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Smoothness of the horizons of multi-black-hole solutions
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In a recent paper it was suggested that some multi-black-hole solutions in Ave or more dimensions
have horizons that are not smooth. These black hole con6gurations are solutions to d-dimensional
Einstein. gravity (with no dilaton) and are extremely charged with a magnetic-type (d —2)-form. In
this work we investigate these solutions further. It is shown that although the curvature is bounded
as the horizon of one of the black holes is approached, some derivatives of the curvature are not.
This shows that the metric is not C, but rather is only t with k finite. These solutions are static
so their lack of smoothness cannot be attributed to the presence of radiation.

PACS number(s): 04.70.Bw, 04.50.+h

I. INTRODUCTIQN

When the Schwarzschild solution was discovered there
was much confusion as to the meaning of the fact that
some of the metric components were singular at the event
horizon. Even after it was discovered that there exists
coordinates in which the metric is smooth at the hori-
zon, it was some time before it became clear beyond all
doubt that the horizon was not singular in any physically
meaningful way.

It is now well known that the Schwarzschild solu-
tion, like all known single-black-hole solutions, describes
a black hole that has a smooth event horizon. There
exist timelike geodesics that reach the horizon in a fi-
nite proper time and extend across it. All the curvature
scalars that one can construct are well behaved at the
horizon; furthermore, if one takes an orthonormal ba-
sis and parallel propagates it along a timelike geodesic
then the components of the Riemann tensor in this ba-
sis will be smooth functions as one crosses the horizon
[I]. They will only diverge when the singularity is ap-
proached. Similarly, if we add charge, or angular mo-
mentuxn, to this solution the event horizon will remain
smooth. However, if sufhcient charge, or angular momen-
tum, is added the horizon will no longer exist, leaving us
with a naked singularity.

An interesting question is the following: Will the hori-
zon remain smooth if we have more than one black hole
in the spacetime? In light of the results known for single-
black-hole solutions it may seem likely that multi-black-
hole will have smooth horizons; however, the nonlinear-
ity of gravity makes this a diKcult question to address.
Having the solution for a single black hole does not mean
there is an easy way to obtain multiple-black-hole solu-
tions. Not only will multiple black hole solutions gener-
ally lack spatial symmetries, but they will not have any
timelike symmetry either; in other words, they generally
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wiH be dynamic. In spite of this some multi-black-hole
solutions are known.

In Newtonian theory any configuration of pointlike
charged particles will remain in static equilibrium if the
charges are all of the same sign and are related to their
masses by e, = Gm;. Analogous static solutions for the
Einstein-Maxwell equations have been known for some
time [2,3]. These correspond to configurations of ex-
tremal Reissner-Nordstrom black holes. Complete an-
alytic extensions of these were given in [4]. Among the
results derived in this paper were that the event horizon
is smooth and that the only singularities are inside the
horizon. These results support the natural extension of
what is known for single-black-hole solutions, that event
horizons are smooth.

Another family of multi-black-hole solutions consists
of the analogues of extremal Reissner-Nordstrom black
holes in foui-dimensional asymptotically de Sitter space-
tirne [5]. These solutions difFer from those discussed in
the preceding paragraph in two ways. First, they are
dynamic whereas the former, asymptotically Rat, solu-
tions are static. Second, while the asymptotically Hat
solutions have smooth horizons, it was shown in [6] that
the asymptotically de Sitter solutions have horizons that
are not smooth. However, the curvature singularities are
very mild and geodesics can be extended through them.
In particular, it was shown for this case that although
the metric is always at least C, which means that the
curvature is well behaved, it is not in general C, so
some derivatives of the curvature diverge as the horizon
is approached. The fact that these solutions are dynamic
means that there will be gravitational and electromag-
netic radiation present. The divergences discovered were
interpreted as being the result of the radiation having a
distribution that is not smooth everywhere. Another re-
sult for these solutions that will be of interest here is that
the diKerentiability of the metric increases as the order
of the lowest nontrivial multipole moment of the mass
distribution increases [6].

