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Fundamental constants and the problem of time
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We point out that for a large class of parametrized theories there is a constant in the constrained
Hamiltonian which drops out of the classical equations of motion in con6guration space. Examples
include the mass of a relativistic particle in free fall, the tension of the Nambu string, and Newton s
constant for the case of pure gravity uncoupled to matter or other fields. In the general case, the
classically irrelevant constant is proportional to the ratio of the kinetic and potential terms in the
Hamiltonian. It is shown that this ratio can be reinterpreted as an unconstrained Hamiltonian,
which generates the usual classical equations of motion. At the quantum level, this immediately
suggests a resolution of the "problem of time" in quantum gravity. We then make contact with
a recently proposed transfer matrix formulation of quantum gravity and discuss the semiclassical
limit. In this formulation, it is argued that a physical state can obey a (generalized) Poincare
algebra of constraints, and still be an approximate eigenstate of three-geometry. Solutions of the
quantum evolution equations for certain minisuperspace examples are presented. An implication
of our proposal is the existence of a small, inherent uncertainty in the phenomenological value of
Planck's constant.

PACS number(s): 04.60.Ds, 04.60.Kz

I. INTRODUCTION

Actions which are invariant under reparametrizations
of the time variable typically have Hamiltonian con-
straints of the form H[p, q] = 0, which can be viewed, in
an initial value problem, as constraining the initial state
(p, q)o. In the Dirac quantization scheme, these con-
straints on the conjugate variables become constraints
on the physical states, so that instead of the usual
Schrodinger evolution equation one has

pv—g"" +rn @(x ) =0,

or the Wheeler-DeWitt equation

(
—m G;,~, y —~g( —R)) c = 0,1

bg~& Bgl ~ K
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H —i, q 4[q ] =0.

In cases where the constraints are parabolic, such as the
parametrized nonrelativistic particle, or parametrized
scalar field theory, the constraint equation (1) can often
be treated exactly as a Schrodinger equation; the coordi-
nate whose derivatives appear only to erst order is iden-
tified with time (in the nonrelativistic case), or "many-
fingered time" (in the scalar field-theory case) [I]. On the
other hand, for hyperbolic constraints such as the Klein-
Gordon equation with an arbitrary background metric
gp, v)
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it follows that the mass m, the string tension T, and New-

it has proven diKcult to identify an appropriate evolution
parameter and a unique, positive, and conserved prob-
ability measure. In quantum gravity, this difBculty is
known as the "problem of time;" cf. [2,3], for recent re-
views.

In this work we propose an alternative to the conven-
tional procedures for quantizing parametrized theories.
Our proposal begins with the rather trivial observation
that, at the classical level, there is no observable difFer-
ence between an action S and the same action multiplied
by a constant. Since, e.g. , the action for a relativistic par-
ticle, the Nambu string, and the Einstein-Hilbert action
are, respectively,
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ton's constant Giv = r /16m, which appear in the Hamil-
tonian constraints of the relativistic particle, string, and
pure gravity theories, respectively, do not appear in the
Euler-Lagrange equations, which are the geodesic equa-
tion

x dx dx
ds' ~ ds ds

=0

for the relativistic particle, the equation of motion

0
. x"(o', o ) = 080'Oo.~

(6)

for the Nambu string (in orthonorinal coordinates), and
Einstein's equations

for pure gravity. The mass of a particle (or the tension
of a string) can never be determined from its trajectory
in free fall, neither can Newton's constant be determined
from vacuum solutions to Einstein's equations. In the
theories described by (4) these are classically indetermi-
nate parameters, which only become relevant by intro-
ducing nongravitational fields and forces (i.e., changing
the theories).

In Sec. II, below, we generalize this observation to any
time-parametrized theory with hyperbolic constraints, in
particular, to gravity coupled to other fields. It will be
shown that there is always a classically undetermined pa-
rameter t, which is equal to the ratio (denoted K) of the
kinetic and potential terms in the constrained Hamilto-
nian

and this time-independent Schrodinger equation will be
recognized as just the usual Hamiltonian constraint with
a given value of the parameter E, which varies among
stationary states.

In Sec. III we rederive the % evolution operator in
a completely diferent way, based on a transfer-matrix
quantization of parametrized theories. This section is a
review and extension of the approach suggested recently
by one of us in [4], which leads to the same picture as that
advocated in Sec. II. The transfer-matrix approach has
the advantage of fixing the operator ordering in JE[p, q]
and the functional integration measure, for parametrized
theories with a discrete number of degrees of freedom.

Section IV is devoted to a discussion of the semi-
classical correspondence between (9) and (10), and in
particular the relation between the evolution parame-
ter 7- that appears in those equations, and the "many-
fingered time" of general relativity. We argue that the
space of physical states includes states which are sharply
peaked (at a particular value of w) around a given three-
geometry. In such states, the dispersion around the given
three-geometry is, crudely speaking, inversely propor-
tional to the dispersion in E.

We also argue that a dispersion in E', which is charac-
teristic of nonstationary states, would appear experimen-
tally as an inherent uncertainty in the phenomenological
value of Planck's constant. Unfortunately, we are unable
to place on this uncertainty a reliable lower bound.

In Sec. V, we illustrate our formalism by solving a sim-
ple minisuperspace model, and display the "wave packet
of the Universe" evolving through the stages of expansion
of the scale factor, recollapse, and reexpansion. Section
VI contains some concluding remarks.

Kinetic [p, q]

Potential[q] II. THE KINETIC/POTENTIAL RATIO

(9 Q = (Q, K) (9)

generate dynamics at the classical level, it is proposed
that % is also the appropriate evolution operator to use
at the quantum level: i.e. ,

&-(Q) = —(—„IQ ~l) (10)

The Hilbert space of physical states is spanned by sta-
tionary states 4 p,

We will also show that replacing the usual (constrained)
Hamiltonian H[p, q] in Hamiltonian's equations by the
expression %[p, q] generates, in configuration space (su-
perspace), the usual classical solutions of the theory.

Our proposal for resolving the time problem in quan-
tum gravity is based on this reasoning: since 8 is indeter-
minate at the classical level, we see no reason that it must
be regarded as a fixed (bare) parameter at the quantum
level. Rather, let —Z denote the possible eigenvalues of
the operator K. Because Kg 0 and, as shown in Sec. II,
the Poisson brackets

We consider first a time-parametrized theory with D
degrees of freedom, described by the action

S= dt] p. —NH i,r dq

S= dt p
1 dq

dt

r G'p pb
(2 Zmo

+V E'moV

1
S[m = ~fmo] .

1 abG p pb + moV(q),
27TLO

where the "supermetric" G b has Lorentzian signature

(—+ + +). For V(q) = const, this action charac-
terizes the motion of a relativistic particle in the space-
time metric G b, other choices of V arise in minisuper-
space models of quantum gravity. Making the rescaling
p -+ p /~t (an extended canonical transformation) the
action becomes
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It is clear &om this equation that the trajectory q (t)
in configuration space connecting two arbitrary points
qo and qz cannot depend on the value of mo, which is
therefore classically indeterminate. We may also write

BiB
Oq

1 8 ( 1
papb

moV Bq (2mo )

where

dt )

(14)
(I/2mp)G sp pg 0

mp
mpV Oq

1 0 1
G p~pb + E'mpV

moV Oq 2mo

'R = G p pg+ VSmpV .
2 Zmo

8
moV Oq

(20)

Suppose S is stationary for a trajectory in phase space
q (t) = Q (t), p (t) = P (t), N(t) = JV(t), which con-
nects the generalized coorihnates qo and q&. It follows
that S is stationary for q (t) = Q (t), p (t) = ~ZP (t),
N(t) = JV(t). This means that the trajectory in config-
uration space q (t) = Q (t) connecting qo and qz will
be the same whether the fundamental action is taken to
be S or S . It is in this sense that the parameter E' is
indeterminate, since trajectories in configuration space
generated by

Suppose q(r), p(w) is some particular solution of (19),
(20), and %= —Z. Then, choosing

1

Vl()l
and rescaling v by ~Z/mo to give w the conventional
units of time, we see that this is also a solution of Hamil-
ton's equations and constraint (16). It follows that, in
general, the Poisson brackets evolution equation

Oq BR Op~ BR
Ot Op Ot Oq

will be independent of E'.

Let us rewrite the 'R = 0 constraint as

(16)
0 O=(O, X}

supplemented by K= —E will generate time evolution
which is equivalent, up to a time reparametrization, to
evolution generated by

OtO = (O, N'R }
(1/2mp)G ~p ps

It is easy to show that the configuration space trajec-
tories generated by treating K[p, q] as though it were a
Hamiltonian,

supplemented by 'R = 0.
The extension of these remarks to general relativity

is fairly straightforward. Let us denote the action of a
generally covariant Geld theory as

S= ~4*~ p.
( Bq

|9t
Oq

07

0% Bp 0%
Bp 07 Bq

(18) 'R = r G p ps+ ~gU(q), (24)

are equivalent to the solutions generated by~ (16). The
first of these equations, %= —8', is just the Hamiltonian
constraint 'R = 0. The second equation is

Oq 0%
07 Op~

where the q (x) are the set of all fields, gravitational and
nongravitational, G b is the supermetric, N and ¹ the
lapse and shift functions, and 'R* are the supermomenta,
linear in the canonical momenta p (x). It is convenient
to rescale all nongravitational fields by an appropriate
power of r. so that all q (x), and all G ~, are dimension-
less. In the special case of pure gravity, we would identify

~z 8
moV Op

and for the third equation we have

It should be noted that, since K is dixnensionless, the evo-
lution parameter v in Eq. (18) has units of action.

