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We consider a scalar-metric gauge theory of gravity with an independent metric, connection, and
dilation. The role of the dilaton is to provide the scale of all masses, via its vacuum expectation
value. In this theory, we study the renormalization-group flow of the dilaton potential, taking into
account threshold effects at the Planck scale. Because of the running of the VEV of the dilaton
all particles that would naively seem to have masses larger than Planck’s mass may actually not
propagate. This could solve the problem of unitarity in these theories.

PACS number(s): 04.50.+h, 11.10.Hi

I. INTRODUCTION

The general ideas that go under the name of “effective
field theory” are playing an increasingly important role
in elementary particle physics. The variety of physical
phenomena is divided into energy ranges, whose bound-
aries usually coincide with the masses of various parti-
cles. In each range one has an effective field theory. Very
often the theories describing neighboring energy ranges
are of the same type, the only difference being that one
particle which is present in the higher energy range has
been “integrated out” in the lower energy range. In other
cases, however, the description of the physics in one en-
ergy range is quite different from that in the next energy
range. It is clearly desirable to relate all these descrip-
tions, but this has not always been possible so far.

It is widely believed that Einstein’s general relativity
is also an effective theory, valid for energies lower than
Planck’s energy [1,2]. This does not mean that it can
only be treated classically; it only means that any quan-
tum calculation in Einstein’s theory will have a natural
cutoff at the Planck scale. From this point of view, the
nonrenormalizability of Einstein’s theory is not a prob-
lem.

Just below Planck’s energy corrections due to higher
derivative terms are expected to appear. The most gen-
eral action with at most four derivatives is

1
S(guu) = / d4a:1/ detg |:A + TE;@R + alR“WwRuupa

+azR ,,R“u + a3R2 5 1.1
"
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where R,,”, denotes the curvature tensor constructed
with the metric g,,. As emphasized in [1] the gravi-
tational action (1.1) can be treated as a quantum field
theory using the rules of “chiral perturbation theory,”
which were devised in the context of a theory of mesons
[3]. If regarded as “fundamental,” the theory (1.1) is
renormalizable [4,5], but another problem appears: the
terms quadratic in curvature contain higher derivatives
of the metric and therefore violate unitarity. Again, this
is not a problem in the “effective theory” picture: the
ghosts have masses of the order of Planck’s mass, and
therefore will never be excited if one remains at lower
energies. At energies exceeding the Planck energy, some
“new physics” is expected to appear.

As mentioned above, there is no compelling reason to
believe that the theory describing the physics above the
Planck energy will be of the same type of the theory
(1.1): it may be described by a completely different set
of degrees of freedom. Nevertheless, in this paper we will
conservatively assume that the “new physics” can still be
described by a field theory. Motivated by the success of
the gauge principle in explaining all other known forces
of nature we consider a gauge theory of gravity, with in-
dependent metric and connection. We will assume that
the action is at most quadratic in curvature and torsion.
These theories have a long history [6]; from a particle
physicist’s point of view their most attractive feature is
perhaps that they present a gravitational analogue of the
Higgs phenomenon [7]: the vierbein behaves like a Higgs
field and when it acquires a nonvanishing, constant, vac-
uum expectation value (VEV), its kinetic term (torsion
squared) becomes a mass term for the connection. The
mass is obviously of the order of Planck’s mass, so below
Planck’s energy the connection degrees of freedom cannot
be excited. Yet the connection itself does not vanish: it
becomes the Levi-Civita connection, whose components
in a coordinate frame are the Christoffel symbols. In this
way the theory we will consider gives rise naturally to the
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action (1.1) as an effective theory below the Planck scale.
The descriptions of physics above and below Planck’s en-
ergy are easy to relate in this case. The occurrence of the
Higgs phenomenon is often related to unification, and in-
deed the theory can be generalized so as to unify gravity
with all other interactions [assuming that these are al-
ready put together in grand unified theory (GUT)]. The
vierbein then appears as the order parameter that breaks
the symmetry between gravity and the rest [7]. This is a
true unification, in the sense in which the word is used in
particle physics, and does not require higher dimensional
spacetimes.

The problem with these gauge theories of gravity is
that there seems to be not one of them which is at the
same time unitary and renormalizable. This is the same
dilemma that one faces in (1.1): without the higher
derivative terms the theory is not renormalizable, and
with them it is not unitary. However, this time the prob-
lem cannot be avoided because we are not aware of any
higher mass scale which might act as a cutoff and allow
these theories to be regarded as effective field theories.
Any theory that purports to describe physics above the
Planck scale had better be consistent on its own.

Our point of view is that we do not know enough about
these theories to draw any conclusion. The reason is, ob-
viously, that they are very complicated. In the general
case we only have a tree-level analysis of their propaga-
tors [8]. A more rigorous study of the spectrum would be
desirable, but for the moment this has been done only for
Einstein’s theory [9]. It is quite possible that the quan-
tum propagators are very different from what they seem
to be at the tree level. For example, some degrees of
freedom may be confined. To the best of our knowledge,
no one has performed any quantum calculation so far.

Since the ghosts and/or tachyons would have masses
of the order of Planck’s mass, the issue of unitarity could
be resolved in a rather drastic way if particles with such
masses were forbidden to propagate. In this paper we
elaborate on our earlier proposal for a mechanism in
which this could happen. There are two main ingre-
dients in this proposal: the dilaton, and the renormal-
ization group. The dilaton is a scalar field, coupled to
the metric, connection and to other matter fields in such
a way that all masses are equal to its VEV, multiplied

by some dimensionless coupling constant. This field is
closely associated to the (quantum-mechanical) breaking
of Weyl invariance in a manner which has been discussed
in detail in [10,11] and is reviewed in Appendix A. In
the present work, we compute the renormalization-group
flow of the dilaton potential. In particular, we are inter-
ested in the running of the VEV of the dilaton, since this
gives the dominant contribution to the running of the
masses. (Dimensionless coupling constants are expected
to run only logarithmically.) The tentative conclusion of
our analysis will be that the position of the pole of a par-
ticle with mass comparable or larger than Planck’s mass
can be shifted to exponentially large energies. The sole
remnant at lower energy would be the graviton. (In the
generalized gauge theory of gravity alluded to above, one
would also have an unbroken GUT sector.)

This paper will be organized as follows. In Sec. II, we
will describe in detail the gauge theory of gravity that
we are going to consider. In Sec. III, we discuss the lin-
earization of the theory around flat space and define the
effective potential for the dilaton. In Sec. IV we define
the average effective potential. In Sec. V we write the
renormalization-group equations for the average effective
potential and study their solutions. In Sec. VI we draw
our conclusions.

II. LAGRANGIANS

We consider a theory of gravity with an independent
metric g,,, connection I'y#,, and dilaton p. The connec-
tion is required to be the metric

a)\guu - F/\Tug’rv - F,\Tugp,‘r =0, (21)

but can have a nonvanishing torsion Th*, = ' \#, -, *,.
The curvature of the connection will be denoted

R;u/pa = 8prupa - aurupa + Fuprrufa - Fup‘rrura' .

It is antisymmetric in u, v, and using (2.1) one can show
that R, a8 = gapRu, s is also antisymmetric in o, 8. It
has no other symmetry property.

The most general diffeomorphism invariant action
which is at most quadratic in the derivatives of the fields
is

S(g,T,p) = /d"x\/det g[%boaupa“p + 2b1p8,pT* + V (p) + gop*R + a10* Ty THP + a2 Ty ) THP + azp*T*T,

+91RuupaR}“’pU + gZRuupaR”pua + g3Rqua'Rpa"u + g4R‘“IR#V + gSR/AuRu“ + gGRz] ’

where R, = R,,”,, R = g""R,,, and T, = T,,*,,. In-
dices are raised and lowered with g. The couplings of
the dilaton can be understood as due to the quantum-
mechanical breaking of Weyl symmetry in a classically
Weyl invariant theory. This point is discussed in Ap-
pendix A, but is not necessary for what follows.

