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Black hole formation by sine-Gordon solitons in two-dimensional dilaton gravity

Hak-Soo Shin* and Kwang-Sup Soht
Department of Physics Education, Seoul National Uniuersity, Seoul j51-7)2, Korea

(Received 21 December 1994)

The CGHS model of two-dimensional dilaton gravity coupled to a sine-Gordon matter 6eld is
considered. The theory is exactly solvable classically, and the solutions of kink- and two-kink-type
solitons are studied in connection with black hole formation.
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I. INTRODUCTION

The two-dimensional dilaton gravity coupled with
scalar matter fields proposed by Callan, Giddings, Har-
vey, and Strominger (CGHS) [1] has been extensively
studied with the aim of gleaning useful information about
black hole formation and evaporation. In spite of the ini-
tial high hopes, the theory turned out to be intractable
even in semiclassical approximations [2—4], let alone in a
full quantum analysis.

In the CGHS model [1] the scalar matter was free fields,
and a black hole was formed by a shock wave of the
&ee scalar fields. Black hole formation by an interact-
ing scalar Geld has not been considered. On the other
hand, in two-dimensional spacetime there has been much
interest in integrable models of nonlinear partial differen-
tial equations, and especially in the soliton solutions [5].
In particular, the sine-Gordon theory of the interacting
scalar fields provides a good example of solitons and their
scatterings [6].

In this paper we consider a sine-Gordon-type matter
Geld coupled with dilaton gravity, and investigate black
hole formation by solitons. In Sec. II we introduce the
model by giving the action and gauge fixing, and in Sec.
III we study the black hole geometry formed by a kink-
type soliton. Scattering of two solitons is considered in
Sec. IV, and brief discussions are given in the last section.

II. ACTION AND GAUGE FIXING

We begin with the action in two spacetime dimensions:

18 = — d'xg —g e z~[R + 4(V'p)' + 4A']
2+ M

1——(V' f) + 4p (cos f —1)e
2

ds = —e ~dx+dx

where x+ = t + x. The action then reduces to

(2)

1 d2x e 2~(+28+8 p —40+$8 P+ A e ~)

1+ 8+f0 —f + p (cos f —l)e ~
2

and the metric equations of motion are

1
T++ = e '~(40+pB+Q —2cl+$) + (0+f)' =—0,

2

T =e ~(40 pB P —20 P)+ (0 f) =—0,
1

T+ ——e ~(20+8 Q —40+$8 P —A e ~)
—p (cosf —l)e ~ ~=0. (6)

The dilaton and matter equations are

(—48+0 /+48+$8 /+28+0 p)e

+[A + p, (cos f —1)]e ~ 4' = 0, (7)

cl~B f+ p sinfe ( ~) =0.
Adding Eqs. (6) and (7) we get

8+8 (p —P) = 0,

which has the general solution

respectively, and A is a cosmological constant. This ac-
tion is the CGHS action except the last sine-Gordon term
which we added to study formation of black holes by soli-
tons.

The classical theory described by (1) is most easily
analyzed. in the conformal gauge

where g, P, and f are metric, dilaton, and matter fields,
p 4'=io+(& )+~—(& ). (10)
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The arbitrary functions m+ and m can be eliminated by
Gxing the subconformal gauge freedom. From now on we
will take the simplest gauge fixing such that u+ ——u
0.
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cl+(e ")+ (~+-f)' = o,
1

cj' (e ")+ 2(~-f)' = 0,
1

8+el (e ~)+A +p (cosf —1) =0,
8+0 f+p sinf =0,

(is)
(14)

Since p = P the field equations reduce to the following
simple ones:

and similarly

d2a(x+)
dx+

0, (24)

where a(x+) and b(x ) are arbitrary functions which are
to be determined by the constraint equations (ll) and
(12). Inserting the solutions (18) and (23) into (11) we
obtain

whose solutions we will consider in the rest of this paper.
d2b(x ) 0,

dx
(25)

III. KINK SOLUTION AND BLACK HOLE
FORMATION

which yields

e '@ = C + ax+ + bx —A'x+x
—2 ln [1 + exp (2E —24p)], (26)

The sine-Gordon equation (14) is well known to have
a soliton solution [7]:

Z Zpf (z) = 4arctan exp 2
I v2

where
f = 4arctanexp (p+x+ + p x —Ap), (27)

e ~ = e ~ = C —A x+x

where a, 6, and C are constants. By shifting the origin
appropriately we can take a = 6 = 0. Hence the full
solution of kink type is

z = p(x+ vt), (16) —2 ln [1 + exp 2(p+x+ + p x —4o)],

Z Zpf „t,;k;„i,(z) = 4arctailexp —2
1 —v2

(17)

In order to study black hole formation by a kink we
solve Eqs. (11)—(13) with f given by (15). First, we note
that

and the center of the soliton is at zp. This is a travel-
ing wave of kink type with velocity V. Another soliton
solution of antikink type is given by

where p+ ——p z+, p+ p = —p, and C and A p

are constants. An antikink solution is similarly ob-
tainable and the result is simply given by replacing
(p+x+ + p x —ao) by —(p+x+ + p—x —ao) in Eqs.
(27) and (28).

