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There exists a widely held notion that gravitational effects can strongly violate global symmetries.
If this is correct, it may lead to many important consequences. We argue, in particular, that
nonperturbative gravitational effects in the axion theory lead to a strong violation of CP invariance
unless they are suppressed by an extremely small factor g & 10 . One could hope that this problem
disappears if one represents the global symmetry of a pseudoscalar axion field as a gauge symmetry
of the Ogievetsky-Polubarinov-Kalb-Ramond antisymmetric tensor field. We show, however, that
this gauge symmetry does not protect the axion mass from quantum corrections. The amplitude
of gravitational effects violating global symmetries could be strongly suppressed by e, where S
is the action of a wormhole which may absorb the global charge. Unfortunately, in a wide variety
of theories based on the Einstein theory of gravity the action appears to be fairly small, S 10.
However, we find that the existence of wormholes and the value of their action are extremely sensitive
to the structure of space on the nearly Planckian scale. We consider several examples (Kaluza-Klein
theory, conformal anomaly, R terins) which show that modifications of the Einstein theory on the
length scale l 10M~ may strongly suppress violation of global symmetries. We find also that in

Sm

string theory there exists an additional suppression of topology change by the factor e ~' . This
effect is strong enough to save the axion theory for the natural values of the stringy gauge coupling
constant.
PACS number(s): 11.30.Fs, 04.60.—m, 11.25.—w, 14.80.Mz

I. INTKGDUCTION

The most elegant way to solve the strong CP viola-
tion problem is given by the Peccei-Quinn (PQ) mech-
anism [1]. This mechanism is based on the assumption
that there exists a complex scalar field 4(x):—I
which after spontaneous symmetry breaking can be rep-

resented as + ' exp ' ( . The Goldstone field a(x)

(axion) has the coupling s2, &
I"„„I"",similar to the

famous 8 term 32, E~ F~". Nonperturbative eBects in

QCD lead to the appearance of the condensate (I'~„I"„)
and to the efFective potential of the axion field propor-
tional to A&cD[l —cos(0 +

&
)]. This potential has a

minimum at —= —0. In this minimum the terms

32,f E~ E"" and 32,E„E"cancel each other, and
strong CP violation disappears. This eKect gives the ax-

A
ion a small mass m~ fo

In addition to providing a possible solution to the
strong CP violation problem, the invisible axion field [2]
is one of the best dark matter candidates [3]. It nat-
urally appears in all phenomenological models based on
superstring theory [4]. The axion fleld possesses many in-
teresting properties near black holes [5]. Finally, axions
may be responsible for the possible existence of worm-
holes in the baby universe theory [6]. Therefore there
exists an extensive literature on axions. This literature
includes at least two diferent formulations of the axion
theory, which are not completely equivalent, and several
modifications of these formulations (for a review see [7]).

The axion theory has many problems. First of all,
it is not easy to make this theory compatible with cos-
mology. If the spontaneous symmetry breaking toward
a state with fo g 0 occurs after the end of inflation,
then the standard axion model is compatible with cos-
mological and astrophysical constraints only if 10 GeV
& fo & 10 GeV [8]. A recent investigation with an ac-
count of cosmological eKects of the axion strings suggests
that the upper bound may be even more tight, so that
the "axion window" becomes almost closed, 10 GeV
& fo & 10 GeV [9]. On the other hand, if the spon-
taneous symmetry breaking occurs during inflation, then
the constraint fo & 10 disappears [10], but typically it
implies that the Hubble constant at the end of inQation
should be sufficiently small, II & 10 GeV [11,12]. Infla-
tionary models of this type can be easily suggested [12,
13], but one should keep in mind that not every inflation-
ary model satisfies this condition.

Three years ago it was pointed out [14] that the axion
theory faces another dificult problem, which we are going
to discuss in this paper.

The standard potential in the axion theory (ignoring
small QCD corrections) is given by

In this approximation the axion is massless due to the
global symmetry 4 —+ C e' . However, there are some
reasons to expect that nonperturbative quantum gravity
eKects do not respect global symmetries. The simplest
way to understand it is to remember that global charges
can be absorbed by black holes, which subsequently may

0556-2821/95/52(2}/912(24}/$06. 00 52 912 1995 The American Physical Society



GRAVITY AND GLOBAL SYMMETRIES 913

evaporate. One may expect that a similar eB'ect can occur
because of the nonperturbative formation and evapora-
tion of "virtual black holes" in the presence of a global
charge. A somewhat more developed (even though still
very speculative) approach is based on investigation of
wormholes, which may take a global charge from our Uni-
verse to some other one. Indeed, it was claimed in [6, 15,
16] that such effects do actually take place, and can be
described by additional terms (vertex operators) in the
effective Lagrangian which break the global symmetry.

As an example, one may consider the terms of the type
[14]

[C ['~ C4 —'~+"
Vg(4) =g„+H.c. ,

where g is some dimensionless constant. Naively, one
could expect that these operators should be at least of
the fifth order in 4, so that they should be suppressed
by M& in the denominator, with n ) 0. The authors
of [14] concentrated on the simplest (and the most dan-

gerous) term g5 M . They have shown that, forI+I'(++4 )
MP

f0 10~ GeV, this term destroys the standard solution
of the strong CP problem. Indeed, this term changes
the shape of the effective potential and moves its mini-
mum away from —= —0. If —changes by more than

10, the corresponding eKects of CP violation become
too strong. In order to avoid such eKects, one should
have an extremely small coupling constant g of the sym-

metry breaking operator g5 ' M+ . g5 ( 10 " for

f0 10 GeV [14]. Thus, instead of the problem of
explaining why the angle 0 in the theory of strong inter-
actions is smaller than 10, we must explain now why
some other parameter is smaller than 10 . This does
not look like a fair trade.

In fact, the situation is even more complicated. The
idea to consider only the terms containing M~ in the de-
nominator was based on the assumption that the quan-
tum gravity e8'ects should be suppressed in the limit
M~ —+ oo. Indeed, the n-loop quantum gravity correc-
tions contain factors M&". However, the eKects we are
interested in are nonperturbative. These eÃects may give
rise to vertex operators of the type of gqM&(4+ 4*), or
other operators which do not contain M~ in the denom-
inator [15, 16]. The way to see it is, e.g. , to consider the
averages of the type M&{(4+4*)).One can show that in
the presence of wormholes such terms do not vanish, but
they are suppressed by the same exponential factor e

I+I'(++@ )as the terms (~ ~ ~~+ l) [15]. Here S is the action of a
wormhole which can absorb a unit of a global charge as-
sociated with the field 4. This implies that if the effective

vertex operators g5 M appear in the theory dueI+I'(+++ )
P

to nonperturbative gravitational eKects, one may expect
that the operators gqM&(4 + 4') should appear as well,
with a comparable coupling constant, gi g5 e

The vertex operator gqMg(4+ C'*) is most dangerous
for the axion physics. One can easily show, by analogy
with [14], that this term leads to a strong CP violation
unless gi & 10 ip&p G v This constraint is almost 30
orders of magnitude stronger that the constraint follow-

ing from the investigation of the operators g5 Mg
For comparison of our constraint with the results of our
future calculations of the wormhole action it is conve-
nient to express this constraint (for f0 10 GeV) in
the form gi & e

Note, that this constraint depends on the value of f0,
but not too strongly: it is proportional to f0. Thus, for
f0 10 GeV one should have gq + e, whereas for
f0 10 GeV our constraint is gq & e . In what
follows we will suppose, for definiteness, that f0 ——10
GeV, even though, as we have already emphasized, f0
in the axion theory may be either 2 orders of magnitude
smaller, or much greater than 10 GeV.

Similar arguments are valid for other theories possess-
ing global symmetries. For example, it was shown in [17]
that the theory of cosmic textures may work only if the
constant g in the term g5 M. is extremely small:I+I'(c++ ) ~

P
g5 & 10 . One can easily show that this constraint be-
comes even much stronger if one takes into account the
above-mentioned terms linear in 4': gi ( 10 ~ e

The same situation appears in the so-called "natural
inflation" model [18]. In this model it is assumed that
the effective potential has the form (2) with f0 & M~,
and then the Goldstone field, just like the axion field, ac-
quires mass A / f0 10 GeV. This can be achieved in a
natural way, e.g. , for A 10~s GeV and f0 M~. How-
ever, the term g&M&(4+ 4*) will destroy this nice pic-
ture unless the coupling gi is extremely small, gi & 10
As compared with the constraints on the models of ax-
ions and textures, this condition looks relatively mild.
Still, the existence of this additional constraint is rather
disappointing. [On the other hand, it would be quite
encouraging to find a natural mechanism which would
lead to the gravity-induced terms gqM&(4+ 4') with
gi + 10 since some terms breaking the global symme-
try are necessary in this scenario. ]

As we already mentioned, the main reason why quan-
tum gravity may break global symmetries is associated
with the possibility that the global charge can be ab-
sorbed by wormholes {or virtual black holes) and taken
away from our Universe. It is commonly believed, how-
ever, that local charges, such as an electric or magnetic
one, cannot disappear, and therefore quantum gravity
does not break local symmetries. The reason can be eas-
ily understood if one thinks about electric (or magnetic)
charges falling into black holes. Because of the Gauss
law, the Aux of electric field cannot disappear when the
charge falls into a black hole. Charged black holes can-
not evaporate entirely and take the electric charge away
from our Universe. Instead of that, they eventually form
charged extreme black holes which do not evaporate any
further.

It would be very tempting to use a similar mechanism
to save the axion theory. Indeed, it is well known that the
theory of a massless pseudoscalar axion field in a topo-
logically trivial space is equivalent to the theory of an an-
tisymmetric tensor gauge field b~ . This field, which was
introduced by Ogievetsky and Polubarinov and later also
by Kalb and Ramond [19], naturally appears in string
theory. It is related to the field a by the duality transfor-
mation. This suggests an idea that if one formulates the



KALLOSH, LINDE, LINDE, AND SUSSKIND

axion theory in terms of the antisymmetric gauge Geld,
then the low mass of the axion will be protected not by
global but by local (i.e., gauge) invariance, and it will not
be destroyed by quantum gravity.

Of course, one may immediately argue that this can-
not work. Indeed, if the axion charge can disappear in
the standard formulation of the theory, its disappear-
ance may have an adequate description in the theory of
an antisymmetric tensor Geld. However, this argument
has some caveats, since in fact these two theories are not
completely equivalent at the quantum level. For exam-
ple, conformal anomaly associated with the pseudoscalar
field differs &om the conformal anomaly in the theory of
the antisymmetric tensor field [20].

There is another problem which appears to be
much more important in the context of our discussion.
Whereas a massless antisymmetric tensor Geld in a topo-
logically trivial space can be converted into a pseu-
doscalar, not all pseudoscalars can be replaced by an-
tisymmetric tensors. The necessary condition is that the
Lagrangian of a pseud. oscalar Geld should depend only on
its derivatives.

Indeed, if one starts with the theory of the antisymmet-
ric tensor gauge Geld, duality transformation between the
Geld strength of the antisymmetric tensor Geld e"" B„bye
and derivative of the pseudoscalar field 8"a exists and
can be used to prove the equivalence of these two theo-
ries [21]. Duality transformation is always possible from
the b~„side to the a side and one ends up with the the-
ory of the massless pseudoscalar Geld with derivative cou-
pling only. Vice versa, if one starts with the theory of
the massless pseudoscalar Geld with derivative coupling
only, one can use the duality transformation and have an
equivalent b~ version of the theory.