In a recent paper it was suggested that some multiple
p-brane solutions in Ave or more dilnensions have hori-
zons that are not smooth [7]. For the special case of black
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holes, it was suggested that all the solutions in five or
more dimensions are not smooth. The theory considered
was d-dimensional Einstein gravity coupled to a (d —2)-
form. The black hole solutions were extremely charged
with a magnetic type (d —2)-form charge. In this paper
the conjecture that these solutions have horizons that are
not smooth will be confirmed. These multi-black-hole so-
lutions generalize those contained in [4] by allowing the
spacetime dimension to exceed four. When the space-
time dimension is set equal to four then all of the results
obtained here will be consistent with those of [4].

To establish the fact that these solutions are not
smooth we will consider the simplest multi-black-hole
solution, that consisting of two black holes. Timelike
geodesics along the axis connecting the black holes can
reach the horizon in a finite proper time and can be ex-
tended through the horizon. We will find that although
the components of the Riemann curvature, as measured
in an orthonormal basis that is parallel propagated along
one of these timelike geodesics, are bounded at the hori-
zon, when d & 5 some derivatives of these components
with respect to the proper time of geodesic will diverge
at the horizon. This demonstrates that the metric is not
C at the horizon, but rather it is only C" there for
some finite k. These solutions are static, so their lack of
smoothness cannot be attributed to the presence of radi-
ation, as was the case for the multi-black hole solutions
in asymptotically de Sitter space.

To see the eKects of adding additional black holes we
will also consider the next most simple multi-black-hole
configuration, that of three collinear black holes. Once
again a timelike geodesic with an orthonormal basis that
is parallel propagated into the central black hole along
the axis connecting the black holes will be considered.
It will be shown that if the outer black holes have the
same mass and are the same distance from the central
black hole, then in five dimensions the difFerentiability of
the horizon, more precisely the component of the hori-
zon surrounding the central black hole, is increased. It
will be shown that in more than five dimensions the di-
vergence is less severe in this case. This is analogous
to the results of [6] that for multi-black-hole solutions
in an asymptotically de Sitter space the differentiability
of the horizon is increased by arranging the masses so
that the lower order multipole moments vanish. Also,
for these configurations, the behavior of the curvature
components measured in an orthonormal basis parallel
propagated into the central black hole along a geodesic
that is orthogonal to the line connecting the three black
holes will be briefly considered.

II. THE MULTI-HLACK-HOLE SOLUTIONS

(2.1)

where d is the spacetime dimension, B is the Ricci scalar,
and I"d 2 is a (d —2)-form. This theory has charged
black hole solutions. The extremal magnetically charged
versions of which are [7—9]

d —3
d8 = — I—

+(d—2) Qe(d —2) (2.2)

where e(d 2) is the volume form on the unit (d —2)-sphere,
p(" ~ is proportional to the mass, the horizon is at r = p
and the charge Q is given by

Q' = -'(d —2)(d —3)p,'(" ') (2.3)

As one would expect for an extremal black hole, the
charge is proportional to the mass.

To obtain multi-black-hole solutions it is first useful to
make a coordinate transformation that puts the metric
(2.2) in the isotropic form. This is done [7] by introducing
a new radial coordinate, p, given by r" = p" + p"
The extremal black-hole solution in these coordinates is

0-'dt'+ 0'~("-3&dx . dx

(2.4)

where e"' '("-') is the constant alternating tensor density
of the Euclidean (d —1)-space, the spatial coordinates,

(x'), are related to p by p = (P,. z
x'x') ~2 and

H=1+ (2 5)

We will consider solutions where all of the black holes
have charge with the same sign. This means that the
gravitational and Coulomb forces on each hole will be
of equal magnitude and in opposite directions; hence,
we can have static solutions. It is possible to obtain
multi-black-hole solutions with H being any solution of
Laplace's equation in Euclidean (d —1)-space with k point
sources located at x = x, that is with

The theory we will consider is d-dimensional Einstein
gravity coupled to a (d —2)-form. First we summarize
some previously derived results. The action we start with
is [7,8]

g
d —3 k d —3

a=2
(2 6)
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where the black hole with a mass parameter p, was chosen
to be at the origin. It should be noted that the "point"
sources are actually the horizons of the individual black
holes and there are no material sources there. In spite
of the fact that they appear as points here, they have a
nonzero area [more precisely, nonzero (d —2)-volume].

