite part of the phase circle. Thus, on the
average, the phase of the third lattice point should be
in a range of 2m/4. This will happen with probabilityP„=1/4. Thus, the probability for forming an isolated
vortex in physical space is 1/4. In realistic cases however
vortices do not form isolated but in vortex antivortex
clusters especially when the vacuum decay rate is high.
A very relevant question therefore is the following: What
is the probability for forming a vortex in a vortex antivor
tex cluster& The probability p+ for forming an antivor-
tex next to an already formed vortex is larger than the
probability for forming an isolated vortex. The reason is
that the mean phase difference between neighboring lat-
tice points in a vortex surrounding triangle is not 2ir/4
but 2n/3 and therefore to form an antivortex next to a
vortex we only need that the fourth lattice point be in a
phase range 2ir/3. So p+ ——1/3. Thus, the probability
for having i antivortices around a vortex is

P' = I, I
(P+-)*(1-P+-)' *&3l

and the probability per defect in clusters of four or larger
is (P+ P„)~ = 0.31 which is significantly larger than

the naively obtained result of 0.25.
This effect of clustering explains the result found in

Ref. [13], where a simulation of the vortex formation
process is done by placing random-phase bubbles in a
two-dimensional lattice, and allowing them to evolve and
collide. The author finds a probability of vortex and an-
tivortex formation of 0.42 (10 vortices and antivortices
formed after the nucleation of 23 closely packed bubbles),
instead of the expected 0.25, and attributes his result to
unknown dynamical effects. However, if we notice that
the chosen rate of nucleation produces a highly packed
system, and calculate the probability using (16), we ob-
tain a higher value.

The dynamical delay of merging due to the phase re-
pulsive potential, discussed in the previous section, does
not affect vortex formation. The phase interpolation will
occur eventually, and the crucial factor is not the time it
takes, but the spatial range over which the bubbles over-
lap, which determines the spatial sectors where phases
will interpolate. A phase repulsion [which in any case
occurs for Lo. extremely close to vr, an unlikely situation
if the phases are required to be distributed in the vac-
uum manifold as in condition (1) of the Introduction],
can only delay the interpolation event. In the formation
of vortices, it is only important to know if (not zvhen) the
phases of each of the three bubble pairs will geodesically
interpolate.

In addition, for the case of bubbles with relativistic
velocities (i.e. , when the effects of the plaszna are neg-
ligible), we have both the bubble walls and the phases
propagating at v 1. This means that the phase waves
can never reach the bubble walls leading to a single new
bubble with interpolated phase, before the third bubble
has time to reach the two collided ones.

Thus, in the absence of plasma, the important ingre-
dient needed to find the probability of vortex formation
is the initial geometric distribution and nucleation times
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FIG. 4. Three-bubble collision. (a)—(c) are a sequence of
a three-bubble collision for t = 40, 80, and 180 as indicated,
showing the formation of the vortex. The magnitude of the
field is plotted in (d), for t = 170, showing the newly formed
vortex.
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FIG. 5. Three-bubble collisions. In (a) and (b), bubbles
nucleate simultaneously at the vertices of an obtuse triangle,
producing a vortex. In (c) and (d), bubbles nucleate at differ-
ent times in a nonaligned configuration, with the same phase
distribution as above, but the difference in sizes prevents the
circles to intersect, thus the vortex. is not formed.
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FIG. 6. Suppression factor S(B) as a function of A. The
logarithm is to base e.

time:

of the colliding bubbles. In the case when the effects of
plasma are ignored (v 1) simulations show (Fig. 4)
that we can picture the bubbles as circles, even when the
merging has occurred, the phase wave front continuing
the circle formed by the walls.