If the effective action depends on the pseudoscalar Geld
a without derivatives (and this is the case if the axion
field has a small mass), no clear information about the
relation of this theory to the b„„theory was available.
To clarify the relation between b~ versus a theories one
should understand how one can describe appearance of

Athe small mass m~ &
—in terms of the gauge theory

of the field b~ . Is this effect possible at all, or is it
associated with some kind of gauge symmetry breaking' ?

We have analyzed this question and found that the
axion mass generation can be consistently described in
terms of the antisymmetric tensor Geld, and that this
effect does not involve any gauge symmetry breaking.
This effect is quite interesting in its own terms, indepen-
dently of the initial goal of our investigation. It provides
a generalization of the phenomenon studied by Polyakov
in three-dimensional compact QED, where the massive
scalar excitation appears in the presence of monopoles
[22]. In our case the mass of the antisymmetric tensor
Geld appears because of its interaction with the usual
QCD instantons. The deep physical reason why the an-
tisymmetric tensor Geld can acquire mass without break-
ing gauge invariance is that both the electromagnetic Geld
in d = 3 space-time and the antisymmetric tensor Geld
in d = 4 space-time have only one degree of freedom.
Thus, the condition of transversality for these theories,
which typically protects excitations from becoming mas-

sive, does not apply to physical degrees of freedom in
these theories. We will describe this effect in Sec. II of
this paper.

Even though there is no reason to expect that the
Peccei-Quinn symmetry is protected by the gauge in-
variance of the antisymmetric tensor Geld, one may still
hope that the symmetry violation should be very small
for some other reason. For example, it is not so easy for
a quantized axion charge to be squeezed into a wormhole
or a black hole: They should be large enough to absorb
a unit of the axion charge. In the language of Euclidean
quantum gravity this translates into the question of what
is the Euclidean action of the wormhole which could ab-
sorb a unit of the quantized axion charge. If this action S
is large enough, then one could expect that the violation
of the Peccei-Quinn symmetry is strongly suppressed by
a factor e . Our estimates of the effects related to the
term giMg (4 + C'*) indicate that in order to suppress
dangerous effects of global symmetry violation in the ax-
ion theory one should have the wormhole action S + 190.

Wormholes which could absorb the global charge have
been first discovered by Giddings and Strominger in the
formulation of the axion theory in terms of the anti-
symmetric tensor field [6]. The simplest of their solu-
tions corresponds to the fixed value of the radial compo-
nent of the scalar Geld. The pseudoscalar representation
of the Giddings-Strominger wormhole was obtained by
Kimyeong Lee [23]. In Sec. III of this paper we will red-
erive their expression for the wormhole action. Our result
for the value of the action of the wormhole configuration
without the bound. ary at the wormhole neck coincides
with the result obtained by Giddings, Strominger, and
Lee. However, we point out that if one takes into account
boundary terms including the contribution of the bound-
ary at the wormhole throat, the action becomes about
three times smaller. In any case, the action is propor-
tional to &~, which is as large as 10 for the axion the-

ory with fo 10 GeV. This could suggest that for the
axion theory one does not have any problem whatsoever
since the symmetry violating effects will be suppressed
by the factor 10, which is more than enough to
explain why gi & 10

Unfortunately, this attitude proves to be too opti-
mistic. As was first pointed out in [15], in realistic mod-
els of the axion field the radial component f(x) of the
axion Geld on the wormhole solutions does not remain
equal to fo Near the w.ormhole throat this field typi-
cally acquires some value of the order of M& )) fo A.
detailed investigation of solutions with an account taken
of the spatial dependence of f (x) was performed by Ab-
bott and Wise [15] and by Coleman and Lee [16] for the
case without spontaneous symmetry breaking. The cor-
responding Euclidean action which was found in these pa-
pers linearly diverged on extremely large length scales. It
was argued that despite the action is infinite, wormholes
do lead to charge nonconservation and. global symmetry
breaking since the corresponding efFects appear on a rel-
atively small scale, where the large scale behavior of the
wormhole solutions is irrelevant.

Unfortunately, the most interesting case of the theories
with spontaneous symmetry breaking was only briefly
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mentioned in [15, 16]. It required some additional work
to obtain results in a form in which one could compare
them with the expectations expressed in [14]. Perhaps
this was the reason why the authors of Ref. [14] did not
make any attempt to use the results obtained in [6, 23,
15, 16].

In Sec. IV of this paper we describe wormhole solutions
in several different theories with spontaneous symmetry
breaking. Whereas in some cases we could obtain impor-
tant information about these solutions by the methods
of Ref. [15], in general it was necessary to use numerical
calculations. These calculations were extremely tedious,
especially for the axion theories with fo 10 GeV. The
results which we obtained are in a qualitative agreement
with the expectations of [15,16]. We have shown that for
a very wide class of potentials the action is finite and to a
good accuracy is given by a simple expression S ln
This means that if the global symmetry breaking is sup-
pressed by e, this suppression is approximately given
by the factor M~' . This factor is of the order of 10
for the axion theory with fo 10 GeV, and it is of
the order of 10 s for the texture theory with fq 10is
GeV. This is clearly insufBcient to save the axion and the
texture theory.

In fact, the situation becomes even more complicated
if one takes into account that, according to [15, 16], the

~

@
)

2 rn y4 —2 rn+ n
symmetry breaking vertex operators g ~„+P
H.c. are suppressed only by the part of the Euclidean
action S corresponding to integration in a small vicinity
of the throat of the wormhole. In this case suppression of
the global symmetry breaking in the theory —m ~4~ +
A~4

~

practically disappears.
One could expect that this result should be strongly

model dependent. Indeed, we have found that near the
wormhole throat the field f(x) typically becomes as big
as M~. In certain theories, such as the theory of super-
strings or supergravity, the effective potential may ac-
quire large additional terms, which exponentially grow
at large f In such the. ories the behavior of the wormhole
solutions near the throat becomes quite different from
the one envisaged in [15, 16]. Here our use of numeri-
cal methods was absolutely crucial. The results, how-
ever, have not been very encouraging: Even if one con-
siders the effective potentials growing at large f as fast as

exp M, the resulting Euclidean action remains quiteM~
small. Thus, one cannot make the violation of the global
symmetries small by changing the effective potential of
the scalar field in any reasonable way.

Fortunately, during our investigation we found several
ways to fix this problem. First of all, when we make the
efFective potential more and more steep (keeping its min-
imum at fo), the corresponding action tends to increase
toward the very large action of the Giddings-Strominger-
jLee wormhole. We found that the main reason why it
happens is an increase of the size of the wormhole: The
action is (approximately) proportional to the square of
the radius of the wormhole throat R(0), S Mg, R (0).
According to our calculations, increasing of the minimal
radius of the throat just a few times as compared with
Mp can make the "natural inBation" scenario viable.

The situation with axions and textures is more compli-
cated, but still these two theories can be saved by an
increase of the radius of the throat up to about 10M&
or 15M~

It is very dificult to increase this radius by making
the effective potential steep. However, there may be
some other reasons why the wormhole throat cannot be
small. For example, in string theory the effective "min-
imal length" may be somewhat greater than the Planck
length M& . Our investigation contained in Sec. V in-
dicates that the size of the wormhole throat can be very
large in Kaluza-Klein theories with a suKciently large
radius of compactification. This suggests that the ax-
ion theory can be quite viable in the context of a the-
ory in which the gravitational effects on the length scale
l & 10 M& cannot be described by the standard Einstein
theory of gravity in four-dimensional space-time. An-
other example pointing in the same direction is related
to Z, corrections and effects of'conformal anomaly. We
show that an account taken of conformal anomaly (even
if the corresponding terms are relatively small) may lead
to the disappearance of the wormhole solutions. We also
discuss the observation made in [6, 24] which suggests
that there are no wormhole solutions in certain versions
of the string theory.

In Sec. VI we discuss the possibility of an addi-
tional strong suppression of wormhole effects because
of the Gauss-Bonnet; term 32~, 'R*'R. This term does
not change any observational consequences of the Ein-
stein theory, but it tends to suppress transitions with
the change of topology. Similar terms appear in the het-
erotic string theory with the coeKcient proportional to

We show that these terms may suppress the worm-
M

Sm

hole effects by the factor e ~' = e 't, where g is the
gauge coupling constant, M,~, is the stringy mass scale.

Sm

This result is very similar to the standard result e ~' for
the suppression of the instanton efFects in @CD.The pos-
sibility to have this suppression factor smaller than e
is quite consistent with the present picture of stringy phe-
nomenology. This suppression becomes even stronger if
one adds the usual part of the action to the topological
contribution discussed above.

Our results and conclusions are summarized in Sec.
VII. A considerable part of our results is based on numer-
ical investigation of differential equations for wormholes.
In many cases it was impossible tb solve these equations
using standard numerical recipes [25]. In the Appendix
we describe an improved method which we have used in
our work.

II. AXION THEORY. PSEUDOSCALAR VERSUS
ANTIS YMMETKIC TENSOR

A. Pseudoscalar formulation of the axion theory

The simplest version of the pseudoscalar axion theory
[1]adds to the standard model Lagrangian l:sM the terms
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For a review of various models see [7]. Peccei-Quinn
global U(l) symmetry

a(z) -+ a(x) + C (4)

The fact that E E " is a total derivative is not sufIi-
cient for providing the symmetry since the action is not
invariant in presence of instantons. The variation of the
action with an account taken of the surface terms is

g2

o 327r
dxE E"

pv

C g2

fo 32vr2
d xo)„K"$0. (6)

is broken spontaneously when the operator E E &

ze„pgE& E has a nonvanishing vacuum expectation
value (I"„„F" ). The term I"„„I" ""can be represented
as a total derivative, E„„E& = 0~K~, where

IC„(».) = e„p»A (Eg» — f s —A~A»)
3

2(o)~ b~ )) is equivalent to a noninteracting massless
pseudoscalar field with the action 2 (c)&a) . The simplest
way to see this is to perform a duality transformation
of the classical action. This leads to a replacement of
0"a by a pseudovector 2e" ~ 0~ b~

~
which is dual to the

tree tensor field strength Br b~ j of the two-form Geld bz
Another way to see this equivalence is to perform gauge
fixing of the gauge symmetry 86~ =')9~~A ), bA = c) A,
which requires two generations of ghosts. In addition to
6 6„fields one gets 8 anticommuting ghosts in Grst gen-
eration and 3 commuting ones in the second generation.
This provides a net number of propagating degrees of
freedom equal to one commuting Geld.

The equivalence of the massless pseudoscalar and
massless antisymmetric tensor field coupled to the non-
Abelian gauge field has been shown in [21] starting with
the first-order-type action using duality transformation.
In what follows we will perform this duality transforma-
tion for the theory which describes the complex scalar
theory with the axion 0 coupled to the non-Abelian vec-
tor fields:

l: = /B„C
/

—V([@i) —)9„00" .
Spontaneous breaking of the global U(l) Peccei-Quinn
symmetry allows us to generate a potential for the axion
Geld. This gives the axion a small mass m

0
4

. The lightness of the axion is provided by the fact
that fo )) Aq~D.

Note, that the Peccei-Quinn symmetry is global. 0 the
axion would not interact with non-Abelian Gelds, this
symmetry could be promoted to a gauge one. Indeed,
one can introduce an Abelian vector field [5) and replace
everywhere O„aby o)„a+eA„.Then the global PQ sym-
metry becomes the local one,

Here

2

0„(»)= E, p»A P~» — f b A, A—»)

K„.
327r

One can also write this Lagrangian as

Zg ——
2 f (0„0) —0„00" + 2(f),

where

(10)

a -+ a+ C(x), A„-+A„—B„C(x).

