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Robinson-Trautman radiative space-times with a positive cosmological constant are studied by
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explicit models exhibiting the cosmic no-hair conjecture and black-hole formation under the presence
of gravitational waves.
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I. INTRODUCTION

Cosmological no-hair conjectures have been discussed
in both relativistic and Newtonian contexts for more than
a decade (see, e.g. , [1,2] for reviews and a number of ref-
erences). The most common version claims that all ex-
panding universes with a positive cosmological constant
approach the de Sitter space-time locally. If an inflation-
ary phase (described by the de Sitter universe) is really
an "attractor" of cosmological space-times with positive
A, the whole inflationary scenario becomes a more nat-
ural indication of the present isotropy and homogeneity
of the Universe.

The cosmic no-hair conjecture has been studied under
various additional assumptions. For example, it was rig-
orously demonstrated within the Bianchi cosmologies [3].
Counterexamples, however, were also found. A simple
counterexample is given by the Schwarzschild —de Sitter
space-time: the metric does not evolve into the de Sit-
ter universe everywhere. Nevertheless, already Gibbons
and Hawking [4] speculated that under the presence of a
black hole, a space-time with positive cosmological con-
stant would settle down to one of the Kerr —Newman —de
Sit ter solutions.

Just recently, the cosmic no-hair conjecture was also
investigated under the presence of gravitational waves.
Maeda, Nakamura, and their collaborators [5] have ana-
lyzed the dynamical evolution of axisymmetric gravita-
tional waves in the asymptotically de Sitter space-time
by using numerical computations. Their numerical work
indicates that either the space-time evolves into the de
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Sitter space-time with small perturbations, or that a
Schwarzschild —de Sitter —like space-time arises.

The purpose of the present work is to study the cos-
mic no-hair conjecture under the presence of gravita-
tional waves by using analytical methods. Simultane-
ously, we shall discuss the formation of a Schwarzschild-
de Sitter black hole in a vacuum radiative space-time
with a positive cosmological constant. The model space-
times used in our discussion are represented by the
Robinson-Trautman metrics with A & 0. They will
also be referred to as the "cosmological" Robinson-
Trautman space-times. (Very recently, black-hole space-
times with A & 0 have been discussed extensively in var-
ious contexts see, e.g. , [6] and references therein. )

It is well known that the Robinson-Trautman metrics
are the general vacuum solutions which admit a geodesic,
shear-&ee, and twist-free null congruence of diverging
rays [7, 8]. The best candidates for describing gravita-
tional radiation from isolated sources are the Robinson-
Trautman metrics of the Petrov type II, which are asymp-
totically flat and, in contrast with "traditional" belief,
contain no nodal singularities although, in general, a
naked singularity is present at the center. These space-
times have attracted an increased attention in the last
decade, in particular in the. works by Lukacs et al. [9],
Schmidt [10], Rendall [11],Singleton [12], and, most re-
cently, by Chrusciel [13, 14] and Chrusciel and Single-
ton [15]. (We refer the reader to the last three papers
for further references. ) In these studies the Robinson-
Trautman space-times were shown to exist globally for
all positive "times, " and to converge asymptotically to
a Schwarzschild metric. Interestingly, the extension of
these space-times across the "Schwarzschild-like" event
horizon can only be made with a finite degree of smooth-
ness. All these rigorous studies are based on the deriva-
tion and analysis of an asymptotic expansion describing
the long-tim. e behavior of the solutions of the nonlinear,
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parabolic Robinson- Trautman equation.
The Robinson- Trautman metrics can easily be general-

ized to solve the vacuum Einstein equations with a non-
vanishing A [16]. The results proving the global exis-
tence and convergence of the solutions of the Robinson-
Trautman equation can be taken over from the previous
studies since A does not explicitly enter this equation.

In the next section we shall review the recent mathe-
matical studies of the Robinson-Trautman equation. We
try to give an intuitive ("physical" ) summary of the basic
results obtained by using rigorous mathematical concepts
and techniques. Section III is devoted to the analysis of
the Schwarzschild —de Sitter solution. Its global structure
is first described in terms of Kruskal-type coordinates.
Then synchronous (I,emaitre-type) coordinates based on
free particles moving radially outwards towards infinity
are introduced, and the properties of the Schwarzschild-
de Sitter space-time are discussed in the context of the
cosmic no-hair conjecture. The global structure of the
Robinson-Trautman space-times of the Petrov type II
with A ) 0 is analyzed in Sec. IV. It is shown that
these space-times approach the Schwarzschild —de Sitter
space-time in a certain limit. They admit a smooth fu-
ture (spacelike) infinity but, in general, a smooth past
infinity does not exist (or, vice versa). The continuation
of the metric across the "Schwarzschild —de Sitter —like"
black-hole horizon can be made with a higher degree of
smoothness than in the corresponding cases with A = 0.