There are some special choices of coefficients that
should be pointed out since they will be useful later. The
first of these can be expressed by the identity

(2.2)

r

76;71'2 d*z+/det g[Ryy p0 R**” — 4R,,, R** + R?]
= ! /d4x—1—e°‘5”’55‘“’”"R R =
12872 Jdetg apuvitybps = X
(2.3)
(e*23* = 1) which is an integral representation of the

Euler invariant x. With this choice of action, the theory
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is topological. Another useful identity is

R = R(9) + 1TpoT*P + 3Ty, TH?

-T°T, + 2V, T* , (2.4)
where R(g) denotes the Ricci scalar of the metric g, and
V. is the covariant derivative with respect to the Levi-
Civita connection. Using this formula one can replace R
by R(g) in (2.2) at the cost of redefining the constants a;
and b;. In particular, if we choose the only nonzero coef-
ficients to be bo, go, a1 = —3go, az = —1go, as = go, and
b1 = 2go, (2.2) becomes the action for a nonminimally

GrrePPor® = Symm{g,g#*g"7 g*7 g%
+9°#97"(949"" 9°° + 959°* 9°° + 969"P9°°)} ,

Huaupﬁa — symm{gpp(algaﬁ ve | azgaa Bv + asgaugﬁa)}

The prefix “Symm” indicates that one has to take the
proper combinations so that G is antisymmetric in (g, v),
(p,0), (a,8), (7v,0) and symmetric under the simultane-
ous interchange of pvaf and po+vyd and similarly H is
antisymmetric in (u,v), (p, o) and symmetric under the
simultaneous interchange of pav and pQo.

The other way of writing the action is based on the
decomposition of the torsion and curvature tensors into
irreducible parts with respect to the Lorentz group. This
is discussed in Appendix B.

III. LINEARIZATION

In this section we set up the formalism for computing,
at one loop, the Euclidean effective action Seg(g,T,p).
We will not ultimately do the calculation (this was done,
for example, in [11]), but what we describe here is a pre-
liminary material for the definition of the average effec-
tive action, that will be given in the next section. We
will restrict ourselves to a flat background

=0, p=const. (3.1)

In this case we can write Seg(g,T,p) = [d*zVes(p),
where Vg is the effective potential for the dilaton. The
first step in this calculation is to linearize the action
around the background (3.1). We define the fluctuation
fields 6I'z*,, 6gu., and 6p = o as the deviations of T,
g, and p from their background values (3.1). In principle
there is a total of 6441041 fields. However, the condition
(2.1) implies that

Guv = 6uv7 F/\#u

3,\5g,“, - 5]-—‘/\;41/ - 5FAV;1. =0. (32)

(From now on indices are raised and lowered with §,,.)
These are 40 constraints, reducing the number of inde-
pendent fields to 35.

We define way, = 0T, and @, =

1p6gu,. The

coupled scalar field:

/d4a:\/det 9(3b00,.p8"p + goR(9)p?] . (2.5)
For p=const, this is Einstein’s action.

Finally, we mention two alternative ways of writing
the torsion squared and curvature squared terms. In dis-
cussing the linearized theory it is useful to write them in
the more compact form

GﬂyaﬁpawaanaﬁRpavé + PzHﬂaupﬂaTuavaﬁo ) (2.6)
where
+ 920"*9"* g°° g"° + gag"*g* 9> g"°
(2.7a)
(2.7b)

rescaling of dg,, is convenient for dimensional reasons:
with this definition all the fluctuations have dimension
of mass. This redefinition is legitimate here since we are
assuming p to be constant; it is related to the choice of
functional measure in the path integral. We will see later
that it does not have any effect on the renormalization-
group equations. After having written out the linearized

. action in terms of 0I', g, and o, one can use (3.2)

to eliminate the symmetric part of éI' in favor of ¢:
0T x(uv) = (1/p)Orpur- At this point the linearized Eu-
clidean action is a quadratic form which can be written,
after Fourier transforming (we use 8, — ig,),

5P (p,w,;p)

— 3 [ 243 #4(0) - Opuzy - #5(-0) . (33
A,B

where the indices A, B label the three types of fields
P; = w, P2 = @, and P3 = o and the centered dots stand
for contraction over the tensor indices. When written out
explicitly in terms of the components of the fields, O is a
35 x 35 matrix. The components of this matrix are listed
below:

O[ww]yaﬂp’ys = 8Gpuaﬁp6769u%7 + 8Huaﬁp16p2
+2000%8) (5au8® — 628%) ,  (3.4a)
O[<pw]aup76 = _SipHUQuP‘Y(sQU
+2igop(8aud®®q” — 656507 + 65,677qa)
(3.4b)
o P = 8H,,""P° v 80, 0P — 2626°
leplap = Sllua 9v90 + p—z( ap 80) s

(3.4c)
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Olr)™® = 2ip(by — 290)677¢° , (3.4d)
1dv _,
Olog™ = 2b1(8*"¢* — ¢#¢") + ;d_p&M s (3.4e)
a?v
— 2
O[UG] = b()q + ?p—z— . (34f)

For the purpose of clarity we have not indicated explicitly
symmetrizations and antisymmetrizations on the right-
hand side (RHS) [for example, (3.4b) should be sym-
metrized in o, g and antisymmetrized in v, 6]. When
V = 0, this linearized action is invariant under linearized
gauge transformations. Let z'* = z* — v* be an in-
finitesimal coordinate transformation. The variations of
the fields are

JFAMV = akauvuy 69;“/ = ayvu + au’u;u 6,0 =0. (35)
There follows that the fields

1 7
Wipr = EqA(QuUV - q:/')u)v Puv = §p(quvu + quvu) )

o=0 (3.6)
are null vectors for the operator @. This can be verified
by explicit calculations. To make O invertible, we add to
the linearized action the gauge-fixing term

1
Sep = & / d420,0" ¢, . (3.7)
2c
The ghost contribution has the form
- 1 -
Sepout(d,d) = 5 [ 98O, ", (38)
where, d,d, are anticommuting ghost fields and
Oldd]”" = %p(&zqz + qﬂqu) . (3.9)

Apart from the overall factor p, which can be eliminated
by a redefinition of the measure and is irrelevant, this
operator is field independent. It can be neglected in what
follows.

To compute the one-loop effective action one now needs
to calculate the functional determinant of the operator O
appearing in the previous formulas. The determinant of
O on the 35-dimensional space spanned by the fields is
very hard to compute as it stands. One can partially di-
agonalize these operators in blocks corresponding to spin
and parity. This is because O is a Lorentz covariant wave
operator and therefore does not mix fields with different
spin and parity. There are two modes with spin-parity
2%, coming from w and ¢, one 2~ mode from w, two 17
modes coming from w, three 1~ modes, two from w and
one from ¢, four 0% of which one comes from w, two from
o and one from o, and finally one 0~ mode from w. One
counts indeed

2x54+1x54+2%x34+3x3+4%x1+1%x1=35.