For a vortex to form, then, it is easy to see that condi-
tion (3) of Sec. I is satisfied if the three expanding circles
have at least one common intersection point. Thus, for
example, the extreme case of three bubbles of the same
size (i.e. , nucleated at the same time), but with centers
located along a straight line, will not form a vortex. If we
allow for different nucleation times, bubbles will interact
having different sizes, and then even nonaligned config-
urations will not lead to a vortex (Fig. 5). Notice that
in contrast with what has been stated in previous stud-
ies [22] it is in general not possible to select a frame where
all bubbles nucleate at the same time. The condition
of simultaneity of three events is that there is a space-
like planar surface that goes through these events. This
is not always possible (consider for example the special
case of three events on a straight line, i.e. , effectively in
one spatial dimension). Even if it was possible to select a
kame of simultaneity for three events in 2+1 dimensions
it would not be appropriate to do so in a Monte Carlo
simulation as this artificial selection of a kame would in-
troduce a bias in the measured probabilities. We there-
fore have used different times for the nucleation of each
bubble.

The equation of motion for the bubble walls is dictated
by the initial configuration, as stated in the previous sec-
tion, so that the radius of a bubble nucleated at time
t = bt; will be r;(t)2 = Ro + (t —At;), the subindex i
going from 1 to 3. Given the positions (x, , y, ) and nu-
cleation times of three bubbles, one has only to solve the
system of three equations for the intersection point and

A vortex forms if the solution to the system is real, pos-
itive and finite.

As a test for this condition, we have checked using the
numerical simulation described in Sec. II the formation
of vortices and predicted formation times for several con-
6gurations. The geometrical condition of a circle inter-
section was found to be accurate in all cases, confirming
the hypothesis that dynamical effects can be ignored in
the case of relativistically expanding bubbles.

Having tested the geometric model with dynamical
simulations, a suppression factor for vortex formation can
now be found using a Monte Carlo simulation. Random
position and nucleation times were assigned for bubbles
inside an area AA = (ARo/2) and configurations were
subject to the requirement that bubbles do not form in
an overlapping state. After rescaling the considered area
such that Bp = 1 we constructed 500 randomly cho-
sen three-bubble geometrical configurations. The system
(17) was solved in each case and the number of cases with
no triple intersection was counted. We defined the ratio
of the number of cases where triple intersection occured
over the total number of cases as the suppression fac
tor for vortex formation. This is the factor S(B,v 1)
of Eq. (2). A plot of S vs A H is shown in Fig. 6.
Clearly the geometric suppression factor is less important
for high nucleation rate (small A) but it is not negligible
for low nucleation rates.

IV. CONCLU SION

We have studied the basic conditions that are needed
for vortex formation by the merging of vacuum bubbles
nucleated during first order phase transitions. There are
three such conditions which include the existence of three
colliding vacuum bubbles, the complete coverage of the
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vacuum manifold by geodesic interpolation of the bubble
phases, and the existence of a triple collision point for the
merging of the three circles that describe the relativistic
expansion of the bubbles. The probability that each con-
dition is satisfied was obtained and the result was com-
pared with previous studies. In particular the existence
of a triple collision point during the evolution of three
colliding bubbles occurs with probability approximately
92% for low vacuum decay rate. Such a suppression of
defect formation rate is not expected to modify in any
major way cosmological models based on cosmic strings.

We have considered the case of relativistically expand-
ing bubbles and have therefore neglected the friction ef-
fects of plasma particles surrounding the expanding vac-
uum bubbles. Such particles, being massless in the false
vacuum but massive in the true vacuum (inside the bub-
ble), are expected to scatter on the bubble walls and
decelerate them to nonrelativistic velocities. In models
where the efFects of plasma are important enough to lead
to slowly expanding bubbles, our analysis gives only an
upper bound to the geometric suppression factor S(B,v)
which is expected to rapidly drop as the bubble wall ve-
locity v decreases. Indeed, for small bubble wall velocity
v, the interpolating phase kont propagating al'mays reIt-

ativistica/ly inside the bubbles after the erst collision is

more eKcient in equilibrating the phases to the interpo-
lated value before the third bubble reaches the bubbles
that collided first. Thus the formation of the vortex can
be avoided much more efEciently. The study of the de-
pendence of S on v in the presence of plasma requires the
detailed numerical simulation of the eIIFects of the plasma,
and the construction of a generalized geometrical model
and Monte Carlo simulation based on these eKects. That
work is currently in progress [15].
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