The geometry can be most easily analyzed by dividing
the spacetime into three regions: L—Lp (& —1, 4—Ap
0, and A —Ap )) l. In the first region (E —Ap (( —1)
we ignore the exponential term in (28), and we have

f(z) = 4arctanexp [p+x+ + p x —Ap], e "- —A'x+x —, (29)

where 4p

1 +'U 1 —V
P 1 7 P 1 +"'

and

1 —6 exp(2A —24p) + exp(4E —44o)cosf = (2o)[1+exp(2A —2Ao))2

where we take the constant C = 0. It is simply the linear
dilaton vacuum. In the third region (A —Ap )) 1), we
have

e "= —A'x+x- —4(~+x+ + ~ x—
~o)

I

—&'
I

*++
I I

x +

(3o)

where

gl —v' (21)

which is the geometry of a black hole of mass 4A(Ao—
4 2
&~ ) after shifting x+ by &~,-, and x by &~~+. The two

solutions are joined along the soliton wave. At the center
of the soliton (4 —Ap 0) we have

It is straightforward to show that Eq. (13),

8 8 ( 2~) = —[A +p ( osf —1)),

can be integrated as

e ~ = a(x+) + b(x ) —A x+x
—21n[1 + exp (2A —2Ap)])

(22)

2u' le ~=2I bp —ln2—

which is again the geometry of a black hole of mass

2A(b, p —ln2 —'„", ).
This analysis shows that a black hole is formed follow-
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A2x +— Y+ =0,
1 + exp [

—2(A —Ap)]
(32)

ing the input of the soliton wave. The position of its
apparent horizon, 0~$ = 0, is given by

which, at the region 4 —Lp )) 1, is simply x = —4 &+, ,
which coincides with the event horizon of the black hole,
and, at the center of the soliton wave, x = —2 &+.

In a relativistic soliton (v -+ 1) we obtain the shock
wave geometry of CGHS [1] as

—A2x+x
e —A2x+x —4p

x+ —xp+ & 0,
'+. (*+-*+) *+ —*+ &o (33)

which coincides with the solution of CGHS when the
magnitude of the shock wave a is 4p

By inserting this solution (38) into (ll) and (12) we find
that

.-"= C ~ ax++ Sx- —W'x+x-

IV. TURBO-KINK SOLUTION —2 in[cosh Pt + v sinh px]. (4O)

Kinks emerge unscathed from collision, suKering only a
phase shift. A two-kink solution that demonstrates this
property was derived by Perring and Skyrme [8), and
takes the form

Shifting the origin of the coordinates appropriately we
have the full solution associated with the two-kink soliton

f(x, t) = 4arctan
v sinh( &

",x)

cosh(& ",vt)
(34) f(x, t) = 4arctan

cosh{ ~""~ 'lj
)

(41)

The limit t : —oo yields

(y(z ~ vt —h) &
lim f(x, t) = 4arctan exp!t~ —oo 1 —v' )

e ~=e ~=C —A x+z —21n cosh—2 — —2 — 2 + , (yv(t —tp) )
4 V& —v')

( p(x —vt ~ b) 5—exp !—
Ql —v2 )

(35)
~ . h2 t'V(z —zP)&+v sinh

E V'1 —v' )
(42)

S = gl —v»n —.1

V
(36)

The kink and antikink collide, emerge again, and run
away &om each other as t; oo:

which represents a kink and an antikink that are sepa-
rated very far and approaching each other with the same
speed V. Here b is a phase shift given as

where we restored xp and tp which we had omitted for
convenience. The constant C is to be determined from
the condition that the region of spacetime which is not
affected by the incoming soliton is a linear dilaton vac-
uum. For this we consider the region

p(x —xp) + P(t —tp) « —1,

—p(x —zp) + P(t —tp) « —1, P(t —t, ) « —1, (43)

p(z 4-vt y b))lim f(x, t) = 4arctan —exp!—
t—+oo gl —v'

(p(x —vt —b) )+ exp! gl —v2 )

in which region the metric function becomes

e P[( o)+( o )1

e ~~C —A x+x —2ln

For the two-kink solution the metric function is ob-
tained as

= C~41n2 —2P(xp ~xp) ~4—
2P& & 2PI

where

e ~ =C~a(x+) ~b(x ) —A x+x
—2 in[cosh Pt + v sinh px], (38)

In order to have a linear dilaton vacuum we take C as

pv

gl —v' '
py= gl —v'

p2
C = 4@to 4 (1~2+—
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such that, in this region,

2p 2 ]l + 2j9& ( 2Pi
&

E* (46)

With this C we have the solution of two approaching
solitons into a region of the linear dilaton vacuum.

The singularity of the curvature is easily located by
considering the following three regions separately: (Bi)
p(x —xp) —P(t —tp) « p(a —xp) + P(t —tp) « —1,
P(t —tp) )) 1, (B2) p(x —zp) —j9(t —tp) ')) 1, p(x —xp)—
P(t —t, ) « —1, P(t —tp) )) 1, and (Rz) p(x —xp) +P(t-
tp) &) q(* —*p) —P(t —tp) » 1, P(t —to) )) l. In these
three regions we have

4(sto —pxoj —2lna~ —4~~+,~ )
—A (z++ pj(T —pj (R, j,

e '~ = ~ 8Ptp —A'(x++ ~2„, )(x
—+ ~2, ) (B,),

4(sto+pxoj —2lnv —4 „+, )
—A (T+ —pj(x + Pj (Rsj

(47)

which represent the black hole metrics in each sector.
The singularity of each region are obtained &om the
equation e 2~ = 0, and we see that the effective masses of
the black hole in each region is di8'erent &om one another.
There are two event horizons x = —

g&
and 2:+ = —&~.

V. DISCUSSION

lar with black hole physics.
The next step is to consider Hawking radiation, a con-

formal anomaly, and semiclassical analysis, etc. We plan
to deal with these topics in a separate article using semi-
classical models that have explicit analytic solutions such
as those proposed by Bilal and Callan [9], de Alwis [10],
and Russo, Susskind, and Thorlacius [3,11].

There are other soliton solutions besides the simple
ones we have considered in this paper [6]. In connection
with integrable nonlinear systems, research on solitons
is one of the most interesting and active areas. It will
be quite &uitful to combine the knowledge on solitons
with theories of two-dimensional gravity, and in particu-
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