The total linearized quadratic action, including the
gauge-fixing, ghost, and potential terms, can be rewritten
as

ij

5@ = 3 [ dteva(=a) B (IP)\PLEI7) - @5(a)
(3.10)

where P;}B (JP) are spin projection operators [12,8,10]
that we list in Appendix C, and af;?(J7) are coefficient
matrices, representing the inverse propagators of each set
of fields with definite spin and parity. For V = 0 these
matrices are given by

G1¢? + B1p® —iV/2B|q|
a 2+ — ’lq lp 1 q p R 3.11a
@) = [ e e (3.11a)
a(27) = G2¢* + B1p? , (3.11b)
[ G3q% + B3p? —+/2B4p?
+\ 3q 3p 4p
a(1%) = —V2Bap? Bsp? ) (3.11¢)
[ Gag? + Bep® V2B7p? iv/2Bqlqlp
a(17) = V2B7p? Bgp? iBslq|p )
| —iv2Brlqlp —iBs|qlp  Bsq?
(3.11d)
a(0™h)
Gsq® + Bop®> —iV2Bo|qlp 0 —iv/6B11|q|p
iV2By|qlp Biog? 0 +/3Bi2¢?
0 0 0 0
iv6Bi1|qlp V3B12¢®2 0 Bog?
(3.11e)
a(0”) = Geq® + Bisp® , (3.11f)

where

Gy = 4g; + 292 + 443,
+94 + 95,

G2 = 491 + g2,

Gs =491 — 493 +9ga— g5, Br=az—go,

G4 =491 + g2 + 294, Bg = 2a1 + a2 + a3,

Gs = 4g1 + 292 + 4gs, Bg = 2a; + a3z + 3a3z — 290 ,
+4g4 + 4g57

Ge = 491 — 292,
Bi = 2a1, + a3z + go,

B5 = 4a1 —2(12 )

Beg = 2a1 + a3 + 2a3 — go ,

Bio = 4a1 + 2a3 + 6as ,
By, = b1 — 2g0 ,

B; = 4a; + 2as3, By = 2by
B3 = 6a; — 5az — go, By3z = 8a; — 8az — 290 ,
B4 = 2a;, — 3az — go, By = bo -

(3.12)
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We observe that if we did not redefine the fluctuation of
the metric and worked with dg, the only effect on the
coefficient matrices would be to multiply by p/2 the sec-
ond row and column of a(2%), the third row and column
of a(17) and the second and third rows and column of
a(0™). This would change the determinants of these ma-
trices by an overall power of p?, which, as we shall see,
does not affect the renormalization-group equations.

There are a few checks that one can make on these
matrices. First we observe that the matrices a(17) and
a(0%") are degenerate. The proportionality of the last two
rows and columns of a(17) and the vanishing of the third
row and column of a(0") are direct consequences of the
diffeomorphism invariance.

If we take the only nonzero coefficients to be g3,
gs = —4g3, ge¢ = gs, corresponding to the action (2.3),
the coefficient matrices are identically zero; this is be-
cause the corresponding action is a topological invariant
(actually zero, since we expand around flat space). If we
take the only nonzero coefficients to be go, a; = —%go,
as = —%go, as = go, bo, and by = 2gq, corresponding to
the Lagrangian (2.5), the coefficient matrices reduce to

0 0

+\

a(27) = [0 —2goq2] , (3.13a)
0 0 0 0
0 4gog® 0 4v3geg?

+y — o

a(0*) = |, TV (3.13b)

0 4v3gog*> 0  Bog?

Note that for go = bg/12 the second and fourth rows and
columns of a(0") are proportional, and the matrix has
rank one. This is because in this case the action is Weyl
invariant (see Appendix A). If we freeze p = const, the
last row and column of a(0%) can be suppressed and we
are left with the familiar coefficient matrices of Einstein’s
theory [12].

The contribution of the potential to the inverse prop-
agators is

0 0
+ —
a(27)pot = [0 —fz—V] R (3.14a)
00 0
a(1M)pet = [0 0 0 , (3.14b)
00 -2V
P
0 0 0 0
0 Lv Rv LB
a0t = | o vay 1y tav | - (3.14c)
p? p? p dp
0 Y3dV 1dv &V
p dp pdp dp?

Note that these matrices do not have the degeneracies of
(3.11d), (3.11€), or (3.13b). This is because flat space
(with p = const) is a solution of the field equations only
if V = 0. Finally the contribution of the gauge-fixing
terms is

52
00 O
a(lT)gr=[{00 O s (3.15a)
1 .2
00 0 O
00 0 O
a’(0+)GF =10 o %qz 0 . (3.15b)
00 0 O

With these results, the usual one-loop effective action
is equal to the sum over spin J and parity P of the loga-
rithms of the determinants of the matrices a. These are
polynomials in g2, p2,V and its derivatives of dimension
up to eight. Taking into account the multiplicity of these
contributions, the one-loop effective potential is

diq | ( deta(I7)(p)
2n)" (detaw’)(po)) '

Ve (p) = % > (2I+1)
J,P

(3.16)

We have normalized the effective action with the deter-
minant of a free field, which is obtained by linearizing
the action around a fixed constant field po. It is natural
to choose pp as the minimum of Vg itself, in which case
Vest(po) = 0.

Given the previous explicit form for the matrices
a(J%), one can now compute the expression for Veg(p),
using standard renormalization techniques. As explained
in the next section, we shall follow instead a different
strategy: we shall derive the equation that describes the
renormalization-group flow of V.g. This allows a more
accurate discussion of the scale dependence of the pa-
rameters that characterize the effective potential.

IV. AVERAGE EFFECTIVE POTENTIAL

To study the renormalization-group flow of the effec-
tive potential we shall use ideas originally introduced by
Wilson [13]. One begins from some action Sk, which is
supposed to describe accurately the physics at some mo-
mentum scale k;. Physics at a lower momentum scale
ko is then described by an effective action Sg, which is
obtained by functionally integrating exp(—Sk,) over all
fluctuations of the fields with momenta between k; and
k2. The procedure is then iterated: the effective action
at scale k3 < ky is obtained by functionally integrat-
ing exp(—Sk,) from ky to ks, and so on. The flow of
Sy with k is the renormalization-group flow. Each step
of the integration should not cover too large a range of
momenta. In this way one can accurately compute the
effective action at some low momentum scale k, starting
from a high momentum scale A. Note that this is not the
same as performing the functional integral from A to k
in one step, because the action is updated at each step
of the integration. In the following we will refer to this
updating as “the renormalization-group improvement.”

Originally this idea was applied to spin fields on the
lattice, but it was subsequently adapted to the contin-
uum, where it was used to clarify and simplify the no-
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tion of renormalizability [14], and was also applied to
gauge theories [15]. The particular implementation of
this idea that we shall use here has been discussed in
[16,17]. One can start from the usual definition of the
effective action Seg, defined as the Legendre transform
of W = —InZ, where Z is the partition function. The
effective action has a perturbative expansion in Feyn-
man diagrams, which correspond to integrals of certain
functions of the momenta. By introducing some kind of
infrared cutoff k in the propagators one obtains a new
effective action Sk, which depends on the scale k.

A way of implementing this idea in the path-integral
formalism is to add to the classical action S a term ASy
that constrains the average of the field ¢ in spheres of
radius ~ k~! centered around the point = to be equal
to a predetermined function ¢(z) (one can apply this
discussion to the theory we are interested in by replacing
the generic notation ¢ with I'; g, and p). The average of
a field ¢ around a point z is defined by the convolution

frd(z) = / dyv/det gfu(z — 1)) ,

or, when g is flat, in Fourier space, by fré(q) =
fr(q)#(q), where fi is the function

fula) = exp [—a (,‘i—)b] ,

where a and b are constants. This function interpolates
between a Gaussian, for b = 1, and a step function for
b — oo.

In [10] we discussed this procedure in the context of a
gauge theory of gravity where only the coefficients g; and
a; were assumed to be nonzero. The specific choice of the
term AS) that we used there had the disadvantage that
some of the propagators were not well defined. This was
not important in [10] because these terms did not con-
tribute to the quantities that we computed there. How-
ever, it could be a problem in more general calculations.
For this reason we shall use here a simpler definition: we
will assume that the term AS} is defined in such a way
that the only effect it has on the linearized action is to
replace in the operators © the term ¢? with the function

(4.1)

qZ
1 — fr(q)?

[and |g] by 4/Px(q)]- The function Py(q) approaches ex-
ponentially fast the function ¢? for ¢ > k2, but goes
to a constant (b = 1) or diverges (b > 1) for ¢> — 0.
Thus, replacing q? by P in the propagators suppresses
the modes with g2 < k2 and therefore has an effect simi-
lar to putting an IR cutoff at momentum k. This defini-
tion of scale-dependent effective action Sy is equivalent,
at least at one-loop order, to the one given in [17].