However, in the presence of a non-Abelian gauge cou-
pling, which is an essential part of all realistic axion mod-
els, one cannot promote the global PQ symmetry to the
local one. Indeed, the non-Abelian coupling can be rep-
resented in the form 0~a K~. After the promotion of the
global PQ symmetry to the local one we would obtain the
term eA~K" in the action. This term would violate the
non-Abelian gauge symmetry since the variation of the
Chem-Simons term K„vanishes only when it is coupled
to the longitudinal part of A& but not to the transverse
part of it.

Still it is possible to represent the global PQ symme-
try as a local one if one goes to a dual formulation of
the axion theory, in which the axion pseudoscalar field
a is represented by the antisymmetric tensor field b~ .
This version of the axion theory naturally appears in the
context of string theory [4].

B. Dual version of the axion theory
with the non-Abelian coupling
in the broken symmetry phase

The noninteracting two-index antisymmetric tensor
gauge field b~ with the gauge symmetric action

and

0(*)+ f»»a(z)
)fo

f(&)
exp[i0(x)] .

2
(12)

However, it is useful to start with a more general La-
grangian which depends both on the pseudoscalar 0 and
on some pseudovector field H„:
8, H =i0„0(H"+iO")+ i f 2H„H"+L(f) .

One can solve the Geld equations for H~,

(13)

H„= if 8„0— (14)

The solution to this constraint is

and on shell for H„the Lagrangian acquires the form
(10), which describes the pseudoscalar axion field 0.

On the other hand, one can vary Zs ~ (13) over 0(z)
and obtain the constraint on H~:

2

0 H" +i E E" =0.
32~2
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H" = ——~"" H
Z

VPCT )2

(16)
2

g cH„p ——o)(„bp ) + A( F~p~) — f—~b, A A
)

where B~„bp
~

is the Beld strength of the two-form Beld.
The Lagrangian which follows f'rom (13) describes the

antisymmetric massless Beld b„„interacting with the
non-Abelian vector fields as well as with the radial com-
ponent of the scalar Beld,

bb„=OI„A ), bA„=B„A, (18)

and the Nicolai-Townsend-type non-Abelian gauge sym-
metry [21]

bA„=V„Ag, b„=2 'A 0(~A )
. (19)

Will these local symmetries of the dual version allow
us to avoid the problem which destroys the nice features
of the axion theory in the standard version? To address
this issue we will first study the origin of the light axion
mass generated by QCD instantons in the dual version
of the theory.

l:s„„=2 f H„„+C(f) .

There are no gLobal symmetries in the dual version of
the axion theory, but there are tu)o types of local symme
tries, the Maxwell-type gauge symmetry of the two-form
Beld,

Starting with this action one cannot make a transition
to the dual version of the theory with the 6„„field us-
ing any of the methods discussed above. For example,
one cannot perform duality transformation of the action
starting with the action depending both on O„aand H„
as we did before. Indeed, there is now a term in the
pseudoscalar version of the theory depending on a rather
than on 8~a and the procedure does not work. If we will
try to go &om the side of the gauge invariant 6„theory
and perform duality transformation, we will get no terms
depending on a, but only terms depending on O„a.

Does the impossibility to perform duality transforma-
tion mean that the dual version of the axion theory is
incapable of explaining the mechanism of generating a
small axion mass'? Will the same mechanism protect ax-
ion from getting very heavy?

To understand the efFect at the level which is more
subtle than just performing duality transformation over
the efFective action we will Brst go back to the Polyakov
model of compact QED in d = 3 [22]. In this theory the
massless scalar is dual to the massless Abelian vector A„
and not to the b~ Beld.

Polyakov's main idea is that the existence of magnetic
monopoles, which are instantons in d = 3, changes the
behavior of the correlators: due to instantons there are
no massless transverse excitations in the system. Instead
there is an excitation corresponding to a longitudinal
component of a gauge invariant operator, which may be
interpreted as a massive scalar. The efFect has a nonper-
turbative nature and does not violate gauge symmetry.

We will show that something very similar happens with
the antisymmetric tensor field in our d = 4 theory. I et
us first describe the situation in d = 3 [22]. One starts
with the dual to the vector field strength

1
2 ~~Pw+Pv (21)

C. How does the axion become massive
in the dual theoryT

C. = -(a a) —+X~cDcos —., y' 4 a
11

2 kk y2 (20)

The possibility that a scalar or pseudoscalar particle
can acquire a nonvanishing mass due to nonperturbative
effects does not look very surprising. However, in the
dual formulation of the axion theory the axion is mass-
less because of a gauge symmetry (18). It is commonly
believed that gauge symmetry protects massless particles
from becoming massive. This would solve all our prob-
lems. However, if it were true, then the axion field in

2

its dual formulation would not get its mass m
fo

Therefore before going any further we must first resolve
this puzzle.

With an account of QCD instantons the efFective action
of the pseudoscalar field acquires a potential

If one allows certain magnetic charge density in the sys-
tem of the form p(x) = P q b(x —x ), in the quasiclas-
sical approximation this would correspond to

(22)

(EI„(k)H (—k))~ ~ = e (6„—"
) . (23)

This expression corresponds to the &ee photon propa-
gator coming from the action —,,E„.In addition, there
is a contribution from the instantons such that the full
correlator is

(H„(k)H„(—k)) = (H„(k)H„(—k))~e)

The main steps in the calculation of the correlator of two
gauge invariant operators H„arethe following. The bare
part without monopoles is

We are grateful to M. Dine for the suggestion to investigate
this problem.

+(2~)' "„," (C(k)~( —k)) . (24)
2k„k

The correlator of charge densities is calculated from the
generating functional for the charge density of the plasma
and is given in [22]:



KALLOSH, LINDE, LINDE, AND SUSSKIND

2

~(p) = ('"r )

' f &'*p(*)p(*)
)

= &x p —
( ) (I&(x —p))' —M' o x)

Z(0) 2K
(25)

C
where M2 = (—") e ~, C 1 is some constant. The
second variational derivative over g gives the expression
for the correlator of p,

e '(, k4
(p(k) p( —)')) =

(2 )
e 2 M~k2

2' M2+ k2

bare correlation function of two operators h~ must be
transverse since

O„h"= ——O„e"~ 0 bp
——0.P 2 P ~ P~

Thus, as in the Polyakov case, we may expect

f (H„(k)H„(-k))
The final answer is

k,
"

I
+ k,

"
(p(k) p(-k)) + "( k„k„i k„k„

(31)
—(H„(k)H (—k)) = b„

Thus the correlation function of two gauge invariant
operators 2e @~ED~ has only one longitudinal excitation
as if one would calculate the two-point correlator of the
derivatives of a massive scalar field.

For the antisymmetric tensor field in d = 4 things work
not exactly the same way but very close to it. The only
gauge invariant operator in our theory where we keep the
antisymmetric tensor coupled to the non-Abelian vector
Geld is

2
H" = ——e" ~ 0 bp + A„Fp

— f („AA-'
= h" —iO" . (28)

This is the only operator which is gauge invariant under
both Ma~well and Nicolai-Townsend non-Abelian sym-
metry. Separately, the operator h" which is dual to a
Geld strength of the antisymmetric tensor field is invari-
ant under the Abelian gauge symmetry, but it is not
invariant under the Yang-Mills symmetry without the
Chem-Simons term.

To examine our problem we may ignore small quan-
tum Huctuations of the radial component of the scalar
field. These Huctuations are irrelevant when one investi-
gates the possibility that gauge symmetries protect axion
theory &om getting a mass. Thus, the action we con-
sider is the action (17) with the fixed radial component
f(~) = fo,

&~..= 2fo 'H,'.~ (29)

We may start by treating the coupling of the b~
field to the non-Abelian field perturbatively, i.e., we may
study the correlator of two gauge invariant operators H„
by treating the coupling as a correction to the value of
the correlator of two operators h~ without coupling. The

I

fo 'B„H"(x) = —i fo '0„0"
2iF„-F" (x)

327l o

—:-ip(z) . (32)

The correlator of two divergences of the Yang-Mills
Chem-Simons currents was calculated by Shifman, Vain-
stein, and Zakharov in [2]. They have shown that in
a certain approximation it is proportional to the axion
mass

F F""I(k)
I

F' F'"'I(-k)
3)2~'f o""

y (, 32~'fo

- m.' . (33)

This serves as an indication that one may obtain in theb„„theory the longitudinal excitation of the gauge invari-
ant operator corresponding to a scalar massive particle
instead of a massless 6„„field.

One can confirm these expectations by calculating the
correlator (H„(k)H„(—k)) directly, without separating
our operator H„into its free part h„and the interac-
tion part 0„.For this purpose we will perform the gen-
eralized duality transformation in the functional integral
describing the theory. Consider the "first-order" func-
tional integral for the action we have considered above
with the additional term including the source g~ to the
current fo H„:

where the ellipsis corresponds to the corrections to a
transverse part of the correlator. We have parametrized.
the longitudinal excitation by some two-point correlator
of a "charge density" p(x). The divergence of our gauge
invariant operator H„,which we may associate with p, is
given by

Z(ri) = f De'HHe DA exp) if )if'e Bee('He+ iBe)+ efe H H" ppefe H„+L~Mj

The functional integration is performed over the pseudoscalar a as well as over the pseudovector H~ and over the
Yang-Mills fields. For the sake of simplicity we do not write down explicitly the integration over the ghosts related
to the gauge Gxing of the non-Abelian symmetry. %e may evaluate this functional integral by integrating over the
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pseudoscalar a first. This will produce a constraint given in Eq. (16). In this way we will get rid of the a integration
and the remaining integral will reduce to the integration over the constrained H„.Equivalently the integration over
the constrained H„may be replaced by the integration over the unconstrained b„ together with the proper gauge-
fixing procedure in the path integral. As before, H„(b,A) is defined in terms of b„„andYang-Mills fields in Eq. (16).
Thus we get

Z(p) = f Dba DCee DA 'exp if efe *H H"(6 A)+ pafe 'H" (b A)+ DxM + Dec + Dec (35)

Z(P) = f DaDA e'xP i f'—-', (iB +Pace)e

2

327l O

(36)

The integration over the instanton configurations in the
dilute gas approximation produces the effective action for
the field a

Z(p) = f DaDA exp i f e (Baa —'ipa)

4 G
+~QCD cos + GYM

fo

Double variation of this generating functional gives us an
expression for the correlation function of two operators
fo H„in the form

fo (H„(k)H„(—k)) = b„ (38)

This result is in a complete correspondence with the
Polyakov result for d = 3. The first term on the right-
hand side (RHS) of Eq. (38) comes from the q2 term
in the generating functional, and. the second term comes
effectively &om the correlator of two derivatives of the
massive field a.

Our conclusion is the following. The antisymmetric
gauge field is coupled to the Yang-Mills fields. With an
account taken of instantons the behavior of the system
becomes that of the massive scalar field theory. Note that
this is not a mass of the field b„„.Rather it is the mass
of the only gauge-invariant degree of &eedom associated
with b„.

Thus we have found a mechanism of getting small QCD

where we have written down the integration over the com-
plete set of ghost fields Cgh related to both types of gauge
symmetries. Czp„ is the gauge-fixing part of the action
and Zgh is the action of the ghost fields. By varying
this functional twice over g~ we will get the correlation
function of two gauge invariant operators fo H„(b,A)
defined in Eq. (16) and calculated in the dual version of
the axion theory.

On the other hand we can perform the integration over
H„first. This does not change the fact that the second
derivative of Z(g) gives the correlator of two fo H's
It is just an alternative method of calculations. After
integration over H~ we get

mass for the axion in the dual version of the theory, which
does not violate any of the gauge symmetries. This result
has an important implication that there is no reason to
expect that the gauge symmetry which exists in the dual
formulation of the axion theory can protect the axion
mass from becoming very large because of the gravita-
tional effects.