In this paper the multi-black-hole solutions that will
be considered are the two- and three-black-hole systems.
For the two-black-hole solution we will choose one of the
coordinate axes to be connecting the black holes, this will
be called the m axis. In the case of three black holes we
will choose all of them to be on the w axis. This loss of
generality in the three-black-hole case is compensated for
by an increased symmetry that allows us to more easily
find geodesics.

Now we establish our conventions and state some equa-
tions that will be used later. To start, consider the three-
black-hole case. The two-black-hole case can be recovered
from this by taking the mass of the third black hole equal
to zero. The black hole into which the geodesic, along
which we will calculate curvature components and their
derivatives, travels will be taken to be at p = 0 and to
have mass parameter p. The second black hole will be at
x = aw (vr being the coordinate basis vector along the iU

axis) and have mass parameter M. The third black hole
will be at w = —a2w and have mass parameter M2. We
will primarily be concerned with geodesics that are along
the m axis, without loss of generality these geodesics will
be taken to be along the positive iU axis (to get the re-
sults for one along the negative m axis we only need to
exchange a and o.2). In our configuration ere have

+ M" (a —m) + ) x'x'
tgtU

+M2 (o.2 + iU) + Q x*x'
Z gtU

In addition, we will use the common convention that
Latin indices (i, j, k, . . .) take only spatial values.

III. CALCULATIONS OF CURVATURE

A. Preliminaries

In the previous section the metric of a general two-
black-hole solution, and that of a three-black-hole solu-
tion with a special symmetry, were given. These solutions
clearly have coordinate singularities at the horizon. We
now want to determine if this is due to a bad choice of co-
ordinates, or if the metric is actually singular there. The
most natural thing one might try doing to address this
question is to consider the behavior of curvature scalars

near the horizon. However, this would give us an in-
complete picture because it is possible to have a diver-
gent Reimann tensor and still have curvature scalars that
are well behaved. In light of this we choose to consider
how the components of the Riemann tensor behave as
we approach the horizon in a "good" coordinate system
in order to examine the possible singular nature of the
solution.

To construct this "good" coordinate system we will
start with an orthonormal basis and. parallel propagate
it along a timelike geodesic that goes into the horizon. In
our case this is equivalent to considering the components
in a static orthonormal basis, here formed by the vectors

and boosting it with the velocity parameter that a &ee-
falling observer would have with respect to this static
basis. Of course the exact value of the velocity parame-
ter will depend on the initial conditions of the observer,
but as the horizon is approached it will diverge in a man-
ner that is independent of the initial conditions. To see
the equivalence note that the geodesic is along the axis
connecting the black holes, so the symmetry of the solu-
tions (and the parallel transport equations) leads to the
transverse basis vectors, (e;~i g iii), being unchanged
by the parallel transport, just as in the case of boosting
along the axis. The timelike basis vector in our initial
static &arne, e~, when parallel transported. is just the co-
variant velocity vector u of the &ee-falling observer. It
can be obtained by boosting the timelike basis vector eq
of the locally static orthonormal frame by the appropri-
ate I.orentz transformation. Finally, consider that the
longitudinal spatial basis vector e . In the initial static
&arne e~ e = 0. Vector products are preserved under
parallel transport, so the basis vector obtained by paral-
lel transporting e, say e', must be orthogonal to u and
the transverse basis vectors. This shows that e' can be
obtained by boosting the vector e of the locally static
basis with the same I orentz transformation that we used
to get u &om ez. Therefore, boosting our locally static
orthonormal basis is equivalent to parallel transporting
an orthonormal basis along a timelike geodesic. Basically,
any divergences we find in this basis will be divergences
that a &ee-falling observer could measure.