It is quite clear that the considerations that were made
in [17] for nonabelian gauge theories can be extended in a
rather straightforward way to the case of gravity. There
is one point, however, that requires some extra care: it is
the definition of the absolute normalization of the poten-
tial. In the presence of gravity, the value of the potential

Pr(q) = (4.2)

at the minimum is interpreted as a cosmological constant.
It affects the field equations, and therefore cannot be
shifted arbitrarily. Furthermore, we see from (3.14) that
it corresponds also to the mass of the graviton. In prin-
ciple, the value of the potential at the minimum could
depend on the scale, but one has to make sure that at
least in the extreme IR limit this value be zero, to ensure
that the graviton be massless.

We take the following definition of the scale-dependent
effective potential for p:

1 dq N det ax(J7)(p)
Vi(p) = 2;;(” +1) / @)t (detak(ﬂ’)(pk)) ’

(4.3)

where ax(J7) are obtained from the matrices a(J%) given
in (3.11), (3.14), and (3.15) by replacing g2 with the func-
tion Pg(g) and pi is defined to be the minimum of V4.
Note that with this definition V% (px) = 0 for all k, so that
the cosmological constant is actually zero at all scales. In
this connection see also [18].

Finally, we observe that since the determinants
detay(JP) are functions of p?, it is consistent to as-
sume that V}, is a function of p2. It will be convenient
to define V' = dV/d(p?). Then in (3.14c) we can write
(1/p)(dV/dp) = 2V’ and (d?V/dp?) = 4p2V" + 2V".

V. RENORMALIZATION-GROUP FLOW

The average  effective  potential obeys a
renormalization-group equation that is obtained from
(4.3) by taking its derivative with respect to k. It has
the form

v
dk
where the function F' comes from the RHS of (4.3):

k =FWVi,Vi, Vi), (5.1)

FV, v, vy = 1 S@7+1) dq 1
Y 24~ (27 detag(JP)

d P
Xkﬂ[det ak(J )] ) (52)
with
d _ B(det ak) (9Pk
kdk (detag) = o, T (5.3)

After taking these derivatives, we substitute in F' the
classical potential V' with the effective potential Vj: this
is the “renormalization-group improvement.” This sub-
stitution gives (5.1), a differential equation for the func-
tion Vi (p). Notice that, thanks to the behavior of P and
its k derivative in (5.3), the integral in (5.2) is actually
dominated by a finite range of momenta and does not
need an ultraviolet regularization.

Although derived in the context of a one-loop ap-
proximation, this renormalization-group improved equa-
tion has a validity that goes beyond one loop [19,13,14].
Clearly one cannot follow the evolution of the whole func-
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tion Vi, so some other kind of approximation becomes
necessary. In the following we shall study only the first
few terms of the Taylor expansion of Vj.. As explained in
the Introduction, we are interested in the spontaneously
broken phase, with a nonzero VEV of p at £ = 0. Thus,
we parametrize V}, by the position of its minimum, pg,
and the quartic coupling at the minimum Ag:

Vi(or) =0, Ak =Vi/(px) - (5.4)
In terms of these parameters the potential reads
Vi(p) = 32k (0® — pR)? (5.5)

which is the Taylor expansion of Vi as function of p?
around its minimum.

The equations governing the evolution in k of p? and
Ax can be obtained by differentiating the definitions (5.4).
This leads to the following set of coupled partial differ-
ential equations:
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In the definition of 3(k) we are neglecting a term contain-
ing V"' (pr), which takes into account the k dependence of
the point of definition of A, and is a signal of the presence
of operators of higher dimension in the potential (“irrel-
evant” operators). Consistent with our approximation,
we will neglect the effect of these terms. The functions 3
and v have the general form shown in the RHS of (5.7),
where © = g2 and R are rational functions of dimension
k~8. These functions can be computed explicitly from
the representation (4.3) of Vi, by taking derivatives with
respect to p? and k, and using (5.3). The general expres-
sions are complicated and not particularly illuminating,
so we will not give them here. It is not possible to find
a solution of the system of partial differential equations
(PDE’s) (5.6) and (5.7) in closed form. However, analytic
solutions can be obtained in some asymptotic limit.

Let us assume first that pZ is small with respect to
k. One would expect this to describe the behavior of
the theory in the regime when k is large compared to
the Planck mass. In simpler systems, this approxima-

dp? tion indeed reproduces the results of perturbative calcu-
—b—lf = y(k)k? , (5.6a) lations of 3 functions at momenta much larger than the
characteristic mass of the theory. Because of the factor
A k(8P /0k), the integrals are dominated by the region
kﬁ = B(k) , (5.6b) 2 ~ k2. In this region, Py is itself of order k2, so that
. p? is small with respect to P;. One can therefore expand
with the functions R in powers of p2. In the function R., the
_ 1 9 dominant term is a constant (independent of pi) but the
(k) = T k2 k%Vk (px) function Rg has a pole for p;, — 0, coming from the con-
apk tribution of the spins 2%, 1=, and 07. The 3 functions
= 3952 /dmm’R,,,(Pk Pi)k Bk (5.7a) reduce to
kz 2
(k) = + O B(k) =pP-1—5 +Po+ O e,
o 2 k2
Bk) = (k5 Vi') (on) i
(5-8)
OP;
= e 2Ve—— 5.7b
3272 /dmmRB(Pk’ Pi) ok ( ) where
J
o = 1 1 5Ble—ZBf +5&+3B335-2Bi B¢Bg — 2B2
3272 Ak Gle Gz G3B5 G4B3
6/\k(Bl() - 2312) % _ ZBoBg — 12BgBllB12 =+ GBIOBfl it} B3 I (5 ga)
BoBio — 3B%, ' Gs Gs(BoB1o — 3B%,) Ge | 727 '
1 10 By
= e |l +1 Al .
A= 3m [Bz BoBro - 3B%, T 3“] el (5-9b)
1 (Ble - 232) + 4/\kB1 .B2 (B3B5 — 232)2
- 1 21
Po= 55 [ 0 G282 + 10 & +6 GIB?
+6 (Bng - 2B¥)2 24(230310 + 3B10 - 12B10312 + 7Bf2) - 16&310 AZ
G2B? (BoB1o — 3B},)? gy
+432(B10311 — ByBjy2)? — 4(BoBy — 3B11B12 + 12B10B11 — 1239312)2/\
Gs(BoBio — 3B%,)? k
+2(2BOB3 - BOBQBIO + 6B1()Bf1 d 12B9311312 + 3BQB%2)2 B13 I
. (5.9¢)

GZ(BoB1o — 3B3,)? G2
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The positive dimensionless constants I,, are defined by

I 3= /dzzP 3k881;: =1,
_ _o, OP
I—2 =k 2/d(l'(lipk 2kﬁ
= a )l/bI‘(l +1/b), (5.10)
Iy = k_G/da:a:k—‘?ﬂ
Ok
(2 )3/bP(1 +3/b)¢(3/b) .

Infrared convergence of Iy requires that b < 3.

Note that in this approximation the dominant term in
B(k) is the one coming from the pole, unlike other known
examples where the dominant term is the constant (g
[16]. This peculiarity can be traced to the presence of
the undifferentiated potential V in the inverse propaga-
tors, which is characteristic of gravity [cf. (3.14)]. The
situation would be different if we allowed a nonzero cos-
mological constant.