III. AXIONIC INSTANTONS OR WORMHOLE
SOI UTIONS WITH FIXED RADIAL

COMPONENT OF THE SCALAR FIELD

The axionic wormholes which may provide mass to the
axion via gravitational effects have been found originally
in the dual version of the axion theory with antisym-
metric tensor field [6]. The theory of the complex scalar
field does not have such wormhole solutions unless the
functional integral is supplemented by the proper bound-
ary conditions. The corresponding investigation has been
performed in [23, 16]. The coiiclusion was that there ex-
ists a consistent procedure to obtain the same wormhole
solutions in both versions of the axion theory.

In this section we discuss wormholes with a frozen ra-
dial component of the field, following Giddings and Stro-
minger [6] and Lee [23]. We will mainly reproduce their
results. However, in addition we will discuss the subtlety
related to the boundary terms and the value of the Eu-
clidean action. We will find out that if one considers the
configuration with the boundary at the wormhole throat,
see Fig. 1(a), and calculates the contribution to the ac-
tion &om the boundary terms in a standard way, one
ends up with the action which is only (1 ——) 0.36 of
the original action, which was calculated in [6,23] without
an account taken of the boundary terms on the wormhole
throat.

Giddings and Strominger have found their wormhole
solution in the string-inspired theory with the action

M2
SH = 8 x g — R+ p H~16~

M2
d S(K —K()) .

]-6~ av

Here H~ p ——B~~b ~~ is the field strength of the antisym-
metric tensor field. The last term in the action is the
Gibbons-Hawking surface term.

We are grateful to A. Strominger for the discussion of this
subtlety.
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The wormhole geometry R(r) can be expressed analyti-
cally in terms of elliptic integrals [6].

The wormhole action with an account taken of the
boundary terms both at the outer boundary at r
pp, pp M oo, and at the inner boundary at r = 0 is

(b)

FIG. 1. (a) The geometry of the Giddings-Strominger-Lee
wormhole with initial surface Z, which is B and final surface
Z f which is R x S . This wormhole may describe the tunnel-
ing from R to B x S . (b) Extended solution which connects
two asymptotically Euclidean regions r —+ Woo.

3M~2 oo

St t t = — dO drR(r)R'(r)[1 —R'(r)] .4' p

The integration can be performed as„„,(, , R4(0) l
4m 2 a~(p)

M~R'(0)
l

1 ——
l

.
8 q vr)

(4s)

(46)

Meanwhile, Lee obtained wormhole solutions in the
theory of a pseudoscalar axion Beld 0 = —with the ac-
tion

16m 2

~no bound

OO

d"R( )(I —[R'( )]'}
37r2

MI, R (0) . (47)

Giddings-Strorninger-Lee (GSL) on shell action (with-
out the inner boundary terms) is [6]

d S(K —Ko) .16' (40) The boundary term which we added,

The wormhole geometry has the form

ds =dr +R(r) d Os. (41)

As we already mentioned, there are no true solutions
of the Lagrange equations following from (40). However,
it was pointed out in [23, 16] that these solutions appear
if one takes into account the charge conservation condi-
tion in space (41). The global charge n, defined as an
integral over the three-space from the zero component of
the Noether current,

~bound =
OO

d R( )[1 —R'( )]

3~ M~~R (0) (
8 ( 7rp

(48)

bound—
3M2 OO

dA dr R2(r) [1 —R'(r—)]

(49)

is —0.637 of the action without the boundary term. To
understand better the boundary term contribution con-
sider it in the form

R f 8' = 2' R fo 8' = const, (42) The contribution comes only from the throat where
R(r) = R(0), R'(r) = 0. It equals

(43)

Here R(0) is the size of the throat of the wormhole defined
by the condition R'(0) = 0. It is given by

( n'
R(o) =

I 3M2 .f, l
(44)

Note that in the situation with spontaneous symmetry the
global charge is carried not by charged particles, but by the
vortices of the classical scalar field with the time-dependent
phase 0.

is an integer upon quantization.
The conclusion of Refs. [23, 16] was that if one makes

the variation of the action under the condition n = const,
one obtains equations of motion which are equivalent to
the equations in the theory (39). In particular, the grav-
itational equation of motion in both theories looks like

3M2
Sb.„„,—— ~ 2~' R'(0) = M~R'(0),——(So)

8m 4

which is in complete agreement with (48). Note that the
extrinsic curvature term K at the S boundary at r = 0
[the second term in Eq. (49)] vanishes, in agreement
with the discussion in [26], but an additional nonvan-
ishing contribution comes &om the term Kp, which was
added to remove the divergence of the action at the outer
boundary.

The total action'for the configuration with the bound-
ary at the throat is thus only 0.363 of the value of the
action without the surface term. This gives an addi-
tional support to the idea that in gravitational problems
one has to be very careful with the boundary terms. The
outer boundary surface term K has to be corrected by
Kp,'otherwise, the action is infinite. Does it mean that
the surface term has to have the same functional form
K —Kp on both boundaries'? If the answer is yes we
have to subtract —part of the action and make it almost
three times smaller than the action obtained in [6, 23].
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v'3x
( 2) nM~

(51)

One should note, that the problem of obtaining a
proper contribution from the inner boundary is very com-
plicated. For example, recently it was argued that an
adequate account taken of the inner boundary of an ex-
treme charged black hole changes its Euler number [27],
which inakes its entropy zero [28, 29, 27]. However, even
for the black hole case this issue is rather nontrivial. The
situation with the wormholes is even more complicated
and ambiguous. If one considers the wormholes without
the i'nner boundary contribution as in [6, 23, 15, 16], one
has to add to our result for the action the universal term

4 M&R (0), which depends only on the size of the worm-
hole throat. One may also want to calculate the action
on a symmetric configuration —oo ( r ( +oo, Fig. 1(b).
In this case one will not have any contribution from the
inner boundary, and the action will be two times greater
than the GSL action (47).

In what follows we will work with the action def1ned
with both boundaries and with the surface term K —Ko
on both boundaries since this prescription seems to be
more internally consistent. Another advantage of this
prescription is that it gives us the smallest action as com-
pared with other prescriptions mentioned. above. There-
fore if we find a way to avoid the strong violation of global
symmetries in our approach, we will simultaneously solve
the corresponding problem in other approaches as well.

The radius of the throat of the Giddings-Strominger-
Lee wormhole depends on the parameter fp and on the
value of the charge n. We may therefore express the
action in terms of these parameters as

breaking. In particular, we will investigate the depen-
dence of the action on the value of the vacuum expecta-
tion value fp of the radial part of the scalar field far away
&om the wormhole.

We will study interaction of gravity with the complex
scalar field 4(x) = ~ e's~ l. The corresponding action
1S

We will assume that the potential V {f) has a minimum
at some value f = fp Th.e vacuum energy vanishes in
this minimum,

V'(f)lf=f. = V(f)le=~. = o . (54)

Equations of motion corresponding to the analytic con-
tinuation of the Euclidean theory of the two-form version
of the axion theory [23, 15, 16] are

dV(f)
df

3R'f'
R 4

n2
R' —1+ 2R

I
V{f)+

3M~ 8vr4 2Rs

n2. . .=o, (55)

/2

I

=0, (56)
2 )

and the value of 0' = 2,&», has been already substi-
tuted in the equations.

Using these equations one can derive the following ex-
pression for the wormhole action:

S = d x gl — R+ — |9p + — t9~6 + V
j16m 2 " 2

M2 dS(K —Kp).
16m g~

~no bound—

If one takes the smallest action (51) with n = 1 and
fp = loi2 GeV, one obtains an enormously strong sup-
pression exp( —10 ). This would immediately solve
the problem of the global symmetry violation. Unfortu-
nately, however, things are much more complicated. As
it was pointed out in [15], it is alinost impossible to keep
the field f(x) close to fp on the wormhole solution. In
what follows we will show that if one allows the field f to
depend on r, this field typically grows to f My )) fp
near the wormhole throat. Therefore one needs to make a
separate investigation to calculate the wormhole action in
realistic theories with spontaneous symmetry breaking.
This investigation will be contained in the next section.

IV. WORMHOLE SOLUTIONS WITH
DYNAMICAL COMPLEX SCALAR FIELD AND

SPONTANEOUS SYMMETRY BREAKING
A. Equations for the scalar Beld

in the wormhole geometry

In this section we will discuss wormhole solutions for
several different theories with spontaneous symmetry

For completeness, we will give here also the value which
has been obtained in [6, 23] without an account taken of
the inner boundary:

/37r ~(nMI )
(52)

R'(o) = o,
f'(o) = o,
f'(r) + 0, r m oo,
f (r) m fp, r -+ oo .

We will examine the potentials

(58)
(50)
(60)
(61)

Vi(f) =
4 (f —fp) (62)

V2(f) = M, (f' —3fpf'+2fp) (63)

(f) PfM~ (f2 f2) (64)

The f1rst potential is a standard potential of a theory
with spontaneous symmetry breaking, the second one is
inspired. by some phenomenological models based on su-

pergravity with fp '~', the third one is inspired
by string theory. We will find the wormhole solutions

(57)

We are looking for the wormhole solutions with the ge-
ometry given in Eq. (41) and with the fields R(r) and f (r)
solving the system of Eqs. (55) and (56). Our boundary
conditions are
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numerically using the fact that the field f has a defi-
nite value fo at infinity. In particular, for axions we will
be interested in fo ~ 10 GeV and for the textures in
fo 10 GeV. Typically the radial component of the
axion field f will grow many orders of magnitude from
the value fo to f M~ when approaching the wormhole
throat.

Note that our expression for the total action (57) does
not have any explicit dependence on the efFective poten-
tial V(f) and on the charge n. It is important also that
0 ( B'(r) ( 1 for all wormhole solutions which we are
going to study. As a result, the integrand is always posi-
tive, despite the fact that the gravitational contribution
to the action may be negative. One of the consequences
of this result is that if we make a cutofF at some radius
r and integrate from r = 0 to r = r„the result will be
always smaller than the total action (57).

B. Wormholes in the theories
without symmetry breaking

4vr4 J~r6 (65)

This equation has an exact solution

(66)

where b is determined from the equation

In this paper we study the theories with spontaneous
symmetry breaking. However, on a small scale R
m (f) (~Af) the wormholes in the theories with
the effective potential 4 f described in [15, 16] are very
similar to the wormholes which we have found in many
theories with spontaneous symmetry breaking. There-
fore we will brie8y discuss here the wormhole solutions
in the theory 4/4, following [15].

Near the wormhole throat the solution was obtained
in [15] numerically. This solution should be matched to
the solution obtained analytically at large r. According
to Eq. (56), far away from the throat one has B(r) = r.
Therefore Eq. (55) in this case (for n = 1) reads

On the other hand, integration far away Rom the throat
gives the contribution

S=2vr r dr — ' + +V . 68

The total action integrated up to some r has the
general form

( 3A)
S,...,(r .„)= —

~

1 —,
~

ln(mr„) + mr .„+b,S .
8~2)

(69)

Here r corresponds to the place where the numerical
solution near the wormhole throat matches the solution
(66), AS stands for several other terms which have not
been determined in [15]. One can calculate AS using our
expression for the action (57); typically this term is fairly
small, LS 1.

Thus the two most interesting terms in (69) are the
logarithmic term and the term which linearly diverges at
large r „.As we will see, a similar logarithmic contri-
bution appears in the theories with spontaneous symme-
try breaking as well. However, the linear divergence at
r „+ao is a particular property of the theory without
symmetry breaking, which is a consequence of the asymp-
totic behavior f (2vr2mrs) i~ at large r. One could
conclude that the wormhole action is infinite in the theo-
ries without spontaneous symmetry breaking, and there-
fore these theories cannot lead to the global symmetry
violation.