To start we calculate the components of the totally
covariant form of the Riemann tensor in the coordinate
basis, A p ~, using the usual method. From these we
obtain the components in a static orthonormal frame,

, by multiplying by a power of H that depends on
how many of the indices of the tensor are t. If two of
the indices are t then we must multiply by H ("
and if all of the indices are spatial we must multiply by
H /(" ) . If only one index is t then the component is
zero.

Carrying out this procedure we find that the nonzero
components of the Riemann tensor in a static orthonor-
mal frame are



R;.;;.;. = st '" '~" '(d —3) 'I Ira,'H——EID,'H + ja JI)*+ (B,H)' —(d —3) ' ) (8 H)'I,
I gi, j

a-,—,.; = sr '&" '~~' -'~)a —3)-'( aa, a,—a+ a, Ha, H), ~ g k
d —2

(3.2)

with H given by (2.6) and d is equal to the spacetime dimension.

H. Solutions with two black holes

Equation (3.2) displays the curvature components of the metric given in (2.4) for any H. Now, consider the special
case of two black holes, this corresponds to taking H as in Eq. (2.7) with M2 ——0. The components of the Riemann
tensor will now be calculated along the axis connecting the black holes. Taking the derivatives of H as prescribed in
(3.2) and then taking x' = 0 for i g ii) gives

'i~+'~)» -p(pI"~ —(p+ 1)1 ~ ~ —(p+ 1)(MI )~f~ —(4p+ 2)(M&))'f~+'
—(P+ 1)(Mp)~f~+ —(P+ 1)M~f~+ m~+ PM ~f ~+ ),

B- - = A ~~+')»P( ~u)~+ (Mp)~f~+2(Mp)~f~+'+ (Mp)~f~+ +M~f~+ vo~)

&tuxmx

a.-„-.-„- = a '~~+'~)»(I ')'+ 2&~~)'+ 2(M&)~f~+ 2(MI )~f)'+'+ 2(MI )~f~+'+ M')'f')'+'+ 2M~f~+'~)'), (3.3)

where, x (and y) is any of the transverse spatial coordi-
nates, P = d —3, f is defined by

H'~~ ~X'—a2 —1 . (3.6)

and A is de6ned by

(3.4)
The negative sign is there because we are considering
geodesics going in from positive n). The symbol lh, will
be used to denote the value of a quantity as the horizon
is approached. Notice that as we approach the horizon
m is unbounded if d & 5:

There are two important things to notice about (3.3).
One is that the components of the Riemann tensor are in-
variant under boosts in the u) direction [10]. This means
that the components we just calculated for a static or-
thonormal basis are also the components in a free falling-
orthonormal basis. Another is that the components are
6nite at the horizon, that is, at m = 0, clearly the metric
is at least C . We now proceed to calculate derivatives
of these components with respect to the proper time of
a free-falling observer.

In order to do this we erst need to 6nd the geodesics.
Because of the symmetry of the solution we can take
u = t8/Bt + 6o)/o)iU, where the overdot denotes taking
the derivative with respect to proper time, which will
simply be referred to as the derivative from new on. The
t-geodesic equation gives t = kH, with A: begin some
constant that depends on the initial conditions. The fact
that u - u = —1 can then be used to 6nd m. It is given
by

vol — kp m "[1+O(va" )] .