Treating o, 8-1, and [y as constants and neglecting
integration constants one finds that pf = 1yok® and
A = 2(B-1/70)Ink?. This is the behavior that one
would expect on dimensional grounds. In this calcula-
tion one neglects the running of the coupling constants.
This is a reasonable approximation if one considers the
behavior of the theory over a range of momenta which is
not too large. Omne could take into account the running
of A, for which the evolution equation is known, but the
result would not be very significant: the other coupling

Assuming that all the couplings appearing in - run
logarithmically, the true solution for p? would deviate
from the one given above by a sublogarithmic correction.
The validity of the approximation pZ < k2 hinges on the
sign of these corrections. If p2 grows slower than k2, the
approximation could be justified. This was the case in
the calculation we did in [10]. However, it may not be
generally true.

Given that, in general, the validity of the approxima-
tion p? < k2 is questionable, it would be desirable to say
something on the large-k behavior without making this
assumption. One general conclusion that can be drawn
with reasonable confidence is that p2 will be proportional
to k2, up to (at most) logarithmic corrections. To see this
consider again the general form (5.7) of the functions (k)
and B(k). As mentioned before, the x integration is cut
off exponentially for z > k2, and as a power for =z < k2,
so if we are only interested in the dominant behavior of
the integral, we can replace P; by k2. Assume further
that p2 = ck? for some constant c. Then R(kZ%,ck?) is a
constant that can be taken out of the x integration and
the functions (k) and (k) become simply constants.
The equation for p2 becomes an algebraic equation that
implicity determines the constant ¢, so the assumption
pi = ck? is justified a posteriori.

Let us now consider the opposite limit: k? < p2. This
is the limit k¥ — 0, when po # 0. In this case we retain
in each sum the term with the highest power of pZ. The
contributions of the different spins are not all of the same
order in k2?/p2. Keeping only the leading terms, the 8

functions reduce to
k6 2 k4
i o( ) ,
Pi

(k) —’72k4 +0 (Pﬁ) , B(k) =

constants are also expected to run logarithmically, and (5.11)
their (unknown) contribution could easily overwhelm the
one coming from Ag. where
]
1 1 G1B2 G G3Bs G4B8
= - 5 3 3
"= 37 N, [ BB, —2B2 | °B, | BaBs — 2B | °BoBs — 252
_GsByo | 6G5By(B1oB11 — B9Blz) 3Bo(2Bg — Byo — 4B11 + 2B132)
Bg (BgBlo - 2B§)2 SAk(ng ad BIO)
9(239 — Byg — 4B;; + 2312)(39312.2 -~ 4?9311.312 + 2BloBf1) n & I, (5.12&)
8\ Bo(2By — Byo) B3
1 10
= — 1 I _2); . Nl
L= 33 [Bz 2B, 2Bo—Bio | 50‘] 2% (5.12b)

In this regime the running of Ax and p? is damped by
powers of k2/p2 and stops for k — 0. The solutions for
small k are

(5.13a)

(5.13b)

For generic values of the parameters g;, a;, b;, all modes
except for the graviton are massive, with masses of the
order of Planck’s mass. One would expect that these
modes can be neglected when describing the physics be-
low the Planck scale. Thus, the running of the dilaton
potential at low energies should be derivable entirely from
the action (2.5). This can be easily checked using the co-
efficient matrices given in (3.12). The renormalization-
group equations become for small &
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i _ 3 12go—Bo, k°®

= jutniA— 5.14
dk _ 32n2  8xZ  Cpi’ (5.14a)
O 15 1 k?
— 2 =\ —— I 52— . 5.14b
k ok  32m2’k (a Sgo) zpi ( )

These have again the solutions (5.13). Note that the
coefficient 7, vanishes when go = bo/12, in which case

the action (2.5) is conformally invariant. (See Appendix
A)

VI. CONCLUDING REMARKS

One attractive feature of the theory we have consid-
ered here is that one can easily describe the transition
to Einstein’s theory at sufficiently low energies. Indeed,
for generic values of the coupling constants g; and a;,
all components of the connection I',¥, are massive, with
squared masses of the form pZB/G, where B and G are
appropriate combinations of the coupling constants a;
and g;. As mentioned in the Introduction, this is due
to the occurrence of a Higgs phenomenon. The dilaton
becomes massive too, with a mass squared equal to Agp3.
At energies lower than the VEV pg, all these particles
decouple, leaving the graviton as the only remnant. Its
effective dynamics is given by the second term in (2.5).
If we assume that the Einstein term of the low-energy
world comes entirely from this source, we see that po has
to be of the order of the Planck mass, mp.

The results of the preceding section can now be sum-
marized as follows: at scales & much larger than mp,
the coupling constant A; runs logarithmically and the
VEV pj runs quadratically, as one would expect on di-
mensional grounds. These results are the reflection of the
logarithmic and quadratic divergences that one would en-
counter if one tried to remove the ultraviolet cutoff from
the theory. On the other hand, for scales k below the
Planck mass the running is suppressed, and both A\; and
pr tend to constants for & — 0.

When we said that there are massive particles in the
theory we used in the mass formula the VEV of p at the
scale k = 0. This is the naive procedure that one would
follow, at tree level, with a classical potential. However,
the running of the VEV of the dilaton affects the po-
sition of the pole of the propagators. Let us see this
first in the case of the dilaton itself. From the param-
eterization (5.5) of the potential Vi, the running mass
m2(k) = d?Vi/dp?|,, is equal to AxpZ. The physical
mass of the particle, i.e., the position of the pole of the
propagator, is defined implicitly by the condition

mghys = m2(k)|k2=m;‘;hys . (6'1)
This is equivalent to the statement, which was made in
[10], that in a propagator of the form [¢2 — mZ(k)]~! the
pole is to be found by evaluating the running mass at
k = |g|. Equation (6.1) is solved graphically, by finding
the intersection of the plots of the LHS y = mghys and the
RHS y = )"“pil’“’=m§hys’ as functions of the independent

Y

T
2

mp
FIG. 1. Graphical solution of Eq. (6.1). The three curves
represent the running of the squared mass as a function of &2,
for three different values of the coupling constant.

variable mghys. This is shown in Fig. 1. The LHS is rep-
resented by the straight line at 45°. The RHS is the plot
of the running of p; that we have computed in the previ-
ous section, multiplied by a factor Ao, up to logarithmic
factors that we neglect for the moment. As we have seen,
it starts flat at Aop} and grows linearly for large m2, ..
If Ao < 1, the intersection occurs in the region where
the RHS is constant, and therefore the mass squared is
dop2 <« m%. On the other hand if Ao is of the order
or bigger than one, the intersection is shifted to higher
energies. Exactly where it occurs depends crucially on
the logarithmic corrections. If the leading logarithmic
factors on the RHS appear with a negative power, mihys
is of the order exp(A\o)pZ. If they appear with a posi-
tive power, there may be no intersection at all. In this
case, the dilaton would disappear completely from the
spectrum. Note that an anomalous dimension of p would
give a power correction to the running of the mass, so
it would be even more important than the logarithmic
corrections in the previous considerations.

This discussion can be repeated for the connection
I'x#,, which potentially carries dangerous ghost or
tachyon states. The running of p; could eliminate these
states from the spectrum. That such a mechanism could
exist was suggested in [20], but no concrete support for
this idea had been given until now. In order to draw
some definite conclusion one would have to compute the
[ functions for the couplings g; and a; for large k, find
the ultraviolet fixed point, if there is any, and evaluate
(5.9) at that point.

The same discussion can be repeated also for any other
matter field. In this theory the matter is supposed to be
coupled to gravity in such a way that the masses of all
particles are proportional to the VEV of the dilaton. For
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example, in the case of a scalar field ¢, the action would

be
S(6,9.0) = 5 [ d'ov/Aetale™0,80.6 + ho'¢?) | (62)

where h is a dimensionless coupling constant. The rea-
son why the known particles have masses much smaller
than Planck’s mass would be the smallness of the cou-
pling constant h. For such particles the intersection of
the curves in Fig. 1 occurs in the region where the VEV
of the dilaton is constant, so the poles are exactly where
one would expect to find them. In GUT theories the ex-
pected masses are only a few orders of magnitude smaller
than the Planck scale, so that the renormalization-group
corrections envisaged here may not be negligible. In the
case of a scalar field, this is discussed in a separate pub-
lication [21].