However, it was argued in [15, 16] that this is not the
case, and in fact the efFects of global symmetry violation
are quite signi6cant. It was suggested. that these efFects
are suppressed only by some small part of action S com-
ing from the region close to the throat of the wormhole.
The value of S was not calculated in [15,16], but it was
estimated to be of the order of 1. We will return to the
discussion of this issue when we will consider wormholes
in the theories with spontaneous symmetry breaking.

C. Vlormholes in the theory with
the simplest potential —"(f —fo)

4~454 (67)

2
If one adds to the efFective potential the term 2

f2 with
m ) 0 (no spontaneous symmetry breaking), the asymp-
totic behavior at large r changes to f (27r mr )

It was assumed in [15] that the contribution to the
action &om the region near the wormhole throat [until
the solution approaches its regime (66)] is very small.

We should emphasize again that the value of the parameter
fo may be quite difFerent from 10 GeV. However, as we

will see, our results depend on fo only logarithmically. Also,
for textures one should take a theory with another group of
symmetries, which, however, should not considerably change
our results.

The equation for the scalar field f in the theory
4(f2 —fo) on the wormhole configuration looks very
similar to Eq. (65):

I
flf Pf (I2 f2) 0

p 47r4 fsrs

Therefore the wormhole solutions at f )) fo behave just
as their counterparts in the theory without spontaneous
symmetry breaking. In particular, far away &om the
wormhole throat f = —,where b is determined by 4,&,

—
Ab2 = 1.

The main difFerence between the wormhole solutions
with and without symmetry breaking appears on the
scale r ) (4~2msA) i~sfo, where the field f approaches
fo very rapidly (though not exponentially, as anticipated
in [15]). We have found that, at large r,
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GeV. The corresponding values of the dimensionless field
Fo»e

3A 3A fp=rMI —,A=AM~ —,E=8' 8~ ' MI
8'
3

U(F) = A V(P) . (72)

2 ) 2
We also introduce the combination Q:—"s ", [15].

Equations of motion in these variables are given by

3A'(p) F'(p) dU(F)
A(p) dF

2Q2

F'(p) A'(p)
=0,

(73)

A (p) —1+A(p) U(F)+

which leads to a finite (and very small) contribution to
action from the region r & (4~2vrsA) i~ fo . Thus, in
our theory we do not have any problems with infinite
wormhole action.

To study the behavior of our solutions in all regions
&om r = 0 to r -+ oo, and to avoid having numerical
uncertainties associated with the value of action coming
&om each of the regions we performed a numerical inves-
tigation of the wormhole solutions in our theory. This
investigation was rather complicated since the solutions
happen to be extremely sensitive to the boundary con-
ditions. Whereas it was possible to obtain some results
for fo 10 GeV using standard numerical recipes [25],
it was necessary to substantially improve these methods
in order to study the physically interesting regime with
fo ~ 10 GeV. Since this improvement may be useful
not only for finding the wormhole solutions, we will de-
scribe our method in the Appendix.

We have found it useful to make our numerical calcu-
lations in dimensionless variables p, A(p), F, and U(F),
where

Fo =fo 8m

3M~
= fox2.4xlp GeV (76)

For example, for fo ——10 GeV one has Fo = 2.4 x 10
and for fo —— 10 GeV one has Fo = 2 4 x 10
The solution for the dimensionless radial component
of the scalar field E is represented in Fig. 2 where
the value of logio E is plotted as a function of logio p
for seven different values of Fo, corresponding to fo ——

(10,10,10,10,10 10,10 ) GeV. One can see
&om Fig. 2 that all solutions with difFerent asymptotic
values of fo behave in the same way near to the wormhole
throat. This means that the axion-type field E which far
away from the wormhole was 10, increases 7 or-
ders of magnitude near the throat to become 1, and
the texture-type field F which far away &om the worm-
hole was 10, increases 3 orders of magnitude near
the throat to reach the same value 1 corresponding to
f M~. Thus, the solutions which we obtained diff'er

very much &om the Giddings-Strominger-Lee solutions
with a fixed value f (r) = fo. On the other hand, the
fact that the solutions at small r do not depend on fo
confirm our expectations that the behavior of these so-
lutions near the wormhole throat does not depend on
spontaneous symmetry breaking.

This conclusion becomes even more obvious if one con-
siders Fig. 3, which gives the value of the function A(p)
[i.e. , R(r)]. This function, describing the geometry is
completely insensitive to the asymptotic value of the field
Fo (i.e. , of fo). Therefore we have only one curve for all
seven cases above.

One can also express our results in the usual dimen-
sional variables. One can show, in particular, that if the
coupling constant A is very small, then, just as in the the-
ory without symmetry breaking [15],the value of the field

f at the wormhole throat and the radius of the throat are
given by the simple expressions independent on A and fo

The on shell action is

=0. (74)
3

f(0) = M~
8m

R(0) M~
3~2~

(77)

S,...i = "
dp A'(p)F" (p)

2Q o

log F(P)

+2A(p) A'(p) [1 —A'(p)] (75)

Our numerical solutions of the system of difFerential
equations (73) for the theory 4 (f —fo)2 depend on the
value of the coupling constant A and on the asymptotic
value of the field fo. In all cases we are interested in
the strongest possible violation of global symmetries by
gravity and therefore we will consider the smallest value
of the charge n = 1. We will present most of our results
for A = G.l and A = 1, but in all figures we will show
only the case A = 0.1. DifFerent asymptotic values of the
field fo are considered, from fo ——10i2 GeV to fo ——10is

12
'

6

10gIP P

FIG. 2. The distribution of log~p I' as a function of logyp p
for the wormhole solution in the theory with an effective po-

tential —"(f —fo) Here p = re Q.—", F = ~~



924 KALLOSH, LINDE, LINDE, AND SUSSKIND 52
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0.225
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0.175

0.15

0.125
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FIG. 3. Wormhole geometry for the potential —"(f —fo)
Here p = rMJ ~, A = RMi ~.

~go&~)
——a —b»+p . (7s)

The values of a, b for two values of A are

a=0.186 + 0.005, b = 1.001 + 0.005, A = 0.1,
a =0.188 + 0.01, b = 1.010 + 0.002, A = 1 .

(»)
(8o)

Thus the dependence on A is not strong and the total
action is small.

If we consider the con6guration without the boundary
term, the action increases slightly. The values of a and b
for two values of A are

a = 0.850 + 0.005, b = 1.001 + 0.005, A = 0.1,
a = 1.33 + 0.01, b = 1.010 +0.002, A = 1 .

(s1)
(s2)

However, even in this case the total action rexnains of the
order of 15 for fo 10i GeV. This is much smaller than
what we need.

~total

Meanwhile the total action does depend on fo, and
this dependence is pretty simple. Figure 4 represents
the value of the action as the function of —lnEp for
A = 0.1. The black line and dots give the total action
with the boundary term, the grey one shows the action
without the contribution of the boundary term at the
inner boundary (see the discussion of this possibility in
the previous section). All data fit the following simple
equation for the action:

This conclusion may seem somewhat unexpected. In-
deed, the only natural length scale in the theory of grav-
ity is M& . How could it be possible for a wormhole
with a throat of a radius M& to absorb a vortex with
f~8 g 0 or a particle of a typical size m )) M& ? In-
deed, if wormholes do not change the value of the scalar
field f, such processes are extremely strongly suppressed,
as we have seen for the case of the Giddings-Strominger-
Lee wormhole. However, in our case the total action is
rather small, and it depends on fo only logarithmically.
A possible interpretation of our results is the following. It
does not cost the wormhole almost any action to squeeze
the vortex to the size r A i~5 fo Lat.er (in the Eu-
clidean time r) by increasing the scalar field f the worm-
hole squeezes the vortex to the Planckian size and easily
swallows it. One may say that our wormholes have a
small throat but a very big mouth; they compactify the
charge before absorbing it.

Note that the total action provides the maximum value
of suppression of the violation of global symmetries.
However, as we have already mentioned, this suppres-
sion in fact may be even much weaker, if it is controlled
not by the total action but only by the contribution to
the action from the small vicinity of the wormhole throat
[15, 16].

Indeed, nonperturbative effects are controlled by the
total action only if one can use the dilute gas approxi-
mation and consider contribution of each wormhole sep-
arately. If the wormholes are very compact and their
action is very large, then it is indeed the case. Other-
wise one may consider a possibility that the wormholes
carrying away opposite charges can screen the large-scale
"tails" of each other, and their effective action then will
be determined by the integration &om r = 0 to r, where
2r is a typical distance between the throats of different
wormholes. If r is not much different from the radius
of the wormhole throat B(0), the corresponding action
should be small, and there will be no suppression of the
wormhole-induced global symmetry violation.

To make an estimate of the cutofF radius r, (assum-
ing that we are already in the regime B r) one may
write an approximate condition implying that there are
no wormholes within the distance 2r &om each other:

15 ~

12.5-
10' GeV

p 4
StoteLI {&c) ~ 1

R(o) (83)

10

7. 5

2.5-

2. 5 7.5 12.5
—1n Fp

FIG. 4. Total action as a function of —lnEO = ln ~ +f
~ ln 8 for A = 0.1. The black dots and the line show the
total action with the boundary term at the throat, the grey
ones give the corresponding values for the action without the
boundary term Note that .S&o& &

15 for fo 10 GeV.

Here e ~' ' '(" ~ appears due to the exponential suppres-
sion of the wormhole-like fIuctuations on the scale r„and

4
2a +(p) is our estimate for the subexponential factor.

Using these results and Eq. (83) one can obtain
the value of e '" '(" ~ which should be associated with
the effective coupling constant of the operators violat-
ing global symmetries. In the case we are considering
right now it is a pretty easy problem to solve. Indeed, at
r )) B(0) our wormhole solution enters the regime R = r,
f = ~, and its action at this stage with a very good ac-
curacy is equal to ln &lol [compare with (78)]. Therefore
our condition (83) in this case reads
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4 r 3
2' ' e ""(') = 27t

R(0) R(0)
(84)

D. A more complicated polynomial potential

The next theory on our list has an effective potential

It is clear that this condition cannot be satisfied for
r ) R(0). Thus, r, & R(0) for the wormholes in the
theory 4(f —fo) T.his gives Si q i(r, ) 1, which im-

plies existence of the vertex operators gM&(C + 4') vio-
lating global U(1) symmetry with the unacceptably large
effective coupling constant g e "" '~" ~ 1.

Thus, spontaneous symmetry breaking per se does not
imply any suppression of the wormhole-induced violation
of the global symmetries. One should be warned, how-
ever, that this conclusion was based on a rather crude
estimate of e ~'""~"l using Eq. (83). This equation is
based on the assumption that if one has many worm-
holes at a distance 2r from each other, the action of
each wormhole is (approximately) equal to the action of
a single wormhole solution integrated &om r = 0 up to
r, . Note, however, that the scalar field f at r = r, re-
mains extremely large, f(r, ) Mi )) fo Thus. one
could argue that if space were populated by many worm-
holes displaced at a very small distance from each other,
this would not describe our original situation where the
average amplitude of the radial component is equal to
fo « M~. This argument does not really invalidate the
multiwormhole scenario. The radial part of the field 4
may be quite large in the vicinity of each wormhole, but
the presence of the charge implies that the phase 0 de-
pends on r and can be different for each of the wormholes.
Therefore, even though the value of the field 4 near each
of the wormholes is of the order of M~, the average field
4 in the whole space (after taking the average over Quc-
tuations of 8) can have a very small radial component
f«& M&.