This suggests the possibility that some derivatives of
the Riemann tensor may diverge at the horizon. It should
be noted that this is finite if d = 4 [in which case the
(d —2)-form is just the Maxwell tensor] and that all
of the results that will be presented here are consistent
with those of [4,7], where it was demonstrated that the
horizons of multi-extremal black-hole solutions in four
dimensions have smooth horizons. The fact that ~ di-
verges as we approach the horizon may make one worry
that our results will imply that single-black-hole solutions
in more than four dimensions have nonsmooth horizons;
this would be in direct con8ict with known results [7].
However, one can show that all derivatives of the Rie-
mann tensor for single-black-hole solutions are finite at
the horizon by the following argument. To difFerentiate
the components of the Riemann tensor we take togs of
(3.2). Using (3.7) we see that &c) acting on a term pro-
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portional to m gives one proportional to m ~. This
shows that, if n is an integer multiple of P, then we will
never get negative powers of m by taking derivatives of

The reason is that taking derivatives reduces the
power of m by an integer multiple of P; hence, some or-
der derivative of m will give a constant. Taking more
derivatives of this will give zero. An examination of (3.3)
and (3.5) shows that when M = 0, i.e. , the single-black-
hole solution, to only appears as m~. From the preceding
argument one can see that all derivatives of the Riemann
tensor of the single-black-hole solutions will be well be-
haved.

The smallest power of m appearing in (3.3) is tv~, and
as expected from the above argument the first derivatives
of the components (3.3) are finite. One can also see that
when M j 0 some tv~+~ powers appear in (3.3) near the
horizon, this suggests that second derivatives of (3.3) will
diverge at the horizon. We now go on and calculate the
second derivatives of (3.3).

We now state some formulas that will be necessary for
calculating the second derivatives of (3.3). We can get
ui &om the geodesic equation for u . Expanding this
function near the horizon gives

iu~p, = k'p'" 'u—r '"(d —4)[1+O(m )] . (3.8)

We now calculate the second derivative of a general power
of f using (3.7) and (3.8). These are the terms that will
give the divergences of derivatives of the Riemann tensor
because elsewhere w only appears raised to the P power.
For reasons that will soon be clear the first two terms in
the expansion will be kept

(f )"~h,
= k p ~ a m ~n((n —P)

+—(n+ 1)(n+ 1 —P) + O([~/a]')) .
a (3 9)

There are several properties of this that we will use. The
most important feature of this is that it will diverge at
the horizon if p ) 1 (i.e. , d ) 4) and n ( 2p. Also,
the larger n is the less divergent (3.9) is, with one ex-
ception. The leading term for the second derivative of
f~ and f~+ are both of order m ~ = m4 " near the
horizon. By inspection of (3.3), (3.5), and (3.9), we see
that these will give the leading-order terms in the second
derivatives of (3.3). For B-y-g these cancel to leading
order, so the f~+ term must also be considered. It also
suggests the possibility that these second derivatives will
diverge at the horizon if d & 5. One can also see from
(3.9) that, as one may have anticipated, the coefficient of
any divergent terms will decrease as the separation be-
tween the black holes increases, because of the negative
power of a. To confirm that there is a divergence we
must add the leading-order contributions and see if their
coefIicients add to some nonzero value, which is indeed
what they do.

Taking the second derivatives of (3.2) and only keep-
ing the leading-order term as m approaches zero gives
(an alternate notation one may want to use for these is

or V' V' R
&

where all coordinates refer
to those in the free falling frame)

~ ~

~ ~

~ ~

+xyxy]h,

P
-k —

i

—
~

p m (d —3)(d —2), 1/MI p 4

a Ea)
x (d —1)(3d —8),

k —
i

—
~

p~ ur (d —3)(d —2)(d —1)
~ ~

+tuaurx
~
h

P
—k —— p, w 2d(d —1),, 4. .

a2 a
(3.10)

if d & 5 the first two clearly diverge at the horizon. This
demonstrates that the metric is not C at the horizon.
This is the main result of this paper, that multiple-black-
hole solutions in five or more dimensions need not have
smooth horizons.