Finally, we mention that the definition (4.3) of the
scale-dependent effective potential is not the only pos-
sibility. One could choose a different normalization of
Vi (p) such that its minimum (the cosmological constant)
is actually k& dependent. These alternatives could be of
relevance, for example, in cosmological problems.
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APPENDIX A: BROKEN WEYL INVARIANCE

Let us consider the behavior of the action (2.2) under
Weyl scalings:

Juv — ng,“,, p—= Q7o Ta#, 5 T, + 6:,‘9“18)‘9 s
(A1)
J

where 2 is a general function of the position. There is
also another possible way in which a Weyl transforma-
tion could act on the connection: it is defined by requir-
ing that I' transforms like the Christoffel symbols of g.
This alternative transformation acts trivially on the tor-
sion tensor, whereas (A1) acts in a nontrivial way. We
have chosen the transformation (A1) because it can be
generalized to a local GL(4) transformation.

It is easy to see that the curvature tensor R,,”, is inert
under (A1), so the curvature squared terms are invariant
(as in Yang-Mills theory). The remaining terms can be
made invariant by choosing

bo = 6(2(11 + a2 + 3(13), b1 = 20.1 + az + 3(13 ;

V(p) = 320% , (A2)

where A is an arbitrary constant. Note in particular that
with the choices leading to (2.5) this gives go = bo/12.
It is sometimes convenient to write the action in a dif-
ferent form. Define the combinations
§;u/ = ngpua fk“u = 1")‘#” + 55P_13AP ) (A3)

which by construction are inert under the transformation
(A1). We also define the curvature of T,

Rp.upa = ayrupo' - avrupa + F[LPTFVTO’ - r\upTPuTo’ k]

and the torsion of f‘, ThH, = f‘,\“,, — f‘,,“)\. The following
relations hold:

Ruupo = R/Avpa 3 (A4a)

Tak, = Thk, + 6Ep 20hp — 8407 20,p , (A4b)
aAg}-ﬂ/ - fAru.‘}ru - fArugpxr

= pz(a)\guu - FATugru - F)\Tugwr) . (A4C)
Note from (A4c) that if p # 0, metricity of one connection
guarantees the metricity of the other.

With the relations (A2), the action (2.3) can be written
S(g,T,p) = S(g,I"), where

5@,T) = / d*a\/AeVF1LA + goR + a1 T T4 + asTi /TH* + a5 TP,

+91R#Vp0Ruupo + gZ'RuupaR”puo + g3RuupoRpa”V + g4RuuR“V + gSR“uRW‘ + gGRZ] )

where R,“, = RP,,",,, R = g“"}?“,, and T, = T,,“,L. In
this action indices are raised and lowered with §. This
is the most general action quadratic in 7" and R, and it
is invariant under the transformations (A1) in a trivial
way, since all quantities entering in this action are inert
under those transformations. It is obtained from (2.2) by
choosing the conformal gauge in which p is constant, and
rescaling the fields by factors p. Conversely, (2.2) with
the relations (A2) is obtained from (A5) by using the

(A5)

definitions (A3). Note that the field p, which we call the
dilaton in this paper, may be called the conformal factor
of the metric g if one started from the action (A5). In
the literature on conformal gravity the two actions (2.3)
and (A2) and (A5) are said to be written in the Jordan
and Einstein conformal frames, respectively. They are
completely equivalent at the classical level.

Let us now consider the quantization of the theory in
the Weyl-invariant case. We note first of all that when
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(A2) holds, By; = Bg and B2 = Bjo. Thus at the lin-
earized level the new gauge invariance manifests itself in
the proportionality of the second and fourth rows and
columns in a(0%). Therefore, one has to fix the gauge
also for Weyl transformations. Assuming that this has
been done, it is easy to see that there exists a quantiza-
tion procedure that preserves Weyl invariance. One has
to use the form (A5) for the action, and define the func-
tional measure by means of the metric §. In this case the
effective action can be written again as a functional of
g and I' alone, and therefore is automatically invariant
under (A1) [22].

One is naturally inclined to preserve as much as possi-
ble the classical symmetries in the quantization process,
so this choice of measure may seem to be the only sen-
sible one. However, this is not the case. Other choices
are possible and, from a certain point of view, may even
be more natural; if we interpret the metric g as the one
defining the geometry of spacetime, then it is natural to
use g rather than § in the definition of the functional
measure, and this leads to a quantum theory in which
Weyl invariance is broken.

In a concrete calculation, the definition of the mea-
sure reflects itself in the definition of the cutoff. We
have shown in [10,11], that if one starts from a Weyl
invariant theory and defines the UV momentum cutoff
as g"¥q,q, < A? (rather than §*¥g,q, < A2), then the
effective action Seg(g, T, p) will not have Weyl invariance
anymore.

In this paper we have only discussed the
renormalization-group flow of the effective action, which
does not necessitate the explicit introduction of an UV
cutoff. Still, Weyl invariance cannot be maintained. This
J
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can be seen as follows. Suppose we study the small fluc-
tuations of the gravitational field around flat space at
some energy scale k;, and suppose that these are well de-
scribed by the Weyl invariant action (2.3) and (A2). Now
suppose we want to know the effective action at some
lower energy scale k;. As discussed in Sec. IV, this is
given by a functional integral over all fluctuations of the
fields which lie in the momentum shell between k; and
k. But how is this momentum shell defined? Since we
are postulating that the geometry of spacetime is given
by the dimensionless metric g, the shell is defined by
k2 < g*¥q,q, < k? (for simplicity we are assuming here
a sharp cutoff, but this is by no means essential). One
sees that the definition of the shell introduces in the defi-
nition of the effective action Si, a dependence on g which
is not compensated by a dependence on p. Unavoidably,
Sk will not be a function of the combinations (2.4) alone.
It will be a genuine functional of g, I', and p, and will not
be invariant under infinitesimal Weyl transformations.

To be more specific, suppose that we want to compute
only the scale-dependent effective potential Vi (p), which
is given by S, = [d*z+/detgV;, for a field of the form
(3.1). As we have mentioned above, Weyl invariance re-
quires the potential to be purely quartic. If we assume
that Vi, is purely quartic, then unavoidably Vi, will not
be anymore, because the integration procedure breaks
scale invariance. It is instructive to see this in detail in
an explicit calculation. Consider a single wave operator
of the form O = g2 + cp? [in principle (3.3) can be writ-
ten as a sum of such terms], and suppose the momentum
shell is defined by sharp UV and IR cutoffs. Then we
have

1M diq g’ +cp’
AV =V, — Vi, = —= ]
bV = g G 2
1 k2 + cp? k2 + cp?
= 1|kt | 2P gy, [ Biter”
64r? [ ? (k +orf, ) T\ RE e,
k2 + cp2 k2 + sz
2 41 1 _ 2.4 1 1 k1 2_ 2 k2 _ k2
+cp” In K2+ op? € P, In Rt ook, +c(p® — pi, ) (k3 — kD) | , (A6)
[
which is obviously no longer purely quartic. It is still a . e k2
function of p? only. AXg = Apy, — Ag, = Py In R (A9D)

Let us approximate the potential Vi by a quadratic

polynomial of the form
Vie(p) = tmip® + Aep® . (A7)

The constants mZ and A are to be thought of as the co-
efficients of the Taylor expansion of V}, around the origin

d?v;, 1 d4‘/;c
2 _ _
e = dp? | 7 7F 7T 24 dpt (A8)
0 0
Then we have
c
Ami = mil - mﬁz = W(k% — kf) , (A9a)

The most important conclusion of this discussion is
that the potential cannot be consistently assumed to
be purely quartic at all scales: if m? is zero at some
scale, it will be nonzero as soon as one begins to inte-
grate. Weyl invariance is broken and a mass term is
generated. There follows that if we want to study the
renormalization-group flow of the effective potential tak-
ing into account what we called the “renormalization-
group improvement,” we have to assume from the outset
that the potential is not purely quartic. Of course, if we
were to study the whole effective action rather than just
the effective potential we would find many more terms
that are not present in the starting action. For exam-
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ple, instead of the factors p? in front of the torsion terms
there will now be general functions of p. In principle, this
will also have an effect on the running of the potential,
but we neglect this effect.