(a = 1 —6} ++ ((', q), ' & q},
q (x) m g;, (2),

p"(&) (t'=&)
2p" (*) ('&~),

G g(x) ++ G"" (x),
Ue+ —(—R) .1 3

K

By the same rescaling p ~ p /~Z as before, the action
S is equivalent at the classical level to the action
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—N'R —N, Rg
8t'

K
G "p-pb+ ~~~gU(q) .

supermomenta to the ratio in (28) without changing its
value. De6ne

Nr2G ~

dsz'+gNU q m~

Variation of S with respect to the lapse gives the Hamil-
tonian constraint

'R = G p ps+ WE'~gU(q) = 0 (27)
where

which, multiplying again by an arbitrary function N(x),
we write in the form jdsz'~gNU(q)

(30)

f d zN~2G sp ps

I dsx N ~gU(q)

valid for any N(x). Because of the supermomenta con-
straints 'R' = 0, we can add a term proportional to the

and m~ is an arbitrary mass parameter. We will now
show that X can itself be reinterpreted as a Hamiltonian,
in the sense that the classical orbits in con6guration space
obtained &om the corresponding Hamilton's equations
are icjentical to the extrema of the action (24).

The equations of motion derived from % are

dq (z) bK
d~ bp (z)

m~
d x' N(x') (K G "p,pg) +N~(z') 'R',

pa p~ z

dp (x) b%
d~ bq~(x)

d z' N(x') (r G'"p,pg) + ¹(x') 'R',
m~ bq~ z bq~ x

2 acct

I

d'*' N(x') . (K'G "J.p.). N(z')~ . —(K~U)* + N'(*')
m~ bq x bq~ x bq~ x

bK
bN(x)

N~2G

(IN~gU)'

biB
bN; (x) m
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dq (x)
dt

d x' N(x') 'R,
pa

The value of N is of course a constant of this motion,
denoted N= —E', and v is dimensionless. From the defi-
nition of R'e in Eq. (26), and rescaling t = ~fr/m~ (to
give t the dimensions of length), the equations of motion
(31) become

of states? (4) The time-evolution parameter r in the
Schrodinger equation is only a single variable; how is it
related to the "many-fingered time" of general relativity'

To answer the first question (the others will be dealt
with in subsequent sections), let us note that physical
states @[q,r] in the Schrodinger representation must be
independent of the functions N and¹.Expanding an
arbitrary 4 in stationary states,

dp (x)
dt

b
+N;(x') 'R',

d'*' N(*')
hq~ x

where

4'[q, r] = ) ae@e[q]e*

1H@s [q] = t 4'e—[q]

(37)

(38)
b

+N; (x')

'R = G p pi+vf~gU=O,
E'

'R' =0, (32)

the condition of ¹ independence gives

b

bN; (x)
= 'R'4g

d x~gNU = m~ . (33)

where the shift function is N, —:N;/~Z. Comparison
of the equations of motion (32) to the Hamiltonian equa-
tions of motion that would be derived from S of Eq. (26)
shows that they are the same equations, apart from the
restriction of the lapse function N in (32) to satisfy

while N independence requires

0= b

bN(x)

[K G p ps —~gUiR] 4edsx'~gNU

I ds x'~gN U
(40)

The trajectory in configuration space is independent of
the choice of lapse; it is also independent, as noted above,
of the choice of f.

We can therefore conclude that K[p, q, N, N;], viewed
as a Hamiltonian, generates the same classical dynamics
as the more conventional Hamiltonian form

where we have provisionally taken an operator ordering
N with momenta to the right, and also used the super-
momenturn constraint (39). Therefore, the Hilbert space
of physical states consists of linear combinations of N
eigenstates,

II = d x[N'R + N;R'] . (34) ~.h..[q] = ) .«~e[ql (41)

The crucial difference between % and H is that H is con-
strained to vanish, in the standard formulation, whereas
the value ofiB is unconstrained: the constant E' can take
on any value on an orbit, depending only on the ini-
tial choice of (p, q). Obviously, this diff'erence is quite
important at the quantum level. Instead of the usual
Wheeler-DeWitt constraint equation

II@[q] = 0,
we will obtain a Schrodinger equation

XC[q, r] =iM 0[q, r] . (36)

Several questions arise immediately: (1) If (36) is the dy-
namical equation of quantum gravity, what has become of
the Poincare algebra of constraints which represents the
diffeomorphism invariance of the theory? (2) What is the
relationship of the Schrodinger equation (36), based on
the 1E operator, to path-integral quantization? (3) What
is the operator ordering in 1E[p, q, N, N;], and what in-
tegration measure should be used for the inner product

each of which satisfies the constraints

'R 4s= [K G p ps+f~gU] 4e=0
'R'4g ——0 . (42)

([v G p~pp, ]~ —[~gU] 1E)@phy. ——0
&' @p}ys = 0 .

In the case of pure quantum gravity, the E parameter
has a simple interpretation. The Hamiltonian constraint

Apart &om the parameter F, these are the standard con-
straints on physical states of quantum gravity. As is cus-
tomary in this subject, we assume that there exists some
operator ordering such that the commutators of oper-
ators 'R, 'R' close on the Poincare algebra, as do the
Poisson brackets of the corresponding classical quantities.
Given this assumption, the physical states of the form
(41) satisfy, in our formulation, the generalized Dirac con-
straints
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becomes III. THE TRANSFER-MATRIX FORMULATION

E
G,,„,y"y y ~g( —R)) 4~ = 0

F K

and therefore

16vr ~t

(44)
We now give an alternate derivation of the Schrodinger

equation (36) for parametrized systems, following the
transfer-matrix formulation proposed by one of us in [4].
The advantage of this approach, apart from making the
connection to path-integral formalism, is that it also fixes
the measure and operator ordering, at least for systems
with a discrete number of degrees of &eedom.

The transfer matrix 7, for nonparametrized systems, in
statistical mechanics and Euclidean quantum mechanics,
is an operator which evolves states by a time step Lt = e:

is the effective Newton's constant for the degenerate sub-
space of physical states satisfying cK4 = —E'C. The
space of physical states is spanned by states 4p which
satisfy the standard Hamiltonian and supermomentum
constraints, but with a diferent value of Newton's con-
stant associated with each E'. In general, physical states
are not eigenstates of Newton's constant.

To summarize our proposal for pure gravity, since New-
ton's constant is indeterminate at the classical level, we
see no reason that it is necessarily a fixed bare parameter
at the quantum level. Instead, treating G~ as a quan-
tum number allows for a vast extension of the space of
physical states. It is this extension which we propose to
exploit, as seen in Eq. (36), to resolve the time problem
in quantum gravity. In the general case of gravity cou-
pled to other fields, it is not Newton's constant per se
but rather the kinetic/potential ratio in the constrained
Hamiltonian that is classically indeterminate. Regarding
this ratio as a q number leads again to an extension of
the space of physical states and, as we will argue further
below, to a solution of the problem of time.

g(q', t + e) = 7,@(q', t)

d qp q exp —S, q', q q, t (46)

Denoting by S[q2, qi,. At] the action of a classical solution
q(t) running between the initial point qi at time t and
final q2 at time t + At, the expression S, in Euclidean
quantum mechanics is given by the continuation of 8 to
imaginary time lapse:

S,(q2, qi) = i,S[q2, qi', ie]/A (47)

(48)

and the continuum (Euclidean) path integral is defined
as the limit of a product of transfer matrices:

The measure p(q) is defined such that 7, is an identity op-
erator as e —+ 0. The usual quantum-mechanical Hamil-
tonian is essentially the logarithm of the transfer matrix,

N —i
lim
e—+0 n=o

N —1

d q„lj(q„) exp —) S,(q„+i q ) g(qo to)
n=O

= lim (7,) g (q', to) where N =
e~o (49)

Now let us again consider parametrized theories of the
form

S= dt~ p —N'R
~

dq

dt

abG p pg+ mV(q) .
2m

(50)

For parametrized theories of this sort, the transfer-matrix
formalism above breaks down at Eq. (47). The problem
is that the action S[q2, qi, G~g] of a classical trajectory
connecting initial coordinates q~ and final coordinates q2
depends only on those coordinates (and choice of super-
metric G g); there is no additional dependence on a time
lapse Aw, and the values of parameters wq and 72 that

happen to be associated with the initial and final coordi-
nates are irrelevant. A transfer matrix 7, based on (47)
would then be independent of e; this is one of the ob-
stacles encountered in trying to apply directly the path-
integral approach to find the time evolution of physical
states in parametrized theories.