C. Solutions with three black holes

We not briefly consider three-black-hole solutions. To
do this we evaluate the components of the Riemann ten-
sor (3.2) using H as given in (2.7), with M2 g 0. Because
the behavior of the geodesics is dominated by the black
hole at p = 0 we again use (3.7) and (3.8) to get the
second derivatives of the Riemann tensor. Doing this to
obtain R& -& - we find that the leading-order term is the
same as that of (3.10), but with

(Mq ~ 1 (M&)

( a ) a ( a ) a ( a2 ) az
(3.ii)

8 H = Py~m ~ + P—M~(a —ur)

—PM2~(az + m) (3.12)

and then multiplying by the m 2~ factor we get by fac-
toring a m~ out of the H prefactor in (3.2) [as we did
in the two-black-hole solution when going from (3.2) to
(3.3)]. The result is that, keeping only the terms that
will give the leading-order divergences when derivatives
are taken, we now have

P+1 P+1
M~

i i

—M
r

' &"+ r
(3.i3)

in the equations for the Riemann tensor components
where we had M~f~+~ terms in (3.3). As we approach
the horizon this becomes

By the following simple argument one can see that this
will be the case for all components of (3.10).

First notice that to find the leading-order behavior of
the second derivatives we only need to consider terms in
R

& ]h that are proportional to m~+ . In the two-black-

hole solution these come from the f~ and the f~+~ terms
in (3.3).

Consider the f~+ terms in (3.3), they arise from the
(0 H) 2 terms in (3.2). The analogous terms in the three-
black-hole solution are cross terms we get by squaring;
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M 1 /M21 1 + O(tU ) . (3.14)
a a ( a2 ) a2

This shows that some of the m~+ terms in B,& for
the three-black-hole solution can be obtained from those
of the two-black-hole solution by making the substitution
(3.11). We will now show that the remaining tie~+ terms
in the three-black-hole solution can also be obtained in
this way.

The other sources of m~+~ terms in the two-black-hole
solution are the f~ terms in (3.3) and (3.5). These uj~+
terms come from the first correction to the leading term
in the expansion of f~ In . the two-black-hole solution
the f~ terms come from the H prefactor and the 0,H.
terms in (3.2), when the m~ term is factored out of the
H prefactor. In the three-black-hole solution the terms
analogous to f~ will have the same sign for the contri-
butions from the second and third blackholes. In other
words, the three-black-hole solution will have (again ig-
noring terms that may lead to lower-order divergences)

qa —tL) l, a2+ m)
(3.i5)

where M~f~ apepars in (3.3) and (3.5). The leading-
order term in (3.15) is proportional to m~ and all order
derivatives of this are finite. The first correction to this
gives m~+ terms, that are in fact the same as those given
by (3.14). This, along with (3.14) itself, shows that all
of the m~+ terms in B

& ~t, for the three-black-hole
solution can be obtained from those in the two-black-hole
solution by making the replacement (3.11).

When we take the second derivatives of the Riemann
tensor components the m~+ terms will give the leading-
order contribution. Therefore, B &- ~h, for the three-
black-hole solution is given by (3.10), but with the re-
placement (3.11) for all components. If we take M2 ——M
and. a2 ——a, then we find that what was the leading-order
divergence for each component vanishes.

In five dimensions these are the only terms that di-
verge; therefore, the second derivatives of the Riemann
tensor components are well behaved, at the horizon of
the central black hole. In fact, as long as we' approach
the central black hole along the axis connecting it with
the outer black holes, all order derivatives of the Rie-
mann tensor components will be bounded. The reason is
that along the m axis these components are functions of

and in five dimensions taking derivatives lowers the
power of m by integer multiples of two. The same argu-
ment that was used to demonstrate that single-black-hole
solutions are smooth can now be used. to show this result.
Nevertheless, it is possible that higher-order derivatives
of &

&
will still diverge as we approach the horizon

from other directions. One should. also note that this is
just one component of the event horizon of the space-
time. If instead we consider the component of the hori-
zon surrounding one of the outer two black holes, then
the second derivative of the Riemann tensor will still di-
verge there. The reason is that to calculate this we can
take M2 ——M and a2 ———2a in (2.7) and then repeat the

P
~-.- ~„=k

~

—
~

—&
—*-P(P+2)t M) 1 p 4

txtx
I )

x(5P + 21@+12), (3.i6)

where x is the transverse spatial direction that the
geodesic travels along. In five dimensions the second
derivative is finite at the horizon, as was the case for
geodesics along the m axis. In more than five dimen-
sions this diverges at the horizon. This confirms that
the second derivatives of the Riemann tensor still di-
verge if d & 5, albeit less severely than the two-black-hole
case. As claimed, it is indeed only the leading-order di-
vergences that vanish and the other divergences are still
present for d ) 5. Presumably these divergences could
be removed by adding a sufFicient number of additional
black holes.