APPENDIX B: LORENTZ DECOMPOSITION

In the main text we have taken as independent cou-
pling constants the coefficients of all possible contrac-
tions of two curvature or torsion tensors. However, these
contractions do not carry any special geometrical signifi-
cance. One may expect that the final results would look
simpler if they were expressed in terms of another set
of parameters, which are related to geometrically signif-
icant quantities. Let us consider the irreducible parts
of the torsion and curvature tensors with respect to the

1

R, = 2(2Ruup0 + 2Rpops

uvpo
_%(g#pR(ST)W

Rﬁtzv)pa = %(Rw’pa — Roopn) — %(gm,R(A),w - g,,pR(A),w - g#aR(A),,p + guaR(A)up) ’
Izgypa = %(}2uupa +'12pauu +'}%uaup +'12Vppa +’Izppau +’lzauup)7
Rfﬁj)pa’ = %(gupR(ST)uo’ - gupR(ST)p,a' - guaR(ST)vp + guaR(ST)MP) - ili(gupgva - guagup)R )

RG)  — l(g#pR(A),,a — QVpR(A)ua

pvpo 2

R,(ﬁ,),,a = le(gupgw ~ Juogvo) R,

where R(ST)W = %(R,,,, +R,,.) — %gu,,R and R(A),“, =
1(Ru. — Ry,) are the symmetric traceless and antisym-
metric parts of the Ricci tensor. These decompositions
are orthogonal with respect to the inner products

(4,B) = /d4au detgg‘“’g"”_q)‘"'--A,“,)‘...Bpo.,.... .

The quantity (2.6) can then be rewritten in the form

N | =

6 3

~ 7 ) o 1 ~ i 7 v
> GRE, ROMT 4 2 p? ST AT, TOM , (B4)
=1 =1

where a@; and §; is a new set of coupling constants, related
to the coupling constants a;, g; appearing in the action
(2.2) by the linear transformation

- mev + R;wpv + Rvpau - Ravmt)
_ gpr(ST)‘w _ gle(ST)

907
Lorentz group [23]:
3 ) 6 .
Topw = Z T,&)w Ruvps = Z R;(:rlpa , (B1)
=1 =1
where
TA(}L)V = %(ZTAuu —Toap + Topr)
+%(g>\;ATV - guyTA) y (B2a)
T2 = —1(gaTo — guuTh) (B2b)
TA(:;)V = %(T/\MV + Tv)\u + Ty,vA) 9 (B2C)
and
vp t+ guaR(ST)MP) - i];g(gu.pgua - guogup)R , (B3a)
(B3b)
(B3c)
(B3d)
- g#UR(A)Vp + guaR(A)up) ) (B3e)
(B3f)
r
[ 91] 11 3 0 0 07 [;
g2 1-1 0 0 0 O gz
Ga| _ {11 -10 0 0]lg
94 12 53 3 3 0) o)’
L g6 (11 5 53 5 6 ge
(B5)
[ G ] [2 1 0 a;
&2 = 2 1 3 as
| as i L 2 -20 as

Most formulas are more compactly written in terms of
the new coupling constants. This is evident from the fol-
lowing table, which gives the relation between the coeffi-
cients G; and B; appearing in (3.11) and the parameters
appearing in the Lagrangian:



908 R. FLOREANINI AND R. PERCACCI 52

G1=491+2g92+493+9ga+gs = 301+ Ja »
Gy=491+92=§g1+ 32 »
G3 =491 — 493+ g4 — gs = g2 + G5 ,

Gy =491+ 92+ 294 = g4 + g5 ,

Gs = 491 +2g2+4g93+4g94+4g5+12g6 = 296 +83d4— 591 ,

Ge =491 — 292 = 391 + G2 »
By =2a1+az+go=a1+go,
BZ=4a1+2a2=2&1 5

B3 = 6a, — b5ay — go = %(&14—8&3)—90,
By = 2a; — 3az — go = 3(4G3 — @1) — go ,
Bs = 4a; — 2a; = 3(2a; + 4as) ,

Bg = 2a; + a2 + 2a3 — go = (@1 + 2d@2) — go ,
By =a3 — go = 3(@2 — @1) — go »

Bg = 2a; + az + a3 = 3(2a; + az2) ,

Bg = 2a; + a2 + 3az — 2go = az — 24go ,
Bio = 4a; + 2a3 + 6a3 = 2a3 ,

Bi1 = by —2g0 = b1 — 290,

Bis = 2b; = 2b, ,

B13 = 8(11 - 8&2 - 290 = 4&3 - 290 .

J

APPENDIX C: SPIN-PROJECTOR OPERATORS

For completeness, we list in this appendix the explicit
expressions of the spin-projector operators P{;B(J P)
that have been used to rewrite the action (3.3) into the
form (3.10). There are in fact some differences with re-
spect to those in [10], due to the different spin-parity
content of the fields appearing here.

For fixed spin J and parity P, these operators are la-
beled by the indices A, B that identify the fields w, ¢,
and o, and by 7,j that identify isomorphic Lorentz rep-
resentations occurring more than once. For example, for
spin-parity 2%, i = 1,2; for 17, i = 1,2,3, etc. The
operators P44 (J%) project out of a field a given irre-
ducible representation, while the intertwiners P{J‘B (JP)
(with ¢ # j) give isomorphisms between the different rep-
resentations occurring more than once. (Note that the
indices A, B in these projectors are redundant since i, j
already label the representations. It is nevertheless con-
venient to keep them in order to remember by what field
a certain representation is carried, e.g., for J¥ = 1~ the
representations ¢ = 1 and 2 are carried by w and i = 3 is
carried by ¢.) The operators P;}?(J”) are orthonormal
and complete:

P4E(JP) - PGP (1) = 616p0bxéBc PP (J7)
(C1)

Z PAA (J?’

J,P,Ai
It is useful to introduce the notation
¢ =9q"/vVe? L, =4q.4", T,=6,—-L,, (C2)
obeying the relations
LYt =0, T,T; =TfF, L,LY =1L% . (C3)

In terms of ¢*, L}, and T};, one finds

P12 (25)]rpe P [P10(27)]rp0™?

Pt = | GG s [

[P (2)]p0 P = TETPL)]

[

[P13*(27)]rpo

(P52 (2)]p0 ™" = V2IGTY

(P57 (27)]p0 ™

[wa (2— )]Tpaaﬁ‘y — %TST[[,?T’Y]

af __ \/_T("Tﬂ)qg] _

e |

+ TP IATS - 2T, LD TP

ool — o]

\/5
-7 ﬂT‘r[pqa] ’

*‘v] - £T ~TBG |

T(QTﬁ) _ —T Taﬂ

o)

ZT[WT[,,] o] T r[pTc[;]YTﬁ]a )
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[P [PE (1))
[P(h)] = HPs’l“’(lJr)Lpa“ﬁ” {P}}HLW“‘” ’

[Pt (19)]rpa™ = TRTPLY) — TRIPTS

[Pi3* (1) po™?" = V2T TEILY

[P5i (19)]rpo ™™ = VRLRT{ITS

T [p o]