To return to a more solid ground, one should note that
even if one does not want to consider this multiwormhole
picture and decrease the wormhole action by introducing
a cutoff at r = r, one still has a problem. Indeed, in
the theory with spontaneous symmetry breaking, unlike
in the theory without symmetry breaking considered in
[15, 16], the total wormhole action is finite and smat/.
The largest action which we have obtained for the axion
theory with fo 10 GeV is only about 15. This is more
than ten times smaller than the action S 190 which is
necessary to save the axion theory. Therefore we will
study now other, more complicated models, where one
may hope to obtain larger values of S.

Note that if we find the wormholes which have a very
large action S 190 given by the integration in a small
vicinity of the wormhole throat (and we will Bnd such so-
lutions), then our equation (83) will suggest that the cut-
off radius r should be many orders of magnitude greater
than R(0). Therefore in all situations where we will find
a solution to the problem of strong violation of the global
symmetries, the effective coupling constants in our vertex
operators of the type of gi MJ, (e'+4'*) will be determined
by the total wormhole action Sq t ~ rather than by its
small part originated by the integration near the worm-
hole throat. This will eliminate all uncertainties with the
interpretation of the vertex operators and multiwormhole
solutions described above.

V.(f) = M, (f' —3f:f'+2f:),
6M~2

(85)

where fo ~ ~'~'. This potential was suggested to us

by Dine as a useful phenomenological potential for the
axion theory which might follow from supergravity. We
have found the wormhole solution in this theory and per-
formed the calculation of the action. There was practi-
cally no difference in the value of the action as compared
with the action in the theory 4 (f —fo) Aga. in we have
recovered the logarithmic dependence on the value of fo
All figures practically coincide with the ones obtained
in the previous case. The conclusion is that the mild
change of the potential responsible for spontaneous sym-
metry breaking does not change the value of the worm-
hole action and therefore in such theories we have to face
a strong violation of global symmetries.

The reason can be easily understood. In the the-
ory 4 (f —fo) the field f far away from the wormhole
throat behaved as f = —,with b being determined by

4,« —A6 = 1. When the field f decreases as f = —,
the contribution of the term Af to the equation of mo-
tion (70) decreases as fast as the contribution of all other
terins (for f )) fo) If now o. ne has an efFective potential
which depends on f as f, then its contribution to the
equations of motion in the regime f — decreases even
faster than other terms, and the field behaves as in the
theory 4 (f2 —fo)2 in the small A limit.

Thus the existence of the regime f — is a very gen-
eral property of our wormhole solutions. This leads to
the familiar logarithmic dependence of the action on fo
Therefore it is very diKcult to increase the action S by
changing fo However, . as we will see now, one can con-
siderably increase the action if one succeeds to increase
the radius of the wormhole throat R(0).

E. Exponential potential

The third class of potentials includes an exponen-
tial dependence on the radial component of the field
which forces the field to remain close to its minimum
value and not grow so fast as in the previous cases,

Vs(f) = 4e~™~(f —fo) . In terms of our dimen-
sionless variables the potential is

V.(Z) =,'et'~ (S' —S",)- (86)

Our previous calculations have shown that the wormhole
action is small when the theory allows the radial compo-
nent of the field to grow near the throat. By introducing
the exponent to the potential we were hoping to achieve
several different purposes.

(i) We were trying to keep interactions far away from
the wormhole the same as in the usual theory of sponta-
neously broken symmetry. Indeed at small E this poten-
tial coincides with the standard potential 4(E2 —I"o)2.

(ii) When approaching small distances the value of the
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FIG. 8. The total action in the theory with the exponen-
tial potential Vs(f) = —"ep~ 3' (f —f0) as a function of the
exponent P. Black dots give the action with the boundary
term, grey ones give the action without the boundary term at
the wormhole throat.
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i
MI, R (0)

8 ( 2rp

= 1.34M~R (0) . (90)

This expression is consistent with our approximate
quadratic fit (89).

accuracy. However, the behavior of the solutions allows
us to make a plausible assumption. We expect that with
further growth of the exponential factor the field f(r)
will become frozen near fo, and the total wormhole ac-
tion will approach our expression for the action (46) and
(51) for the Giddings-Strominger-Lee wormhole:

arithmic contribution which comes from the region with
B' —1. We have called S the part of the action which
comes &om the region from r = 0 to the radius r at which
R'(r) grows up to 0.9. On dimensional grounds one could
expect that S should be a quadratic function of the size
of the throat. This is indeed the case. The results can
be described rather well by the quadratic expression

S = 0.16 + 85A (0) 0.16 + MI, R (0) . (88)

(Note that 85A = MJ, R for A = O.l.) Five dots cor-
respond to the five values of the exponent P: the largest
action comes from the theory with the largest exponent,
see Fig. 9.

The total wormhole action (which is the main inter-
est for us) also grows as MJ2, R (0), but with a greater
coefficient:

S,~ps)
--5+ 1.7M~R (0) . (89)

~wormhole

10 .

0.05 0.1 0.15 0.2 0.25 0. 3 0.35 +(0)

FIG. 9. The action obtained by integration in the region
near the wormhole throat [where A'(p) = R'(r) ( 0.9j for
diferent values of the exponent P.

Because of the computational difFiculties we have not
performed the calculation for the values of exponent
greater than 500. At P ( 500 the logarithmic terms
which are taken into account in S0 t ~ (but not in S ) also
give a considerable contribution. Therefore the quadratic
6t for Sq t i is much less accurate than the fit for S, and
the coefficient 1.7 in (89) is obtained with a rather limited

V. GLOBAL SYMMETRIES
AND PLANCK SCALE PHYSICS

A. Kaluza-Klein wormholes

As we have seen, it is extremely diKcult to increase the
wormhole action by changing the effective potential of the
scalar field. However, as a result of our investigation we
have learned that in those cases when we were able to
make the action large, the value of the action could be
estimated by a simple expression St & & 1.34R2(0)M&.
Remember also that the action becomes almost three
times larger if one does not include the inner boundary
contribution. This suggests that one can obtain a very
large action if there exists some reason why the worm-
hole throat should be large. Indeed, as we mentioned in
the Introduction, we may not have any problems with
axions if the effective coupling constants of the operators
violating the global symmetry are smaller than e
Equation (88) suggests that this happens if the radius of
the wormhole throat becomes greater than 15M& . We
were unable to make the throat that large by changing
the effective potential of the scalar 6eld, but there exist
other possibilities to do so.

Indeed, we have assumed that our space remains four
dimensional and that gravitational interactions are de-
scribed by the standard Einstein theory at all length
scales. Meanwhile, each of these assumptions may be
wrong.

First of all, according to Kaluza-Klein theories, the
number of dimensions of space-time is much greater than
four, but space-time becomes effectively four dimensional
at R & B, where R is the radius of compacti6cation.
What if R » M& ?' Then our equations should be
considerably modified at B & R, which may lead to the
wormhole throat of a large size R(0) R, .

It is not easy to test our hypothesis in any realistic
theory, but we may play with a toy model. First of all,
at R » B our equations should coincide with our orig-
inal equations (55) and (56). Meanwhile we will assume
that at B (( R space-time becomes ten dimensional,
as in string theory. In this case at B (( R the charge
conservation equation instead of n = 27r f O'R gives
n = i2&, . (We assumed that six dimensions form

~' f'e'a'
C
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a sphere S6 of radius B and area 7t B, and took into
~'R'account that the area of a sphere Ss of radius R is i2 .)

Modified equations (55) and (56) look as follows:

R(r)

9R' f'
B

dV(f)
df

144n B
4f s i's

8~, ( 72n'R" f"5R' —1+ 2 R
i V(f) + ' —

i
=0 . (92)

R'
Note also that the factor 3 in front of R in the Grst of
these equations was replaced by 9, which corresponds to
space time with d = 10.

The idea of a phenomenological description of possi-
ble wormhole solutions in this situation is to solve equa-
tions which a,t R )) R, look like (55) and (56), but at
R (( R, look like (91) and (92). It can be achieved, e.g. ,

24'~' R 6by introducing an interpolating factor (1 + & ')
which changes the nine-dimensional volume, and, corre-
spondingly, the conservation law, n = 27r f O'R (1 +
24'~' R

) s. This equation gives n = 2m f O'R at

B && B, and n = &2R, at B (& B,. After this
C

and some other obvious modiGcations the interpolating
equations can be represented in the following way:

3R'f' 24 i R, dV(f)
R R +R df

12

i
=0. (94)

2 )
We have solved these equations numerically for var-

ious values of B„seeFig. 10. As expected, the ra-
dius of the wormhole throat R(0) was found to be ap-
proximately equal to the compactification radius B . Of
course, our investigation of Kaluza-Klein wormholes can-
not be considered conclusive. Still it indicates that the
global symmetry-breaking problem may disappear in the
theories where the radius of compactiGcation B is suK-
ciently large.

15

10

10 15 20 25

FIG. 10. Behavior of the radius B of the wormhole solu-
tion at small r in our model of a 10-dimensional Kaluza-Klein
theory with difI'erent values of the compacti6cation radius B,.
All quantities are given in the Planck units M& ——1.

(R' —1) = 0 . (96)

This equation on the throat yields

The parameters Hp and Mp are of the same order as
M~, but they can be much smaller than M~ if there are
many matter fields (of spin 0, 1/2, and 1) contributing to
the conformal anomaly. The equation for the scalar Geld

(55) remains unchanged with an account of conformal
anomaly, but the gravitation Geld equation (56) acquires
some new terms. To get an idea of the possible inBuence
of quantum corrections on the structure of wormholes,
let us assume for simplicity that Hp (Q Mp so that the
second term in (95) can be neglected. In this case the
gravitational equation looks as follows:

SvrR' ( n' f")R' —1+ 2 i V(f) +

B. One-loop efFects in quantum gravity

Another possibility is related to the X. corrections
which may appear in the eH'ective Lagrangian or in equa-
tions of motion of the gravitational Geld. The simplest
example is the conformal anomaly, which gives the con-
tribution I, ~ ~H„„+~, ~ ~H~„ to the gravitational

0
equations. Here

~ ~H„„=2 (V'„V'„—g„„V') R+ 27K'R„„—2g„„R.
(95)

HJLGv + +AV 3 ++PV 2 gPV + +PCT + 4 gP V

(97)

In the limit Ho )) M~ an additional term R, ~, (R'2—
0

1)2 does not alter our wormhole solutions. However, for
smaller values of Hp the character of our solution changes
dramatically, see Fig. 11. The throat of the wormhole
becomes considerably wider, and the interval of r where
B' && 1 becomes very small. Finally, this interval disap-
pears altogether, and for Hp 2M~ regular wormhole
solutions with R'(0) = 0 cease to exist. In other words,
even small quantum gravity corrections can lead to ab-
sence of wormhole solutions.
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—~ y(o) ~ ~3P, R (0) ~
(99)
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FIG. 11. Behavior of the radius A(p) of the wormhole
solution at small p in the model taking into account conformal
anomaly. Note that regular wormhole solutions with A'(0) =
0 [i.e. , with R'(0) = 0] disappear for Ho + 2M~, even though
in this regime the coe%cient —

2 in front of the conformal
002

anomaly term is still very small.

For P ( —this equation describes the wormhole solu-~3
tion with P(r) which gradually increases at large r from
its maximal value $(0). However, for P ) ~ this regime~3
becomes impossible. Indeed, in this case P(r) becomes

R 0infinitely large at the point where 2 arccos &,
~ ~

be-
comes equal to 2. At this point derivatives of the scalar
field diverge, and the action becomes infinitely large. The
conclusion of Ref. [6] was that in such a situation there
are no regular wormhole solutions in this theory.