It is premature to conclude, however, from the fail-
ure of (47), that the transfer-matrix concept is meaning-
less for parametrized theories. Let us denote an orbit in
Hilbert space by g(q, w), and require that the transfer
matrix 7, evolves states in the parameter w such that the
orbit of the center of the wave packet,

(q (~)) = (@(q,~) ~q ~y(q, ~)),
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obeys an appropriate Ehrenfest principle. We will show,
following [4], that this is achieved by replacing (47) in
the definition of the transfer matrix by

It is clear that if the signature of G g is Lorentzian, then
S[q, q + Aq, G b] is not necessarily real .However, upon
the signature rotation (53), the function

S ('q2 'ql) = iS[q2, q'i, G b]/~« (52) S,(q, q+ Aq) = m 2VG bAq~Aqb/~eh

where the Euclidean rotation At -+ iAt in (47) is re-
placed by a rotation of the signature of the supermetric:

G-b(q) = &.'(q)~" Eb(q)

G.b —= sgn[V(q)1&.*(q)~V@b(q), (53)

c]'R N m
q =N = —G ppwp = —G pq

Op m N

Insert this into the constraint equation Q = 0,

(54)

where E' is the supervielbein, and i, j are the local (su-
perspace) frame indices.

The reason for this peculiar rotation of signature is
to ensure that S,(q2, qi) is real for all choices of qi and
q2. To show this, we first compute S[q, q + Aq, G b],
beginning from Hamilton's equation

= m G@bAq Aqb/~eh

is strictly real valued for any choice of Lq .
The integration measure p is chosen to be

dD
p, '(q') = (Veh) lim exp[ —S,(q', q)] .

~~o ( eh) ~ (60)

This choice ensures that 7, ~ 1 in the e -+ 0 limit, and
that the symmetries of the action are reHected in the
measure.

Equations (52), (53), and (60), when inserted into
Eq. (46), define a transfer matrix 7, for the parametrized,
signature-rotated theory, which in general depends on g
and det[g ]. The final step is to undo the signature rota-
tion in computing the corresponding evolution operator

2¹G bq q +V=0,
and solve for the lapse

(55) lim
I

——
I

ln]7;] ~ ), (61)
(

emO ( e)
det(g~) -+

~
det(Q)~

Then

( 1N=( — Gbqqb)
2V )

(56)
and the evolution of states is given by

i,M Q(q, ~) = K@(q,~) . (62)

Dt
S[q, q+ Aq, G~b] = dt G~bq q-

At

mdtro —2VG bq q—b

0

mg 2—VG —Aq Aqb

= —mQ —g bAqaA

where we define a modified supermetric

g b=2VG b.

(57)

(58)

S,(0, () = m h bp(b+0(p)/~eh. (63)

The 0(( ) terms will not contribute to N in the e ~ 0
limit, and can be dropped. The measure is then

We can now evaluate 7, and X for actions of the form
(50), leading to the function S, shown in (59). Begin
by introducing Riemann normal coordinates ( around
q' = q —Aq, which bring Q+b ——b b at ( = 0. In
these coordinates

p (q') = (~eh) lim det
~ ~

exp[ —m~(~/~eh]
dD$ (]9Aq" l

( .h)~ E~ )
D

2~D/2 f ~eh '] 1 g
(D —1)!I (D/2) ( m ) QP~(q ) QQ&(q )

The operation of the transfer matrix (46) becomes

4(q', r+ e) = J
d Lq g+(q'+ Aq) exp[ —m g@pAq Aq~/v eh]g(q'+ Aq, 7)

o g 6 ) ( eh) ]9& 2o) &8"I

& ——&-aP(~+. .
I
~xv

I

—
I

0'(v', ~)+
g P+ —

~ ~ „("( +o(('))

+ eh 0"0„—eh 'R+ O(e ) g[q'((), ~],D+1 „D+1
2m 2 " 6m2 (65)
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where 'R is the curvature scalar formed from the modified
supermetric g z of Eq. (58), which has been rotated to
Euclidean signature. Transforming back from Riemann
normal coordinates, we have

and define

BX,)
pa
D+1 b m V gq

Pb PcL D 1
cxb (72)

2m2 ggz Pqn Pqm.
m'V

v-0(v') = ~~~ f & vu(q) ~
Ib b

xG b exp[ —S,(q', q))Q(q) (73)

Rom which we extract, according to (61),

„v Iglg"2m2 g/g/ (9q" (9q

2D+1+h
6m2

0K,([q,p~] = lim K
I q, —ih m p~ ~s +o ( (9q~

(6s)

which gives

(1/2m)G ~p pbD+1
mV (69)

This quantity, apart from an unimportant overall factor
of (D+1), is simply the kinetic/potential ratio introduced
in the previous section. The transfer-matrix approach is
thus a second way of obtaining the evolution operator K,
and also provides a definite prescription for the integra-
tion measure [p(q) (x

~
det(g) ~], and operator ordering.

As a further consistency check, we note that in ordi-
nary Euclidean quantum mechanics we may de6ne

where g = det(g ), and G has been rotated back to
Lorentzian signature.

The classical quantity %,~ corresponding to the opera-
tor N is obtained by replacing derivatives with c-number
momenta,

with S, and p(q) given by (59) and (60). It is then easy
to show that

[q, p~]W = ~~7, 4 (74)

as in the nonparametrized case.
Next we consider general covariant field theories of the

form (24). The main obstacle to computing S[q', q, G b],
and hence to computing the transfer matrix, is the pres-
ence of the shift functions N; in the classical action. Co-
variant derivatives of the shift functions appear in Hamil-
ton's equation, e.g. , in the case of pure gravity,

~'j 2 nm
Bt

= 2K NG'gnmp + Ni. g + ¹

) (75)

Q-[q, p~]+ = 0 (76)

on the physical states. These constraints (up to operator-
ordering ambiguities) will be determined below. With
the choice N; = 0, Hamilton's equations give

1
p =,NG bv2)c2N (77)

and these make it impossible to solve for the lapse-shift
functions algebraically, in terms of Otg, ~. To determine
the lapse-shift functions, it is necessary to solve certain
intractable partial difFerential equations. Instead, we
adopt the strategy of simply setting ¹

= 0. In that
case, of course, the supermomentum constraints are not
obtained by extremizing the action, and must be recov-
ered' by imposing operator constraints of the form

pg(q') = lim d qpm exp[ —S,(q', q)]@(q),

S,(q', q) = —m + V(q)e
(q' —q)'

(7o)

[q, p]g = lim d qp, q'm

from which it is easy to evaluate the commutator

Inserting this into the constraint equation

0='R = G bq q +~gU4K2¹
and solving for the lapse gives

- 1/2
G 'EL 'b

q q

so we have

AS = S[q', q, G g]

(7s)

(79)

mq ~ exp[——S,(q', q)]@(q)
(q' —q) &

The factor h, rather than ih, is due to the Euclidean time.
To derive the corresponding result in the parametrized
theory, we begin from Hamilton's equation

—(g'~'UG. s)o&q &q'+ O(&q')

(g.s)o&q &q'+ O—(&q )

(so)

At
d x dt's g~~2UG bq q—s

K 0

X

d x(~g)o
1 3
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where Aq = q —q', and we define

1Qb= &G b.
~g

(si)

The notation (. . .)p means that the quantity in parenthe-
ses is to be evaluated at Aq = 0, i.e., at q'.

Applying the prescriptions (46), (52), and (53), the
transfer matrix is formally obtained from

@(»' ~+~) = f&vv(v)~ "~ @(v')+
&~q (*))

+- dxdy~ b

2

= @(q', r) + e [Tp + Ti + T2] + O(e )
= 7@(q', 7.),

where the T represent terms with n functional derivatives of @. To find these terms, we need to evaluate

(s2)

(+l (+1)&v'(*2)) = f ~(~v)(u)0&v (»)&q'(*~)ex& ——f & T(va)D (g q)o&c &q IM« (83)

Unfortunately this quantity is highly singular, and in fact
ill defined without a regularization procedure of some
kind.

The authors are not aware of a nonperturbative reg-
ulator of the integral over three-metrics in (82) which
preserves an exact diKeomorphism invariance. In the ab-
sence of such a regulator (which is also crucial for sort-
ing out the operator-ordering issues [5]), we can only
make some general remarks about the regularized form
of (Aq (xi)Aq (x2)). Inspection of (83) shows that
(Kq (xi)Aq (z2)) = 0 for xi g x2, we also see that
(g &)pAq (x)Aq (z) transforms like a scalar. One there-
fore expects the regulated expectation value to go like

(&q (»)&q (»))-s =
l

&
l

~ (» —»),b eh+.'( ~s 1)
v ( ~g)

(s4)

where v is a scalar quantity with dimensions of volume,
v ~ 0 as the regulator is removed. A very important
issue is whether v has some dependence on the three-
metric (g;~)p, and this depends on the properties of the
(unknown) regulator. If, as is the case with dynamical
triangulation, there is a Axed short-distance cutoK t, then
we expect that v = l, and the number of degrees of
freedom changes with the volume of the manifold. If, on
the other hand, the number of degrees of freedom Np is
fixed (as in the Regge lattice), then the volume per degree
of freedom changes with the volume of the manifold. In
the latter case, it is reasonable to expect that

(Aq (xi)Kq (x2))„s = ehr. ' —
~

g
~

h (xi —xg),, Pf sl
V ( g

(s5)

of &eedom in the regularization. A naive lattice regular-
ization, replacing, e.g. ,

Aq (x) m Aq (n),
Npf'*~-„'):,

Np

b K„Qg(n)
bq~(z) V

Dq ++ d q(n),

19

Bq (n)
'

(86)

$2
g2 ~ g3 U.—1Gab

v bq bq
(s7)

where "%" is in quotes to emphasize that this operator,
by itself, does not yield the correct equations of motion
in the classical limit. This was to be expected, because
K has been derived by setting the shift functions N; =
0, a step which requires additional constraints on the
physical states. Now note that because of the spatial
volume denominator in (87), we can write the evolution
equation (36) as

does, in fact, lead to (85) (cf. [4]), although of course such
a regularization does not at all respect diKeomorphism
invariance. VVe will assume that there exists some good
regularization leading to (85), although our justification
for this assumption is largely a posteriori.