IV. DISCUSSION

The primary purpose of this paper was to examine the
smoothness of event horizons when there is more than
one black hole. This was done for static configurations
of extremely charged black holes. Two classes of such
solutions were considered: general two-black-hole solu-
tions and solutions with three collinear black holes. The
components of the Riemann tensor were evaluated in an
orthonormal basis that was parallelly propagated along
a timelike geodesic through one of the horizons. While
these components are well behaved, in more than four
dimensions some of their derivatives diverge on the hori-
zon. This shows that these multi-black-hole solutions
have nonsmooth horizons, thus confirming the conjecture
of [7].

The results obtained here are similar in many ways
to those of [6]. Both have rather mild singularities that
allow geodesics to be extended through the black-hole
horizons, and both demonstrated that by adding more
black holes with the proper masses and coordinates the
differentiability of the solutions can be improved (the
demonstration in [6] was much more general). There are,
however, substantial diB'erences. In [6] the cosmological
constant is nonzero and the solutions are four dimen-
sional. In the present work the cosmological constant is

previous analysis [also taking p -+ M in (3.7)]. This will
give divergences like those in (3.10), with the coefficient
slightly changed.

In more than five dimensions there are lower-order di-
vergences in addition to the leading-order ones in (3.10).
One would expect that the cancellation obtained by tak-
ing M2 ——M and a2 ——a would only occur in the leading-
order terms and not in all the corrections to them. To see
that this is the case and that there are still divergences of

we choose to use the fact that if we take M2 ——M
and a2 ——a, then the symmetry of our three-black-hole
configuration allows us to easily find timelike geodesics
along a transverse axis. We can then repeat what was
done for timelike geodesic along the to axis. Doing this
for the B~-~- component yields
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zero, the divergences only occur in more than four di-
mensions and are more mild than those of [6]. Perhaps
the biggest di8'erence is that the solutions considered in
[6] are dynamical and the singularities were attributed to
the presence of electromagnetic and gravitational radia-
tion. In this paper the solutions are static and their lack
of smoothness can have no such cause.

Other single-black-hole solutions that can be made into
static multi-black-hole solutions by using methods such
as that of section two were derived in [8]. These solutions
have a dilaton in addition to the (d —2)-form. In partic-
ular, their five-dimensional solution is a solution to the
low-energy string equations with Fp 2 being the famil-
iar antisymmetric tensor field from string theory. While
these solutions have Riemann tensor components similar
to those presented here, it takes an infinite proper time
to reach the horizons for these solutions, so they will not
have singularities like those seen here.

One might question the significance of the second-, or
higher-, order derivatives of the Riemann tensor diverg-
ing. One might consider it analogous to the situation
in quantum mechanics where it is one thing to say the
operator x p+ px is Hermitian, and therefore an observ-
able. However, it is quite another thing to say how one

would actually measure it. Nevertheless, the fact that the
horizon of a single black hole is smooth and adding an-
other black hole anywhere, no matter how small its mass,
spoils this smoothness, is quite surprising. It is also pos-
sible that if a string fell into the horizon of one of these
multi-black-hole solutions then some coupling of it to the
derivatives of the curvature would cause it to behave in
a way that has interesting physical consequences.

It may seem strange that multi-black-hole solutions in
four dimensions have smooth horizons, while those in
higher dimensions have horizons with finite difFerentia-
bility. There is no obvious reason why increasing the
spacetime dimension &om four to five (or more) would
cause this change. Understanding this is likely to be the
key to obtaining a physical explanation of why the higher-
dimensional solutions have nonsmooth horizons.
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