Does it mean that the gravitational eKects cannot
make the field H& p massive in the theory (98)'? We
have already discussed a similar situation in the theory
of a scalar field without symmetry breaking, where the
total action was infinite, and the conclusion was that the
eKects responsible for the global symmetry violation are
suppressed only by the part of the action coming from
a small vicinity of the wormhole throat. Thus one could
argue that the global symmetry violation could occur in
the theory (98) as well, even despite the absence of the
wormhole solutions, if one considers a small part of the
configuration (99) near the wormhole throat.

However, the main reason why this argument could
work for the theory of a scalar field was the existence of
two vastly diferent length scales. The wormhole throat
had a nearly Planckian size M&, whereas the typical
scale on which the scalar field significantly changed was
much greater, of the order of m . Therefore it was
possible to pack many wormhole throats inside the region
of size m . This is not the case for configurations (99).
In the most interesting case of the string theory with
P = 2 the field P(r) becoines infinitely large at the point
where

C. String-inspired models
R(r) = R(0)

cos
= 1.27R(0) . (100)

Sd„.)
—— d'x g —Z+ -' a„'+e~& II' ~

d SK —Kp (98)

Here P is the dilaton field, P is a phenomenological pa-
rameter; P = 2 in string theory. For simplicity we used

here units in which ~ = 1. (Wormhole solutions in a
more general class of theories have been obtained later
by Coule and Maeda [24].) The solution for R(r) in this
theory does not depend on P. It coincides with the cor-
responding solution in the theory (39). However, the
situation with the dilaton field is more complicated. The
solution can be written in the form

We mentioned in Sec. III that the Grst wormhole so-
lution was in fact obtained in the version of the axion
theory where instead of the pseudoscalar axion field one
has the field H„p [6]. In the same paper [6] Giddings
and Strominger have obtained a family of wormhole so-
lutions in the string-inspired. version of the theory of the
Geld H~„p with the efI'ective action

Thus the total size of our Geld configuration almost coin-
cides with the size of its throat. Since each of such con-
Ggurations has infinite action and is not of a wormhole
type, we do not 'expect them to lead to global symmetry
breaking.

This does not necessarily imply that there are no
wormhole solutions in string theory. The model consid-
ered above does not contain any potential V(P). Also, it
is'very hard to associate the value of the dilaton field P,
which is typically assumed to be of the order of M~, with
the parameter fo 10 GeV. Nevertheless, this model
clearly shows that the existence of wormhole solutions
in the axion theory is by no means automatic. In this
model the wormhole solutions disappear as soon as one
considers effects associated with the dilaton field.

VI. TOP OLOG ICAL SUP PRESSION
OF WORMHOLE EFFECTS

IN GRAVITY AND STRING THEORY

All our previous results have been obtained by an in-
vestigation of particular solutions which may or may not
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appear in diferent theories. However, there is one gen-
eral reason which may lead to suppression of wormhole
efFects. These efFects lead to the change of topology of
space by creating a universe capable of carrying a global
charge away IIrom our space. On the classical level such
processes simply cannot occur. Our use of Euclidean
methods to describe such processes still needs to be fully
justiBed. But even if these methods are valid, there is
an easy way to suppress the probability of the wormhole
formation in the Einstein theory.

In order to explain it we remind the reader that the
l

standard Lagrangian ot' the Yang-Mills field in QCD orig-
inally was written as 4,E„„E",but later it was rec-
ognized that one can add to this Lagrangian the term

3z, E~„E". This term does not modify the Yang-Mills
equations, but it gives a contribution to the nonperturba-
tive processes involving change of topology of the Yang-
Mills Beld.

A similar situation occurs in the Einstein theory of

gravity, where the standard Einstein I agrangian —
6

'R

can be supplemented by two difFerent topological terms:

(101)

1 'T7 P 5'Here I~»pg = ze~~~l~i ~~

The last two terms do not give any contribution to
equations of motion. , and therefore do not change the
theory at the classical level. Therefore, just as the term
32,E„E",these two terms can be considered as an in-
tegral part of general relativity. The Brst of these terms is
very similar in its nature to the term 32,E„E"".It con-
tributes to the efFective potential determining the value
of the axion Beld. Fortunately, it is not expected to lead

to any problems with strong CP violation. The eAects
induced by this term are related not to the wormhole
physics, but to the Abelian Eguchi-Hanson instantons,
and typically they are exponentially small, being sup-

4n
pressed by e " where e is the electromagnetic coupling
constant [30].

Meanwhile, the Gauss-Bonnet term

32 Rp p$ 'R gives a nonvanishing topological
contribution to the wormhole action:

~topol =
32%2

d x~g "R 'R"" = — f d ~(R R""" —4W. R" +R') (102)

Therefore it may control the strength of the global symmetry breaking.
This term was considered in the early works on wormholes [6]. The constant p was called there a topological

coupling constant. Just as the 0 parameter, the value of this constant in gravitational theory is not determined a

p pro px.

It is useful to remind the reader that the reason why the effects of the Yang-Mills instantons are suppressed by the
8 sr

factor e ~ . The semiclassical Yang-Mills action 4, E gE is not topological. Therefore the variation of this action

produces equations of motion which have instanton solutions. The semiclassical action calculated on these solutions
is known to suppress the instantons E„„=&&& pgEpg as

(103)

where v is the winding number of the gauge conBguration.
In gravity things seem to work di8'erently, but the results are very similar. It is the Einstein action with matter

which gives us the equations of motions. Those equations have wormhole solutions. For the Euclidean wormhole

geometry (41) with the wormhole radius B(r) the topological (Gauss-Bonnet) contribution to the action is given by
the integral

S o = — d ~ (7Z„„7Z"" —4'R 'R"" 'R ) = d
4vr2 B3 r (104)

S, p i = — drB"(r)[1 —R' (r)] .Dpo (105)

After the angular integration the integral becomes Keeping in mind that the Gauss-Bonnet part can be
brought to a form where it is a total derivative, we can
rewrite this integral as
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S, p i = — dr —[R'(r) —siR' (r)]
p r

= —[R'(r) —sR"(r)]- - =&. (lo6)

ous but perhaps still rather plausible. First of all, since
we study spherically symmetric configurations, we sup-
pose that o.' depends only on r and does not depend on
the angular variables. The integral becomes

I

Z.„;„sr— I.sI' (X„„~gX"""'—
16+2
—4R„„'R""+R) (lo7)

Here o.' is a function of the fundamental dilaton field p

4K
2

gp

8'
(108)

Our normalization corresponds to the standard normal-
ization of the Yang-Mills Lagrangian,

FgF = FgF
16K2 4g2

(lo9)

—rc~(a)
and we consider

go

constant
What follows is a direct generalization of our purely

gravitational calculation. The only difference is the pres-
ence of the function n'(x). Unfortunately, we do not
know much about the dependence of a' on x, which
makes the results which we are going to obtain less rigor-

In performing this calculation we did not use any par-
ticular form of the wormhole solution; we have used only
the fact that R'(0) = 0 and R'(oo) = 1. Thus, indepen-
dently of any suppression calculated in the previous sec-
tions of this paper, there exists an additional exponential
suppression of the wormhole-related effects in quantum
gravity by the factor e ~. This agrees with the result
obtained in [6].

It is important that this additional suppression is
equally related to the total probability of the wormhole
formation and to the values of the vertex operators. In-
deed, for all wormhole solutions which are known to us
the derivative R'(r) approaches its asymptotic regime
R'(r) = 1 at r comparable with the radius of the worm-
hole throat. Thus, the integral in Eq. (106) rapidly con-
verges to p in the vicinity of the wormhole throat. It
means that all vertex operators become suppressed by
the factor e

Note that the value of parameter p is arbitrary; it does
not change any experimentally tested predictions of gen-
eral relativity. If one takes p ) 190, all our problems
with axions in quantum gravity immediately disappear.
One may or may not like having a large parameter p in
gravitational theory, but it is certainly not forbidden, and
it solves the problexn of the global symmetry breaking.

Still it would be nice to find some reasons why this
parameter should be large. One of the ideas is to consider
string theory and to study an analogous topological term
there.

In string theory it is considered plausible that the
Gauss-Bonnet term appears at the level of n' corrections
in a specific form since it is related to the Green-Schwarz
mechanism of cancellation of anomalies. One expects
that this part of stringy corrections has the form [4]

87r
Stopol =

gstr
(112)

Note that this is a topological contribution to the action,
which practically does not depend on the detailed form of
the wormhole solutions (this dependence is concentrated
in our definition of g = g,q, ).

This part of the action is a precise analogue of the one-
instanton action, in the Yang-Mills case. This leads
to an additional suppression of the wormhole-induced ef-
fects by the factor

8m
top&1 e g—S

We would like to stress that whereas in the Yang-Mills
theory the suppression of the instanton efFects comes
&om the semiclassical action, the suppression of the
wormhole effects described above did not come &om the
action of Einstein gravity with matter but &om the topo-
logical term in the action which in string theory appears
at the level of n' corrections. Thus, the term St p ] —

Qopo g
appears here in addition to the usual wormhole action.

Sg p i = 12vr dr R"(r) [1 —R'2(r)]. (110)
0

As we have seen in the previous sections, on a sufBciently
large distance r &om the wormhole throat the wormhole
geometry becomes undistinguishable from the geometry
of a fiat Euclidean space because its scale factor R(r) be-
coines almost exactly equal to r, and its derivative R'(r)
rapidly approaches 1. Typically it happens at the dis-
tance of the same order of magnitude as R(0); precise
value of r will not be particularly important for us. It
is important, however, that at a suKciently large r ) r
the term [1 —R'2(r)] in the integral (110) becomes very
small, which implies that the total value of the integral is
dominated by integration in a region r ( r . Note also,
that on all our solutions we had [1 —R' (r)] ) 0 and
R" ) 0. Therefore one can represent the integral (110)
in the following way:

PQp 1
S~~~~i --12' dr

2
R"(r)(1 —[R' (r)])

0 g r
12~ drR" (r) [1 —R' (r)],
g p

where g is some average value of the gauge coupling
constant in the region 0 ( r ( r defined by Eq. (111).
Since we expect r to be of the same order of magni-
tude as R(0), and R(0) should be determined by typical
stringy length scale [just as the natural scale for R(0) in
the Einstein theory was given by M& ], we will identify
g with the typical value of the gauge coupling constant
g,t, on the stringy scale. The subsequent evaluation of
the integral in (111) goes exactly as in (106), because
B' 1 on the boundary r = r . This gives
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Let us estimate the numerical value of St ~ i in the re-
alistic theories. We do not really know the value of the
e8'ective coupling constant g,«on the wormhole throat
(i.e. , approximately on the stringy scale). The simplest
idea would be to identify g,~, with the gauge coupling
constant related to the grand unification in supersym-

2

metric grand unified theories (GUT's), n
„

[31]. This would give St & i ~ 163. Thus, the topo-
logical suppression alone can be strong enough to elim-

inate the eKects of the rank-five operators g5
I@I'(@+@' )

M~
(Remember that the coupling constant gs for fo 10
GeV should be smaller than 10 ~ e [14].) To get
the factor e required to suppress the most danger-
ous term giM&s(4+ e'*) we need a slightly smaller gauge
coupling constant:

2gs«(
4' - 30

(114)

8 2
Note that the factor, is completely analogous to

gstr
the topological coupling constant p which we discussed
in the case of pure gravity. In that case p could take
any possible value, and it was not quite clear whether it
is natural or not to take it as large as 190. In the case
of the string theory the condition p ) 190 corresponds

to a very natural constraint 4 3O This requirement
seems quite reasonable since the effective gauge coupling

constant 4"T 26 can slightly decrease on the way from
the GUT scale 2 x 10 GeV to the stringy scale, which is
much higher. Moreover, one can solve all problems even

with 4" 26 if in addition to the topological action
(110) one takes into account the standard contribution
to the action S which we studied in previous sections.