Using Eq. (85), the T2 term [in (82)] contributing to
the transfer matrix is easily evaluated; it is the only
term which is important in computing the semiclassical
limit. The other terms are operator-ordering contribu-
tions which, in the absence of an explicit regulator, we
will ignore. The corresponding K operator is

where V is the volume of the three-manifold described
by (g;~)p, and P is proportional to the number of degrees

d'xQ. 4 = 0, (ss)
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where

2

Q = —hKU G —ih~g
bq bq~

(89)

and where we have absorbed the constant P in "K" into
a rescaling of the evolution parameter r in Eq. (36). The
extra constraints which need to be imposed on the phys-
ical states, which then generate the usual constraint al-
gebra of general relativity, are simply

(oo)

at every point x. To show this, consider an arbitrary
solution of the evolution equation

4'(q, r) = ) ase's ~"4s(q) . (oi.)

Since the as are arbitrary, the Q constraint (90) requires
that, for each stationary state,

K2 b22K q b

hq hq'

But this is simply the Wheeler-DeWitt equation for the
action Ss of Eq. (26). Moreover, the constraints 'R @s =
0 imply, via the Moncrief- Teitelboim interconnection the-
orem [6], that the supermomentum constraints

(o3)

are satis6ed as well. In this way, we find that the sta-
tionary states (@b) satisfy the usual constraint algebra
of general relativity, given by the action Sp. The Hilbert
space of all physical states is spanned by the stationary
states, with all possible values of E.

Now multiplying both sides of (90) by NU, where N
is an arbitrary function, integrating over space, and ap-

I

b2
dx —hNKG + N;A'.

bq bq
(o5)

is the operator form of the kinetic/potential ratio (29)
introduced in the previous section, with

N(x)
N(z) —= mp f dsz'~gNU(q) (o6)

It should be remembered that certain operator-ordering
contributions to (94), coming from the To and Ti terms
in (82) have been dropped. However, operator ordering
terms are always O(h), and will not affect the correspon-
dence of the N operator to the kinetic/potential ratio
(29) in the classical limit. From the fact that physical
states are independent of N and N, ,

b b

bN(z) bN, (z)
(97)

we find, as in the previous section, the generalized con-
straints

j[K'G 'p pb] —[~gU] JE)@pbr, ——0,
4'phys = 0 . (98)

The closure of these generalized constraints under com-
mutation depends only on the assumed closure of the
standard constraints (42), for any fixed value of the pa-
rameter F.

From the Schrodinger evolution equation (36), we have

plying the supermomentum constraint (93), we have, in
place of (87),

b2

dsz~gNU ( bq hqbp

1
d x —AN]c G +¹Q'b2

m+ bqabqb

(o4)

where

~-(q ) = z(% q ])

BN + operator-ordering terms
Pa

1

m~ ( d x N(x ) (r. G' p,p~) i + N;(x ) 'R, + operator-ordering terms,
pa pa

~-(p-) = —„(%p-])

0% + operator-ordering terms
|9q

d x' g(z') (w'G' p.yg) —N(x')K (~gG) + Ãi(x') )d*

)hq x hq x hqa x

+operator-ordering terms . (99)
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Equation (99) is the Ehrenfest principle obtained from
our transfer-matrix formalism. Removing the angular
brackets, replacing N by a constant parameter —8, and
dropping operator-ordering terms, Eqs. (98) and (99) be-
come the classical equations of motion (32). Of course,
the trajectory of the expectation values provided by the
Ehrenfest principle in general approximates a trajectory
of the classical equations of motion only for certain phys-
ical states that can. be treated semiclassically, i.e. , by
WKB methods. We now turn to a discussion of such
states.

8 Q = (Q, )E(p, q, N, N;) )
d'*[~~N(*)(Q, ~.'~+ N. (-)(Q,~.~]

(101)

except that in the latter case the lapse N has been nor-
malized to satisfy condition (33). To see what this re-
striction means for the evolution parameter w, let us con-
sider Hamilton's principal function SHP[q, q'] satisfying
the Hamilton- Jacobi equations and constraints

IV. WKB, TIME, AND MANY-FINGERED TIME

In classical general relativity, the split of spacetime
into space + time can be accomplished in infinitely many
ways, which are distinguished by a choice of lapse and
shift functions. The geometrical meaning of a time pa-
rameter t, in the classical equations of motion

oiQ =(Q, IIj

and

hS' hS'
bqa bqb

'R' p = = 0,
bqa

bS' bs'2~ HP HP +g~~ 0
hqfa Pq/b

Pa b Ia
q

(102)

(103)

d z[N(z)(Q, 'R )+ N;(z)(Q, 'R')], (100)

is specified by N(z) and N, (z). This is also the case for
the %-evolution equation

As usual, the principal function SHP defined in this way
has the interpretation of being the action of the classical
trajectory in superspace, connecting configurations q (z)
and q' (z). Then consider the variation of SHP in time w

according to (101):

A~ = (SHp, JE)67.

bSH~P b%
bqa

1 bS~ - bS~ b
d x 2r. NG + d x'N~R' ) a7.

m~ h'q hqs hp (z)
bS' bS' hS'

Ng s
m~ hq hqs

' * ( h'q )
= 2' p

bSH~P

bqa

(104)

What Eq. (104) establishes is that, in evolving clas-
sically from configuration q' to q in time L7. according
to (101), the action SHP[q, q'] is proportional to A7 re
gapless of the choice of N, N;. In other words, while
the particular configuration q reached after L7 does de-
pend on N, ¹,the increment of action LS does not.
This situation is indicated schematically in Fig. 1. Of
course, the restriction D7. oc AS&& is not a restriction
on hypersurfaces; Q[q, p] can be computed from (101)
on any spacelike hypersurface of the classical manifold,
by choosing an appropriate N, N;. For this reason, the
N-evolution equation (101) is just as informative as the
traditional evolution equation (100).

The quantum equation of motion for an observable Q,
in our formalism, is

~-(Q) =--„(+(q )ll[Q)E]1+(q )) (105)

4's, q (q) = exp[i& tSHp[q, q']/li], (106)

where

HPS'
SHp = (107)

is Hamilton's principal function for 8 = l. Of course,

The correspondence between (105) and (101) in the semi-
classical limit can be studied using the WKB approxi-
mation. In this approximation, to leading order in 5, a
solution of )E@= —E4 and all other constraints (42) has
the form
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is peaked at a whole class of configurations, which corre-
spond to spacelike slices of the classical, four-dimensional
solution, satisfying the restriction (111).

Now after a measurement of some observable, it is ex-
pected that the Universe should be left in an eigenstate,
or approxixnate eigenstate, of that observable immedi-
ately after the measurement. This is a great difBculty
for the standard formulation of canonical quantum grav-
ity, since an eigenstate of, e.g. , three-geometry is not
a solution of the Wheeler-DeWitt equation, and there-
fore not a physical state. In our formulation, the situa-
tion is more favorable. Imagine that some measurement
was performed which determined the values of the ob-
servables (q, p ), or some subset of these observables
(modulo three-dimensional diffeomorphisms) up to the
limits imposed by the LqAp uncertainty principle. Im-
mediately after the measurement, the Universe would
be left in a state of the form (108) with w = 0,
and qo ——qobeer~eg (modulo three-dimensional diffeomor-
phisms). This means that, at r = 0, the wave function
of the Universe would be peaked around configurations
q satisfying

$2—h,*~w.'G + ~gU) ee = 0,
bq bqb

(114)

where

a "measurement process" is a question which is not ad-
dressed in this work. We note, however, that any realistic
interpretation of the wave function that can be applied to
elementary nonrelativistic quantum mechanics (decoher-
ence, consistent histories, many universes, Bohm s pic-
ture, . . . ) can also be applied to the formulation of quan-
tum gravity which is presented here.