[P (1)) 0o = LETPT

[PE (17)]rpo P [Pi5° (17)]rpe ™27 [Pr3°(

1-
[PA7)] = | [P5°(17)]rpo™P P53 (17)]rpe ™" [Ppa”(17
[P (17)]po P [P (17)]00 ™

)lroa™?
)]-rpo'aﬁ ’
[P35 (17)]p0 %

[PE2 (17)]rpo ™ = To, T TAI
[Pty (1))rpe ™7 = VRLPTYT,,

[P (1) oo™ = V2T, T

[Pﬁw(l_)]mdaﬁv = \/ELT[pTE]!Tﬁ]a k

[P (17)]rpo ™ = 202LPT)

[Po? (17)]rpe™” = 24’1'%:]151) ’

(P52 (17)]po " = V2T PT)g,

[P5(17)]p0 ™" = 24°L(T7)

(p70o)
[Py (17)]po = 215 L2)
[P (0)] 700 [Py (0%)]rpo® [Pi (0%)]rp0™ [PEL(0%)]rpo
P0t)) = | [BEL O )]eo" [PER(07)]50%0  [PEE(0T)]50™ [P (0F)]
(P52 (05087 [PEP(0M)],0™®  [PE2(0%)]pe™® [P (0M)]po |
[Pge(0M)]87  [PEP(07)]#  [Pif(0+)]*°

[P£y (07)]

[Pﬁw(0+)]rpaaﬁ‘y = %Tr[pLE:iTﬁ]a )

w V2 .
[P1z¢(0+)]'rpoaﬂ = TTQﬁTr[p%] »

[P{‘:’;‘p(0+)]rpaaﬁ =V 2/3LaﬂTr[p'§a] ,
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[P]‘.‘:lo'(o+)]fﬂ°' =V 2/3q’~[c!'f1-‘p]'r )

/3

2 u
(PE*(0)]p " = 2T, T,
[Pz‘p2¢(0+)]paaﬁ = %TpaTaﬁ )

o 1
[Pz"?;‘p(0+)]pa = —3TpoLaﬁ s

7

1

V3

[P35 (00))po = —=Tho

[Pﬁw(0+)]poaﬁ7 =V 2/3LpoTa[B‘i"] s

1
[Pa‘pz‘p(OJr)]paaﬂ = ELWT“B ’

[P (0M)]pe™? = Lo L™,
[P§6(0+)]p6 = Lyo ,
[P:lw(o+)]aﬁ7 — /2/313[71113]& ,

o (3 1 Q,
[P42‘P(0+)] P = %T A ’

[P (01)]*F = Lo,
(P (0")] =1,

ww (— a B 8 — o
[P (07)]rpo ™ = sTeTPTY) - 210 TITS = TieTAT)

[p "o 3

[1] S. Weinberg, in General Relativity: An Einstein Cente- Keldysh et al. (Nauka, Moscow, 1991); S. D. Odintsov
nary Survey, edited by S. Hawking and W. Israel (Cam- and I. L. Shapiro, Class. Quantum Grav. 9 (1992).
bridge University Press, Cambridge, England, 1986); J. [3] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142
F. Donoghue, Phys. Rev. D 50, 3874 (1994). (1984); H. Leutwyler, ibid. 235, 165 (1994).

[2] A. D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967) [4] K. S. Stelle, Phys. Rev. D 16, 953 (1977).

[Sov. Phys. Dokl. 12, 1040 (1967)]; K. Akama, Y. (5] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Ef-
Chikashige, T. Matsuki, and H. Terazawa, Prog. Theor. fective Action in Quantum Gravity (IOP, Bristol, 1992).
Phys. 60, 868 (1978); B. Hasslacher and E. Mottola, [6] R. Utiyama, Phys. Rev. 101, 1597 (1956); Prog. Theor.
Phys. Lett. 95B, 237 (1980); S. Adler, Rev. Mod. Phys. Phys. 64, 2207 (1980); T. W. B. Kibble, J. Math. Phys.
54, 729 (1982); D. Amati and G. Veneziano, Nucl. Phys. 2, 212 (1961); D. W. Sciama, in Recent Developments
B204, 451 (1982); I. L. Buchbinder and S. D. Odintsov, in General Relativity (Pergamon, Oxford, 1962); F. W.
Class. Quantum Grav. 2, 721 (1985); H. Terazawa, in Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester,

The A. D. Sakharov Memorial Volume, edited by L. V. Rev. Mod. Phys. 48, 393 (1976); L. L. Smalley, Phys.



52 RENORMALIZATION-GROUP FLOW OF THE DILATON POTENTIAL 911

Lett. 61A, 436 (1977); K. Hayashi and Y. Shirafuji,
Prog. Theor. Phys. 64, 866 (1980); 64, 883 (1980); 64,
1435 (1980); 64, 2222 (1980); D. Ivanenko and G. Sar-
danashvily, Phys. Rep. 94, 1 (1983).

[7] R. Percacci, Phys. Lett. 144B, 37 (1984); Nucl. Phys.
B353, 271 (1991).

[8] E. Sezgin and P. van Nieuwenhuizen, Phys. Rev. D 21,
3269 (1980); E. Sezgin, ibid. 24, 1677 (1981); R. Kuhfuss
and J. Nitsch, Gen. Relativ. Gravit. 18, 947 (1986).

[9] N. Nakanishi and I. Ojima, Covariant Operator Formal-
ism of Gauge Theory and Quantum Gravity (World Sci-
entific, Singapore, 1990).

[10] R. Floreanini and R. Percacci, Nucl. Phys. B436, 141
(1995).

[11] R. Floreanini and R. Percacci, Turk. J Phys. (to be pub-
lished).

[12] K. J. Barnes, Ph.D. thesis, 1963; R. J. Rivers, Nuovo
Cimento 34, 387 (1964).

[13] K. G. Wilson and J. B. Kogut, Phys. Rep. 12C, 75
(1974); K. G. Wilson, Rev. Mod: Phys. 47, 774 (1975).

[14] J. Polchinski, Nucl. Phys. B231, 269 (1984).

[15] B. Warr, Ann. Phys. (N.Y.) 183, 1 (1988); C. Becchi, in
Elementary Particles, Field Theory and Statistical Me-
chanics, edited by M. Bonini, G. Marchesini, and E.
Onofri (University of Parma, Parma, 1993); M. Bonini,

M. D’Attanasio, and G. Marchesini, Nucl. Phys. B418,
81 (1994); B421, 429 (1994); B437, 163 (1995).

[16] C. Wetterich, Nucl. Phys. B334, 506 (1990); B352, 529
(1991); Z. Phys. C 57, 451 (1993); 60, 461 (1993); M.
Reuter and C. Wetterich, Nucl. Phys. B391, 147 (1993).

[17] M. Reuter and C. Wetterich, Nucl. Phys. B417, 181
(1994); B427, 291 (1994).

[18] C. Ford, D. R. T. Jones, P. W. Stephenson, and M. B.
Einhorn, Nucl. Phys. B395, 17 (1993).

[19] F. Wegner and A. Houghton, Phys. Rev. A 8, 401 (1973);
A. Hasenfratz and P. Hasenfratz, Nucl. Phys. B270, 685
(1986); C. Wetterich, Phys. Lett. B 301, 90 (1993); S. B.
Liao and J. Polonyi, Phys. Rev. D 51, 4474 (1995).

[20] J. Julve and M. Tonin, Nuovo Cimento B 46, 137 (1978);
A. Salam and J. Strathdee, Phys. Rev. D 18, 4480 (1978).

[21] L. Griguolo and R. Percacci, Report No. SISSA
39/95/EP (unpublished).

[22] N. C. Tsamis and R. P. Woodard, Ann. Phys. (N.Y.)
168, 457 (1986); E. T. Tomboulis, Nucl. Phys. B329,
410 (1990).

[23] P. Baekler, F. W. Hehl, and H. J. Lenzen, in Proceed-
ings of the Third Marcel Grossmann Meeting on General
Relativity, Shanghai, People’s Republic of China, 1982,
edited by H. Ning (North-Holland, Amsterdam, 1983).