It is very hard to discuss these issues in the absence of
a well-established string-inspired phenomenological the-
ory. Nevertheless we will try to make some simple esti-
mates. With this purpose we should remember the re-
lation between the stringy gauge coupling constant g,t„
the stringy mass scale M,q, (i.e. , the mass of the first
massive stringy excitation), the stringy length scale l,q,
(compactification radius), and the parameter n' in the
heterotic string theory [31,32):

Here n' is the effective value of the parameter o.' on the
scale of the wormhole throat. Therefore the topological

2action, can also be written as
gstr

8~ m, , ~, , (Mi l2 2

!S,opoi =
~

= —n'Mi, ———Mi,l„,= vr!g~„4 4 ' ' (M t )
(116)

Let us first concentrate on the expression St ~ i
2

Uncertainty in the value of g,« translatesstr
into the uncertainty of M,«. If one simply takes M,«

- one obtains M,«1.66 x 10 GeV, which then

leads to the estimate for the stringy unification scale
E,«4 x 10 GeV. However, this implies the exis-
tence of a large gap between the stringy unification scale
and the supersymmetric (SUSY) GUT unification scale
2 x 10 GeV. Therefore there is a tendency to assume
that for some reason the stringy scale is in fact consider-
ably smaller than M,t, 1.66x 10 GeV [31]. In order to
obtain a sufFiciently strong suppression due to topological
efFects it would be enough to have M,«& 1.5 x 10' GeV,
which is quite consistent with the present ideas about the
value of M,«.

Moreover, this constraint on M, t, can be somewhat re-
laxed and reduced to M,«+ 2 x 10 GeV if one takes
into account the standard (nontopological) contribution
to the wormhole action. Indeed, as we have seen, the
usual contribution to the GSL wormhole action can be
represented as 1.34M&B(0)~ (90). This result was quite
consistent with our results for the theory with the expo-
nential potential and with simple dimensional estimates
suggesting that the action of the wormhole with the ra-
dius of the wormhole throat B(0) should be of the order
M&~B(0) . Note that the topological contribution also
has the same structure (although with a slightly smaller
coefBcient), St p i = 4M&~t, t, . If the wormhole solutions
exist at all in the string theory, one may expect that
the wormhole throat R(0) should be greater than the
"elementary length scale" l,t, . This suggests that the
nontopological part of the action M&A(0) should be
greater than M&l, t, . If this is correct, the total action of
the wormholes, including the topological part, should be
about two times greater than the topological contribu-
tion. In fact, if one simply adds to the topological action
4M&~l~t, the GSL action 1.34M&~B(0) for B(0) I„„
the value of the topological action almost triples. In such
a situation one can expect that the total action should be-

2

come greater than 400 even if one takes 4" ~4"T

This is more than sufBcient to solve the problem of the
global symmetry violation. One would get the total ac-
tion S ) 190 for 4" & zz, which looks like a very safe
bet.

Thus, instead of the absolutely incredible fine-tuning
of the values of possible coupling constants of the inter-
action terms breaking the global symmetry in the axion
theory, our estimates gave us rather mild constraints on
the gauge coupling constant and on the stringy mass scale
M,«. This provides a natural possibility to make stringy
gravity compatible with the existence of the light axion
in nature.

VII. DISCUSSION

One of the main obstacles in the way of development of
quantum gravity is the problem of experimental verifica-
tion of its predictions. Indeed, gravitational interactions
between elementary particles become strong only at en-
ergies comparable to the Planck mass M~ —1.2 x 10 9

GeV. Such energies are far beyond our reach.
Fortunately, there exist some indirect ways to test

quantum gravity experimentally. For example, it is quite
possible that a consistent theory of gravity requires su-
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persymmetry. Then one may study difFerent versions of
the theory by investigation of the properties of light su-
perpartners of the graviton. Another possibility is related
to cosmology, which provides us with experimental data
originated at the very early stages of the evolution of the
Universe.

In addition to that, there may exist some nonpertur-
bative gravitational effects which may have important
experimentally testable consequences even at very low
energies. Some of these effects have been investigated
in this paper. We have found, under the assumptions
specified in this paper, that gravitational effects strongly
violate global symmetries in a wide class of theories, in-
cluding the theory of axions. Surprisingly enough, this
strong violation occurs even if one drastically modifies
the effective potential of the theory, for example, if one

multiplies it by exp M, where the factor C can be as

big as 10 .
Of course, it is quite possible that our methods based

upon the Euclidean approach to quantum gravity are in-
adequate. However, we must admit that when we began
our investigation we expected that it would be very easy
to fix this problem either by using a formulation where
the global symmetries become local, or by finding a sim-
ple modification of the theory which leads to wormholes
with a very large action. We found that it is almost im-
possible to do so in the context of the standard Einstein
theory in four-dimensional space.

However, as soon as we allowed ourselves to modify
the theory of gravity or the properties of space at the
scale about 10M& we found many different possibilities
to improve the situation. One of them is the possibility
that our space is compactified, with a compactification
radius r & 10M& . We have seen also that wormholes
may simply disappear if one takes into account conformal
anomaly, or if one considers certain string-inspired axion
models. In addition to all these effects we found that in
string theory there exists a specific strong suppression of

Sm

topology change by the factor e "« = e ~~ t. ~ . This is
a topological effect which does not depend on many par-
ticular details of wormhole configurations. Our estimates
show that with an account taken of topological terms, the
effects related to the global symmetry breaking become
strongly suppressed if the string mass scale is sufficiently
small, M,&, & 2 x 10 GeV. Equivalently, the problem of
the wormhole-induced global symmetry breaking disap-
pears if the gauge coupling constant is sufficiently small

2

on the stringy scale of energies, 4" z5. These values
of parameters are quite consistent with the existing pic-
ture of stringy phenomenology. Therefore at present we
do not see any reason to reject the theories with global
symmetries.

On the other hand, we have found that the existence
of (approximate) global symmetries and the possibility
to solve the strong CP violation problem by the Peccei-
Quinn mechanism are very sensitive to the choice of the
theory of quantum gravity. If the axions in the mass
range of m 10 eV will be discovered experimen-
tally [33], it may give us important information about

the structure of space and properties of particle interac-
tions at the Planckian scale.
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APPENDIX: NUMERICAL METHODS
OF FINDING WORMHOLE SOLUTIONS

Finding the wormhole solutions numerically was a
rather complicated problem. We found that the behavior
of the solutions was extremely sensitive to the choice of
initial conditions. Whereas it was relatively easy to find
solutions with small action S, in the most interesting
cases where the action was large the standard numerical
methods failed. Therefore it was necessary to develop a
more advanced method of calculation. There is a chance
that our method can be useful for solving other problems
as well. Therefore in this appendix we will first describe
the standard numerical methods of obtaining solutions
to the differential equations (73) and (74) and then we
will describe our method.

Standard shooting method

The first method we try is the standard shooting
method [25]. We fix some value for E(0). Then we find

A(0) using (58). This involves solving a cubic equation
for A'(0):

A (0) —A (0) V[E(0)] — , = 0 .

If there are no roots, then Eqs. (73) and (74) do not have
a solution for the fixed value of F(0). Equation (Al) has
at most two roots. We find that the bigger root does
not lead to a solution satisfying boundary conditions at
infinity. Hence we pick the smallest root.

Once we have the initial conditions we use any nu-
merical ordinary differential equation solver (for exam-
ple, Runge-Kutta method). According to the behavior
of the solution at infinity we modify our guess of E(0).
Using a simple iterative procedure we can determine the
correct value for E(0).

First we have used the Runge-Kutta method to obtain
the numerical solution once the initial conditions (bound-
ary conditions at x = 0) are set. However, for solutions
with large action, the solution has to be computed to
a very high accuracy. We have found that the Runge-
Kutta method does not work for actions above 6. The
Bulirsch-Stoer method, which we used next, works for
actions below 10. As a result, simple shooting method is
inadequate for our purposes. The reason it does not work
is that E(0) has to be determined to a very high accu-
racy, otherwise the numerical solution will not come close
to the boundary conditions at infinity (at 2: —+ ). On a



934 KALLOSH, LINDE, LINDE, AND SUSSKIND 52

computer, F(0) can be determined only to machine pre-
cision. The difFerence between F(0) rounded to machine
precision and the correct E(0) causes an exponentially
large deviation between the numerical solution and the
correct solution for large x, hence making the standard
shooting method fail.

Improved shooting method

With the standard shooting method we cannot get a
numerical solution to closely approximate the correct so-
lution for the wormholes with large action. The idea
of an alternative method is to sacrifice the correctness
of the numerical solution at some x, and use the gained
freedom to make it closer to the correct solution. The dis-
advantage is that the resulting numerical solution does
not satisfy the differential equation at all points. The
advantage is that it is close to the correct solution.

We solve the differential equation in several stages.
The first stage uses the standard shooting method with
the Bulirsch-Stoer method as the ordinary differential
equation solver. After F(0) has been determined within
machine precision, the first stage is completed. Ev-
ery time a solution is generated with the Bulirsch-Stoer
method, the program remembers at which x the solu-
tion rapidly veered up or down so that it is clear it will
not satisfy the boundary conditions at infinity. Once the
stage is completed, the program recalls solutions E„p(x)
and Fg „(x)which are the curves which have passed
next to the correct solution for the longest time. E„p(x)
has passed above the correct solution (so it veered up)
and Fg „(x)passed below the correct solution.

The program finds the maximum x for which the
two solutions are still very close to each other:
[F„~(z)—F~~~„(z)[( e. Let this point be x . Then
we have found a good approximation to the correct solu-

tion up to x = x . The second stage is to try to find an
approximation to the solution for x & x . For the sec-
ond stage, and all further stages, the initial conditions
are different from the ones at the first stage. As in the
case of the first stage, we are &ee to choose E(x ) with
the restriction E„p(x ) & F(x ) ) Eg „(x). Notice
that by choosing F(x ) we introduce a point in the nu-
merical solution which does not satisfy the differential
equation. The error introduced is very small, though,
since F„~(z ) is very close to Fg „(x).

We also need to know A(x ). We find it by linear inter-
polation between A„~(z ) and A~ „(x) once F(x ) is
set. In the same way we determine F'(x ). As already
mentioned, the jump in F(x), A(z), E'(x) at x = x is
small and can be made as small as we like by reduc-
ing the parameter e. During the second stage F(x )
is determined to machine precision by the same itera-
tive technique used in the first stage to determine F(0).
Then we proceed to the third stage, and so on, until we
reach x & after which the solution is nearly constant:

0

E(z) - Fp, x + oo.
The method described above can be interpreted in a

way similar to the interpretation of the standard shoot-
ing method. We aim and shoot for the boundary condi-
tions at infinity. Having missed several times, we follow
the trajectory the best arrows followed and approach the
target a little closer. Then we shoot from the new posi-
tion. After finally hitting the target we present the set
of trajectories of different arrows as one nearly correct
trajectory which a single arrow could have followed all
the way from the initial position to the target. Being a
bad shot, we would not have been able to shoot the ar-
row to follow the correct trajectory all the way from the
boundary at x = 0 to the boundary at infinity. However,
using the method described above we can find a good
approximation to the correct arrow trajectory.
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