The "energy-time" uncertainty relation: As discussed
at length in Sec. II, the quantity F is classically irrelevant:
it does not appear in the Euler-I agrange equations and
therefore cannot be determined from a classical orbit in
superspace. In fact, it is easy to see that an uncertainty
in E' can be interpreted as an uncertainty in the effec-
tive value of Planck's constant. This is because in the
constraint equation (92) 8 can siznply be absorbed into
a redefinition of 5, i.e. ,

~HP ['ql qobserved] (112)

Since (i) the action SHp[q, q'] of a classical solution
bounded by q and q' is only well defined if q' is a Cauchy
surface for q (i.e. , if q and q' do not intersect on the
four-dimensional solution manifold); and noting that (ii)
the classical action is monotonic in the evolution param-
eter [see Eq. (104)], away from caustics and/or turning
points; Eq. (112) implies that the wave function at 7 = 0
is peaked only at configurations which are equivalent, up
to three-dimensional diÃeomorphisms, to

q (~) =q.b.....a(&) .

In other words, there exist, physical states which are at
least approximate eigenstates of quantities such as three-
geometry, and this is made possible by a dispersion in
the value of f. An approximate eigenstate of the form in
Eq. (108) can also be regarded as an exact eigenstate of
some macroscopic observables, e.g. , "smeared" or coarse-
grained three-geometry and extrinsic curvature. Projec-
tion operators formed from these states belong to the set
of physical observables of the theory.

The word "measurement" in the last paragraph is used
loosely, for lack of a better term. We do not, of course,
wish to commit ourselves to the Copenhagen viewpoint,
which is problematic in quantum cosmology. How and
why the Universe finds itself in an eigenstate of some
macroscopic observable at the end of something called

Whatever the correct operator ordering may be, the ab-
sorption of F into h is always possible.

We would like to have a quantitative estimate relat-
ing the uncertainty in 8 (or 5,&) to the spread of wave
functions along a classical trajectory (in superspace)
around q b„, ,&(x), leading to an analogue of the time-
energy uncertainty relation in ordinary quantum mechan-
ics. The discussion below may serve to illustrate some of
the issues and ambiguities involved in that estimate.

Consider a WKB wave packet with I" [Z, q'] of the form

E[E', q'] = f [q'] exp-
2p

(s —~o)'
(&~)'

where p = ~Z. Then, integrating over t in (108) we
have, at7 =0,

e(q, o) = If [ I] r(e[q']+poSsr [q, q']/5

x xp[—(Ap) SHp[q, q']/4h ] .

Assuming, as before, that f [q'] is peaked (modulo diffeo-
morphisms) at some configuration qo(x), the integrand
has a stationary phase along the classical manifold sat-
isfying the second of equations (110). Consider a con-
figuration q, i along the classical manifold. Away kom

- q ~
——qo, there will be a suppression factor in the wave

function

l@(q i o) I' - exp[ —(&s)'~Hp[q. i qol/»'l

In the case of a subset of observables, the measurement
could be local; it is not crucial to the argument to imagine
making a measurement extending over the entire Universe.
Following the measurement of an incomplete set of observ-
ables, the wave function is projected into a subspace of the
physical Hilbert space, rather than a single state.

~H'P(q. i «) I)
8h . (118)

If we ask only for the spread of the wave function along
the classical manifold, then clearly
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(119)

or, taking into account Eq. (104),

(120)

which as the form of the usual energy-time uncertainty
relation. However, since 7 is just an evolution parameter
rather than, e.g. , a proper time interval, this relation is
not very informative.

Let us consider the probability density P(AS) for be-
ing at any configuration q, ~ such that

(121)

hand side of expression (128), even assuming the validity
of Eq. (123) as a measure of configurations, which was
used in the derivation. The mass d.ensity p can be taken
as, roughly, the critical d.ensity for closing the Universe
(~ 10 2 kg/ms), and vo, assuming it is different from
zero, is presumably the Planck volume ( 10 ios ms).
But there is still tremendous uncertainty in the volume
V of the Universe. One could even speculate that, in
an appropriate continuum limit of regularized quantum
gravity, v0 ~ 0 and V —+ oo such that v0V tends to a
Gnite constant. In any case, while it appears that the
transfer-matrix formulation must generate some uncer-
tainty relation between proper time and the fractional
uncertainty in Planck's constant, we are so far unable to
say anything quantitative.

In that case, the measure p, (b,S) of such configurations
along the classical solution manifold becomes important: V. NONSTATIONARY STATES IN

MINISUPERSPACE

P(b, S) p(AS) exp —
~

AS
~

~0
8h . (122)

s(&S) -(») "" (123)

where n is a constant of order l. In that case, P(AS)
would be a maximum at

AS
~

= 4ah, AN„.
(At

(124)

In the absence of a regulator for general relativity, we do
not really know the measure p, (AS). But let us imagine
that it has some simple power-law dependence on the
number of degrees of &eedom N„:

ds = o[ Ndt +.o, —dO ], (129)

We will now illustrate the formalism developed
above in the simplest context possible: the quantum-
mechanical time evolution of a homogeneous, isotropic
Friedmann universe filled with a relativistic perfect Quid.
In this toy model it is possible to "do everything;" i.e. ,
to find the integration measure and operator ordering,
to solve for the spectrum and exact eigenstates of the
X evolution operator, to form wave packets with a con-
served norm, and to track the evolution of such "wave
functions of the Universe" through collapse towards the
singularity, "bounce, " expansion, and recollapse.

The Friedmann universe is described by the metric

To relate LS to an increment of proper time Ls along
the classical manifold, let us consider a matter-dominated
Friedmann universe, in which

where N and a are the lapse and scale factors and
o = 2G~/3vr. The perfect fluid content of this homoge-
neous and isotropic universe is specified. by the energy-
momentum tensor

LS MLs, (125)

where M is the total mass, and As is the average incre-
ment of proper time between q0 and q, ~ in a synchronous
coordinate system. Then we have

(AE l 2 N„As/ nhir(fo ) M2 (126)

E.
'

p
(127)

I et V be the volume and p the density of matter in
the Universe, and denote by v0 the volume per degree of
keedom. Then

T„„=(p + p) U„U + pg„ (130)

J = (W
—1)p (131)

the action for gravity and matter (with zero bare cosmo-
logical constant) which is consistent with the definition
of the energy tensor (130) (see, e.g. , [9]) can be written
as

where g~ is the Friedmann Inetric corresponding to the
line element (129), U„= (1,0, 0, 0) with U„U" = —1 is
the four-velocity of the Quid and p and p are, respectively,
the energy density and pressure of the Quid.

For a perfect Quid described by the equation of state

or, equivalently,

Ah, g As h,s gn/pz voV,
eff

(128)

which is the analogue, in our formulation, of the energy-
time uncertainty relation of nonparametrized theories.

It is difBcult to assign a reliable number to the right-

Again, the model is only a toy to illustrate our formulation;
we do not suggest that minisuperspace is adequate to describe
realistic gravitational collapse.
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1
Sg ——— dt

2

aaaa
N %3~ 23(1 ~)l . (132)

@[a., ~] = ) ag@s[a]e*
E

(137)

Classically, these models represent, for p ) 3, a uni-
verse which expands up to a maximum radius ao and
then recollapses towards the singularity at a = 0 and,
for p & 2/3, an inflationary universe expanding from the
minimum radius ap (see, e.g. , [10]).4

The perfect fluid does not introduce any extra dynam-
ical field in this model, and it is easy to rewrite the ac-
tion (132) in the Hamiltonian form corresponding to the
time-parametrized theory of Eq. (12). The only degrees
of freedom are given by the scale factor (q = a) and its
conjugate momentum p = aa/1V—, and the Hamiltonian
'R is given by Eq. (12) with

G = —a,
( ) 2 3+

V(a) = —
l

— —1
2 (ap)

(133)

(and mp ——1). The "superpotential" V is positive def-
inite in the classically allowed region a & ao for p ) 3
(a ) ap for p & 3), and it changes sign at the classical
turning point a = ao.

Following the discussion of Sec. III, we can immedi-
ately write the expression for the evolution operator iK
in the one-dimensional (1D) minisuperspace [see Eq. (67)]
as

a+ ——+ da[2Va] (
CEO

( —
$

2 3+
dna

- X/2

(138)

where the plus sign is for the case p & 3 and the minus

sign for p ) 3. The coordinate a+ is chosen so as to
start from zero at a = ao and to be semipositive definite,
monotonically growing to infinity as a ) o.p M oo (p & 3~)

or to the maximum a+I ) 0 as a ~ 0 (p ) 3):

a+ E [O, oo), a ) ap,

a+ C [O, a+M], a&ap, p) 2,

a+ & 0, a+(np) = 0, a+(0) = a+I . (139)

Since the evolution operator 1E of (135) is very singu-
lar at the classical turning point o = op [the second line
of Eq. (135) does not even make sense, since the product
of two distributions is not defined] we shall consider the
regions where V ) 0 and V & 0 separately, and then im-
pose some appropriate junction condition at the classical
turning point a = ao.

I et us first consider the region V ) 0. In this region we
change from the coordinate a to the "tortoise" coordinate

—lgl'('g-—
lgl'(2 Oo, Ba

(134) With this choice, the eigenvalue problem for the evolution
operator simply becomes

g2[2 lV]]-i(2 [ I I]

Ba 2aV Oa

1 ( a DVIGU 0——I1+-
2a I VBa) Ba

h2 02

2aV Oa2

In this case there is no operator ordering term involv-
ing 'R since, obviously, a one-dimensional superspace has
vanishing scalar curvature X = 0. More explicitly, using

= g = —2aV(0) and Eq. (133), we can write

02
h 2 4q+[a+] = E'4q+[a+—],

t9a+
(140)

C+]. ) ~ i~Ca+/h + @ —i~Ca+/h (141)

which is the Schrodinger problem for the motion of a
free particle with energy E'. Assuming from now on that

& 0, the general solution of Eq. (140) in the region
V ) 0 is clearly a combination of plane waves

av) 8
+h(a —ap)sgn l

V
Ba) Ba (135)

Similarly, in the region V & 0, we transform to the "tor-
toise" coordinate

The problem is now to solve for all the stationary states a dn[ —2Va]'(

NC s [a] = —Z@s [a] (136)

each of which is a solution of a Wheeler-DeWitt equa-
tion with a particular operator ordering, and an eKec-
tive value of Planck's constant which depends on 8 [see
Eq. (115)]. With these solutions in hand, we can then
construct nonstationary states as a linear superposition

(142)

where, again, the plus sign is for the case p & 3 and
the minus sign for p ) 3. The coordinate a is zero at

Also note that we must have p & 2 for the sound wave
velocity of the Quid to be less than the speed of light.

The choice E' ) 0 is required in order to have a real-valued
Planck's constant.
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a = a0 and negative semidefinite, monotonically growing
to minus infinity as a & ap M oo (p & s) or to the
minimum a & 0 as a + 0 (p & s): a+,m{M) a+, rn{M)

(149)

a F [a ~~0], a &ap,
a 6 (—oo, o], a&ap,
a & 0, a (ap) = 0, a (0) = a

In this case, Eq. (136) becomes

0
h 2@ad[a ]=E'Cs[a ]

(143)

(144)

where o. is an arbitrary real parameter with range

(—oo, oo). The lower signs (and index m) correspond
to the case p & s, while the upper signs (and index M)
correspond to p ) 3.

Self-adjointness of the evolution operator % automat-
ically guarantees orthogonality of eigenfunctions: i.e. ,

f da v'I& l@z, [a]@s,[a]
0

with solutions in the (classically forbidden) a region

C,
—

[ ] ~ ~E'a /s + D —~sa /s (145)
0

da 4s'[a ]@s [a ]
a (—oo)

'+ 8 [2alVl]'/ 0
lim da —Cg
8-+0

& ga 2aV Ba

ap+h
= —lim

bm0
da[2alVl]'/' —4s = 0 . (146)

Let us now build the general solution of the original eigen-
value problem (136) in the whole range a 6 [0, oo).

First, we must impose a junction condition at the turn-
ing point a+ ——a = 0 (a = ap). We multiply both sides
of Eq. (136) by [2alVl] / and, using Eq. (135), we inte-
grate around the turning point a0. Assuming a reason-
ably smooth behavior of 4g at a0, we find that

oo(a+ M )

+ da+Cs+*[a+]Os+ [a+]
0

= b(Si, F2), (150)

(151)

where b(fi, f2) is the Dirac b function when the spectrum
is continuous and the Kronecker delta for a discrete spec-
trum (and integration limits in parentheses are for the
case p & s).

It is also possible to show that the system of eigenfunc-
tions is complete, i.e., defining p = ~Z, that

lvl'» ac,
V Oa

ap+ ap

(147)

Both 4g and its derivative must be continuous at a = a0.
When we turn to a~ coordinates, it is easy to see that

first derivatives must be "discontinuous;" i.e., we have
the junction conditions

Evaluating the integral on the left-hand side, the joining
condition on first derivatives of 4'g in the a coordinate
can be rewritten as

(where of course the sum is meant as an integral for a
continuous spectrum).

We are now in the position to write the exact eigen-
functions for difFerent p as a function of the scale factor
a.

p ( 3'. In the case p ( 3, the spectrum is continuous
and nondegenerate, and from conditions (148) and (149)
one finds, for a generic boundary condition at the origin
a=0,

e,+[0] = e;[0],

ap+

0@q+

Oa+
ap

(148)

where in the last equation upper signs refer to the case( 3 ) and lower signs to the case p ) 3
Second, the evolution operator is defined on the "half-

line" a ) 0, and therefore it is not essentially self-adjoint
in L [0, oo) with the measure glgl. One can build, how-
ever, a one-parameter family of self-adjoint extensions
(which guarantee norm conservation and unitarity) by
appropriately choosing boundary conditions at the origin
(see, e.g. , [11]). In the a~ coordinates this is translated
into the condition

(1+ .)+(1 )~ n 2~sa /h

8+ hn

B = (1 —i)+ (1+i)~f+ hn

~E
i/Z+ hn

For instance, in the case p = 0, which classically corre-
sponds to a de Sitter universe expanding Rom the mini-
mum radius a0, the "tortoise" coordinates derived from
Eqs. (138) and (142) are
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ao (a )'
a+ ——

- 3/2

2- 3i2
ao (a)

a =-—'1 —
(

—
)3 (ao)

4s[a] = C exp (—
- Sj2

~faoz (al'
35 (ao j

such that o. = oo], the eigenfunctions of jE are

2ao
G—rn 3

(153)

~S'a'0—exp &

3h

2P 3i2(ab

Moreover, if we choose boundary conditions at the origin
such that 4s(0) = 0 [or, equivalently, &om Eq. (149),

I

for G ( Qo and

(i54)

3h 3h, (ap j
~rap'—cosh sin

35
~E'apz ( a )

35 (ap j
(i55)

for a ) ao. With this choice of boundary conditions, the eigenfunction is real for all values of a.
p ) &. The case p ) 3 corresponds classically to a universe which expands &om the singularity at a = 0 to the

maximum radius a = ao, and then collapses back towards the singularity. Since now the range of the "tortoise"
coordinate a is infinite [see Eq. (143)], to ensure square integrability of the eigenfunctions [Eq. (150)] clearly we
must have D = 0. Therefore, due to conditions (148) and (149), the spectrum is discrete and nondegenerate.

Normalizing the eigenfunctions to one in the range a E [0, oo), from Eqs. (148) and (150}we have that

1+i
2

1 —i
2

2~i e',
h, cos(2~ta+M/5) + 2~8'a+M

(156)

where 0 is an arbitrary phase.
Moreover, imposing a generic boundary condition at the origin according to Eq. (149) gives an implicit expression

for the discrete spectrum of E': i.e. ,
hn+ ~E

tan(~fa+M/5) =
hn — E'

(i57)

For example, in the case of a pressureless, dust-dominated universe with p = 1, the explicit form of the "tortoise"
coordinates is

G0
G

4

2
a&

a+ ———
4

arccosh i—
1/2

arccos
~

—
~

+
&ao j

( 2al a (a+
ao j ao gao

2a) a ( a)
oj 0 ( oj

~ 2++M = +0.
8

(158)

Choosing boundary conditions such that C'z(0) = 0 (or o. = oo), &om Eq. (157) one can explicitly write the discrete
eigenvalues for the dust-dominated universe as

2(4n+ i)n
) A ) 1) ~ ~ ~ )2ao

(i59)

and the N eigenfunctions are

2'/'e" (~ea' ) 1/2

@s[a] = cos arccos (—
~

4h

(al—sin
]

arccos
i

—
)

+
]
1—

2al a ( al+
I

1 ——
Iapj ao 0

2al 'a ( a&
aoj ao g aoj j

(160)
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for a ( a0 and

4s[a] = 2si"e's (al')'
exp arccosh

l

—
l

'7t Qp 4h I ao)
2ab a (a

+
I

~ ——
Iao) ao Eao

(161)

for c ) ao.
In the same way, one can solve for the stationary states of a radiation-dominated universe with p = —.In this case

the discrete eigenvalues are

and the K eigenfunctions are

(4n ~ l)h
2

GO
(162)

2~i&
4s[a] =

ma0

2 1(2(a) a (al'
cos ' —

& arccos
l

—
l

——1 —
l2h, 4«)

for a ( a0 and

1/2
&~~a', (al a fal'—sin & arccos

l

—
l

——1 —
l

—
l2h ka0) «4«) (163)

(~pa~ (al a (al'
C'g[a] = exp g arccosh

l

—
l

——
l

—
l

—1
2 tao) «0«) (164)

for a & a0. The main properties of the wave function
are essentially the same as those of the dust-dominated
universe.

Note that in both the p ) 3 and p ( 3 cases, the
N eigenstates are real valued. In the more conventional
"Born-Oppenheirner" interpretation [12] of the Wheeler-
DeWitt equation, such wave functions represent a su-
perposition of "collapsing" and "expanding" universes in
the classically allowed region. In our formulation, by con-
trast, such states are stationary, and dynamics (such as
the expansion and collapse of the universe) arises from
their superposition. We will now illustrate such dynamics
by constructing a nonstationary state from the K eigen-
states.

Let us consider the case of a p ) 3 Friedmann uni-
verse, which has a discrete spectrum for F, and oscillating
eigenfunctions in the classically allowed range a E [0, ap].
The general form of the wave packet for an arbitrary dis-
tribution f [p„] of "momenta" p„= ~S„ is given by the
standard formula

f [p-1 = «dl&l~[a, 0]C'p. [a]
0

(166)

and, for the choice of boundary conditions 4~(0) = 0,

~(4n i 1)t'
p~ =

4+yM
(167)

4'[a~ 0] = e'~"o +i 1—la+ —a+01
+)

x [0(a~ —a~0 + b') —0(a~ —a~0 —h)] (168)

We build up the wave packet such that it is initially
localized in the "classically allowed" region a C [0, a0]
and it moves towards the singularity with "momentum"

p = ~E' centered around p, . For our example, we
choose an initial wave packet which is a triangle of unit
height, with base of length 2b centered at a~0, i.e.,

where

] = ).f[p-]~..[.]"'-'",
n=O

(165) where 0 is the Heaviside step function.
Since the initial packet has support only in the region

a~, from Eqs. (141), (166), and (168) we find

&yM

f[p„] = da~@[a~, 0]C'* [a~]

(1 —cos[(p-. —p-) ~/m)
2h2 A*

(p-. —p-)'+,~ (' '""'"'"('—co~i(»-. + ~-)&i"0)(p-. + p-)' (169)
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where a+M is the maximum value of a+(a) at a = 0, defined above in Eqs. (138) and (139). Inserting this result in
Eq. (165) and taking the modulus square, we finally find that the probability distribution of the wave packet evolves,
in the classically allowed region a+, as

2
~@[a+,r)

~

= + ) (cos[p+(n)] + sin[o (n)]3Vr4b2 n np~=o

). . sin'[orb(n+ np + 1/2)/2a+~]
A+Ap+ 1 2n=o

+ ).~ [~+( )] — o [ -(
n=o

). . sin'[orb(n+ np + 1/2)/2a+M]
(170)

where, for convenience of notation, we have defined

p~(n) = vrh
(n+ 1/4) +(a+ —a+p) + (n+1/4)7.

a+M a+M
(171)

0~(n) = 'r vrh
(n+ 1/4) k(a+ + a+p) + (n+ 1/4)7-

a+M a+M
(172)

Similarly, the probability distribution in the classically forbidden region a is easily found to be

~a 2
~@[a,~]~ = + e"+M ) (cos[Ai(n)]+sin[Ai(n)]3 ' + e( -~ +

m4h~ A YLp

OO
1 2 2

- 2

)- . »n'[~b(n —np)/2a+M] (. g, )„
(n —np)'

OO
2

$

) . sin [orb(n+ np+ 1/2)/2a+M] ( ( )„
n+no+ 1 2 2 (173)

where

mn ~h
(2n+ 1)~ —a+p

a+M 2a+M
(174)

and

ir(2n + 1) srhA2-
2a+M a+M

AT + a+p (175)

For our illustrations, we have chosen to compute the
probability distribution for a dust-dominated universe

(p = 1) with np ——400, ap ——1, and h = 0.02 (keeping
10 terms in the series). The results are plotted in Fig. 3,
where different times are labeled by 7; =' —10 v. For a
comparison, we have also plotted in Fig. 4 the modulus of
the eigenfunction of % for the E' eigenvalue correspond-
ing to the average 8 of the packet, namely 8'p ——(3202)~.
This stationary state is the solution of a Wheeler-DeWitt

equation with a particular choice of operator ordering
and Planck's constant.

Figure 3 shows the evolution of the wave packet; the
packet begins by moving smoothly towards the singular-
ity while gradually spreading. As it approaches the classi-
cal singularity at a = 0, the packet starts oscillating, with
the frequency and amplitude of oscillations increasing up
to a maximum which is shown in more detail in Fig. 5(a).
The wave packet is always zero at a = 0, consistent with
our choice of boundary conditions. As 7- increases, the
packet "bounces" off a = 0 and moves back towards the
classical turning point at a = ap. At the point of maxi-
mum expansion the wave packet has again an oscillating
behavior similar to that close to the classical singularity.
Here, however, part of the wave packet extends into the
"classically forbidden" region a & ap., there is a small,
exponentially decaying probability to 6nd the universe
in such a region [see Fig. 5(b)]. At a = ap both the wave
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packet and its 6rst derivative are continuous. As the
time parameter continues to increase, the wave packet
"bounces" ofF a = ao and moves back towards the classi-
cal singularity. The packet rebounds repeatedly between

a = 0 and ao while gradually becoming delocalized. It is
important to stress (see also [13]) that nothing patholog-
ical happens to the wave packet as it bounces between
the classical singularity at a = 0 and the turning point at
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FIG. 3. Evolution of a "triangular" wave packet for a dust-dominated universe. The parameters chosen are no ——400, ao ——1,
8 = 0.02 and different times are labeled by a = —10 7.
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6

'p(ur) ,= f ~pf)p]ep(a)e""~"

f (p)
—e P(—P Po)— (176)

where

~2 (2p2)
—i (177)

2

0
,

l

0.0 0.2 0.4 0.6
a

~J
0.8 1.0 1.2

is the dispersion in the "momentum" p = ~f distribution
around the peak at po.

Evaluating the integral in the classicaHy allowed region
with 4& ——e'~ +/'" and taking the modulus, we easily find
that

FIG. 4. The modulus of the eigenfunction of K for the
average eigenvalue F0 ——(3202) of the wave packet.

a = ao. In particular, there is no infinite compression of
the wave function, and the transition &om "big crunch"
to "big bang" is a (relatively) smooth process, in this
toy model, at the quantum level. The norm of the wave
packet has been numerically checked to be constant dur-
ing all the stages of the evolution, as it obviously should.

Although we have specialized here to the case of a dust-
dominated universe, it is quite clear that we do not expect
anything radically different from the analysis of other
cases with p & &. The same holds for the cases p & —,the
only difference being that there is only a single bounce of
the kind shown in Fig. 5(b), with the wave packet starting
&om infinite scale factor, "bouncing" off the minimum
radius ao, and finally going back to infinite scalar factor.
Also, of course, the qualitative picture does not depend
critically on the shape of this initial wave packet.

As pointed out in Sec. II, the space of physical states is
spanned by eigenstates of the evolution operator N with
difFerent S, and in Sec. IV it was shown that this can
be interpreted as leading to a quantum indeterminacy
of Planck's constant according to formula (115). In our
minisuperspace toy model, it is possible to directly relate
the spread of the wave packet in the scale factor a to the
spread of E', and thereby to the dispersion in Planck's
constant. Of course, this model is far too unrealistic to
draw any quantitative conclusions regarding the disper-
sion of fundamental constants vs the spread of the wave
packet in full quantum gravity.

To proceed, we construct a wave packet &om eigen-
functions of cK. Now, however, we want to introduce
a more tractable Gaussian distribution in the momenta,
and to simplify the analysis let us assume that the E
eigenvalues are so closely spaced that we can replace sums
over the discrete eigenvalues by an integral; i.e. , we write

l@[a ~]l = ex
2 &2[P2+ ~2/S2P2] (178)

where a+(a) is given by formula (138).
Following standard analysis (see, e.g. [14]),we see that,

at any given 7, the probability distribution of the scale
factor a is peaked around the set of semiclassical trajec-
tories for which

a+(a) l., = 2v Z»- (179)

or, in other words, for which the phase in the integral
(176) is stationary [compare with Eqs. (108) and (110)].

As an example, we can differentiate both sides of
Eq. (179) with respect to w and find

da
d7

2~80 (a)
a (ao)

(180)

dt qao ) (181)

we can immediately infer the correspondence between the
"internal" time t and the evolution parameter ~ at the
classical level, given by

2 3+

2~&0 &«)
—1 dt. (182)

We now expand !4'[a,wj l2 in Eq. (178) around the clas-
sical trajectories with a = a(a+l, i) + Aa at 7. fixed, and
find

where

(183)

If we now compare with the known solutions in classical
cosmology for the perfect fluid matter content (see [10]),
i.e. ,

This can be done by replacing g m + f dp for
2 n=0 22rh J —~

Ba ' (25G) '
h2P2 c)a ( 3' )

and we have reinserted dimensions according to

a m +2G/3~a .

(184)

(185)
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FIG. 5. (a) The wave packet at its closest approach to the classical singularity. (b) The wave packet at the radius of maximum

classical expansion.

Equation (183) can be interpreted as saying that the
probability to find the Universe in a certain configura-
tion with scale factor a at time v. is given by a Gaussian
peaked at the classical trajectory a, ~ with a dispersion

2Oa.
Finally, as an exercise, we can tentatively give a lower

bound on the dispersion for the scale factor by minimiz-
ing it with respect to P, and we find

in[0. ]kp=[~/r~ i

arccos(() / + (1 —2() [((1—()]I/
4((1 —()

—2
t9G+

(Min[o'. ])p=(./s( ~ = la+
I

21p, eff (186)
In this toy model, it is therefore possible to have non-
negligible dispersion close to the classical singularity,
while having o negligible at much later times.

where we have defined L~&,&
—— 2h, IIG/3vr and the

"dressed" Planck's constant h, ff is introduced according
to Eq. (115). We can study the behavior of Eq. (186) for
some simple examples of matter content in the Universe.
In the case of a de Sitter universe with p = 0 we can use
formula (153) for a+, define a = (ap (( & 1) and find

(Min[ ']jp
~

/s[. /.

LP ff

((2 1)1/2

3P 36' V(&1.

(187)

Therefore, if the dispersion in the scale factor is such to
be minimized with respect to P, it will always be negligi-
ble for the case p = 0. A similar conclusion can be easily
drawn by studying the case of a radiation-dominated uni-
verse. Unfortunately, this simple analysis does not either
provide any reliable upper bound on o

For a dust-dominated universe, instead, using
Eq. (158) with a = (ap (( ( 1), one has

VI. CONCLUSIONS

In this work we have pointed out that there is a con-
stant (denoted 8) in the classical Hamiltonian of certain
parametrized theories, which cannot be determined &om
the classical trajectories. It is the arbitrariness of this
constant in classical physics which allows us to extend
the space of physical states in the corresponding quan-
tum theory, and this is the key to our proposed resolution
of the problem of time. Solutions of the Wheeler-DeWitt
equations are stationary states, in our scheme, but there
is an infinite set of such equations, each with its own
parameter F. Nonstationary states are composed of su-
perpositions of such states, with different E' parameters.
It was seen that this formalism can be derived directly
&om a transfer-matrix quantization of parametrized the-
ories.

As noted in Sec. IV, the constant f in the Wheeler-
DeWitt equation (equivalent to XC'~ = 84'g in our-
notation) can always be absorbed into a redefinition of



958 A. CARLINI AND J. GREENSITE 52

Planck's constant h, ir ——h/~f. In the special case of
pure gravity, the constant F could alternatively be ab-
sorbed into a redefinition of Newton's constant (45) (as
was done in [4]), but in pure gravity this is anyway
equivalent to rescaling the Planck constant, since only
the combination hG/~f appears in the Wheeler-DeWitt
equation in this case. In the general case, any nonsta-
tionary state

4[q, r] = ) as@s[q]e' (189)
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involves a superposition of Wheeler-DeWitt wave func-
tions @s[q], each with a difFerent efFective value of
Planck's constant, so in this sense any nonstationary
physical state entails an inherent uncertainty in the value
of Planck's constant. Unfortunately, we have not been
able to place a reliable lower bound on this uncertainty,
for reasons which were discussed in Sec. IV, above. Nev-
ertheless, the possibihty that there is an inherent uncer-
tainty in the effective value of Planck's constant, which
might be large enough to be observable, raises some in-
teresting phenoxnenological questions, which we hope to
address in the near future.

362
~g(»'g~~

2]g('~' Ba Oa

h 'R

where, as usual, we have introduced the "supermetric"
g „=2VG, with determinant g and corresponding
scalar curvature

1'R= —
~

1+ ~, + —, , lnV . (A4)2aV q a) V2 a28 2

As a consequence of the hermiticity requirements for the
measure, similarly to the 1D minisuperspace case, the
formal expression of the evolution operator is not well
deGned at the "turning points" where V = 0. In fact,
f'rom Eqs. (A2) —(A4) and using the explicit form of the
supermetric, one gets

3g& tgz 1g+ ————
4aV Ba a Oa a B(P

+2b (V)sgn(V)
OV 0 1 OV t9
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APPENDIX

We briefly comment here on a 2D minisuperspace
model for a universe filled with a homogeneous scalar
field P with arbitrary potential V(P) and with a bare
cosmological constant A. The geometrical ansatz is the
same as that of the 1D minisuperspace model, i.e., the
isotropic and homogeneous Friedmann metric given by
Eq. (129). The reparametrization invariant action for
such a model is

1 f 2VI 1 1
~

1+ ~, + —, , lnV (A5)

V(P) =%=0 (A6)

for which V = —a/2 and R = 0. In this case, since the
scale factor a is constrained to be positive, the evolution
operator given by Eq. (A5) has no ambiguities due to h

terms and becomes

The general procedure will be to study the eigenvalue
problem for % [Eq. (136)] in the two regions where V ) 0
and V & 0 separately, and then impose suitable joining
conditions on the partial derivatives of the eigenfunctions
at the "turning point" V = 0.

The simplest problem which we can analyze is that
corresponding to a massless and minimally coupled scalar
field with

1 aa2 as $2S„=— dt — + + Na —N[A+ V(P)]a
2

(A1)

3h 0 10+2a2 t9a2 a Ba
1 0

a2 A/2
(A7)

This can be easily written in the Hamiltonian form of
Eq. (50), with p = aa/N, py = a P/N— , m, = 1, and

G44
3

The hyperbolic problem described by Eq. (136) with
the operator (A7) and with 8=1 has b'een exten-
sively discussed in the literature as an ordinary differ

V(a, P) = —[[V(P) + A]a —1]

The general form of the evolution operator K is

(A2)
The case of a conformally coupled scalar 6eld turns out to

be essentially equivalent.
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ential problem (see, e.g. , [15] and references therein) or
as a Klein-Gordon eigenvalue problem with respect to a
peculiar measure (see, e.g. , [16]). One can separate the
difFerential equation and express bounded solutions as a
superposition of modified Bessel functions of imaginary
order [17],

(~ea2 &

@s g[a, P] = exp(hike/h)K, I, /2„
6h

~

where k is the separation constant, or give them as a
product of harmonic-oscillator wave functions such as

4&„[a,P] = H„
1/4

X H„
i i

Y
(3h2)

X2+ Y2 ]

where X = a cosh/ and Y = a sinhP [15].
Unfortunately, neither of these solutions are orthogo-

nal with respect to the measure v Q oc as, as it is easy to
check. To guarantee the self-adjointness of the evolution
operator, one has to construct a particular superposition
of any of such solutions which satisfies appropriate con-
ditions on the boundary of the 2D minisuperspace.

A possible method of solution of the eigenvalue prob-
lem makes use of the so-called "Rindler" coordinates [18].
Here we derive the formal boundary conditions for the
eigenfunctions required for Hermiticity, even though we
have not been able to explicitly solve for them. The idea
is to make the following transformation of coordinates in
the 2D minisuperspace:

a
x = cosh 2$,

6

a
y = sinh2$ .

6
(A10)

The minisuperspace line element in the new coordinates
takes the simple form ds,„„,= (dy —dx )/4. The
minisuperspace region a C [0, oo) and P C (—oo, oo) is
mapped into the right Rindler wedge of a 2D Minkowski
spacetime, with boundary ~x~ ( y. The correspondence
between old and new coordinates is one-to-one, with
a = 0 mapped to x = +y, (b = const to x/y = const
lines and a = const mapped to the hyperbolae x —y
= const. The evolution operator simply becomes the 2D
wave operator in the Rindler wedge: i.e. ,

@~fT~,x ]
= f dAfA(A)e'~

+~(p) i[Ax —(E'/A)x+]/h] (A14)

Moreover, the self-adjointness condition for the evolution
operator K requires that

OO OO 0
dX+ dX 4g C g2

0 0 X+ X—

OO OO a2
dx+ dx Cs, 4s, . (A15)

0 Q X+ X

Integrating by parts, one can see that this is true if the
following boundary condition for the eigenfunction holds:

OO

dx 4~ 4g,
Q X—

m+ ——0

OO

dx+ C g, 4g,
0 X+ x =0

(A16)

Alternatively, one can transform the "infinite" bound-
ary to a finite one by use of the following conformal trans-
formation on the superspace metric d8 p

ferential equation (136) is thus a linear combination of
plane waves

g2 g2
(A11) u = 2 arctan[(x —y)], u E [0, vr],

v = 2 arctan[(x+ y)], v C [O, vr],
By further "tilting" the minisuperspace axes by 45'

with the coordinates

x+ = —,'(*+y),

= 16 cos — cos

In this case the evolution operator transforms as

(A17)

x = —,
' (x —y)

[x~ E [0, oo)], the evolution operator becomes

(A12)
02

K = —16h cos — cos

with constant measure, and it is self-adjoint if

(A18)

02
f2

19X+(]9X
(A13)

0
du C~ Cg,

0 OtL v=O

8
dv C'g —kgOv u=0

with constant measure. The general solution of the dif- (A19)
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The eigenfunctions are the same as those given in
Eq. (A14), provided one makes the substitutions x+ ~
2 tan(v/2), z —+ 2 tan(u/2), and Z ~ 8/16.

Thus, formally, the hyperbolic eigenvalue problem of
Eq. (136) for the 2D minisuperspace model with the min-
imally coupled scalar is solved provided one Axes the co-
efficients A and H in the expansion (A14) so as to satisfy

given Cauchy data and the condition (A16) [or (A19)]
at the boundary. In particular, although we cannot give
an explicit formula, the problem (A19) certainly admits
a solution. A possible simple example would be, for in-
stance, a wave function such that @s(u, 0) [4's(0, v)] and
@s(u, m) [4s(7r, v)] have a fixed parity with respect to the
point u = vr/2 (v = ~/2).
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