Finally, in Sec. V the asymptotic properties of the
Robinson-Trautman space-times with A ) 0 are studied
at future in6nity and the validity of the cosmic no-hair
conjecture is explicitly demonstrated. The results are
briefly summarized and open problems indicated in Sec.
VI.

Some of the following results were presented in a pre-
liminary form in [17].

II. THE GLOBAL STRUCTURE OF THE
ROBINSON- TRAUTMAN SPACE- TIMES

'WITH A = 0

(see, e.g. , [14, 13, 15]) by introducing a smooth metric
gP&(x') on a two-dimensional, compact, orientable Rie-
mannian manifold M and a u-dependent family of two-
metrics,

g-b = [f(u x )]
' g.'a (4)

which, with respect to the local stereographic coordinate
(, take the form 2P d(d(. In general, the last term in

(1) can be written as r f g &dx~dx, and the function

f, as a consequence of the vacuum equations, satisfies

(,0)
Pp ——1+ —(( =

i
cos

2 i 2j
2Pp d(d( = de +sin Od rp,

Lp lnPp ——1, Bo ——+2 .
(8)

The metric (1) with P = Pp is just the Schwarzschild
metric. Writing then [cf. (4)]

P= fPp,

24 g

where B is the curvature scalar and L~ the Laplacian of
the metric g g. Using Bo and Ao to denote the curvature
scalar and the Laplacian of g &, one has

R = f (Rp+2Apln f), Ag ——f Ap . (6)

In general, JM can have the topology of a two-torus or be
a higher genus surface; however, the corresponding space-
times are then not asymptotically fiat at null infinity [14].
Equation (5) is known in the mathematical literature as
Calabi's equation [18] in dimension 2. It is defined on any
manifold, but here we shall primarily concentrate on the
physical case M = S . Choosing standard coordinates
on the sphere,

0( = v 2e'~ tan —,2'
we obtain

In the standard coordinates, the Robinson- Trautman
metrics have the form (see [7, 8, 16])

ds = @du —2dudr+—2r P dgd(,

where P = P(u, (, (), ( is a complex spatial (stereo-
graphic) coordinate, r g [0, oo) is the affine parameter
along the rays u = const, g = const, and

4 = b, ln P —2r(ln P) „—2m

Here 4 = 2P~B~/0(0( and m is a constant related to
the Bondi mass of the system (m = const can always
be achieved by a coordinate transformation [16]). The
function P satis6es the fourth-order Robinson- Trautman
equation

(ln P) „=— b, A (ln P) .
1

12m

The Robinson-Trautman equation can be formulated

we find the "original" Robinson-Trautman equation (3)
to go over into Calabi's equation (5) with R, A~ given
by (6) (and Rp ——2).

As mentioned in the Introduction, the most general,
rigorous, and detailed analysis of the existence and be-
havior of the solutions of the Robinson-Trautman equa-
tions was recently given by Chrusciel [13, 14] and by
Chrusciel and Singleton [15] (cf. also [10, 19, 12]). We
now very brieHy summarize their main theorems and
propositions; these are formulated and proved by em-
ploying various rigorous mathematical concepts and tech-
niques, but we shall describe them in a simplified, intu-
itive way.

The main result of [13] (see Proposition 5.1 therein)
shows that when fp = f(u = up, x ) is an arbitrary,
sufficiently smooth initial-value function for f, then f
satisfying (5),(6) exists for all times u & up, and there
always exists a constant C such that

~f(u, x ) —fs,h
~

& Ce (10)
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where fs,i, corresponds to a, perhaps boosted,
Schwarzschild solution. (The constant C depends on
the initial data fo.) Therefore, as u ~ +oo, Robinson-
Trautman metrics approach exponentially fast a boosted
Schmarzschild metric. Performing this boost, we can
without loss of generality assume that

fschw = i

(How the boosts can be handled is described in Appendix
B in [13].)

In a subsequent paper [14] Chrusciel found an asymp-
totic expansion of f(u, x ) for large u to have the form

f 1 + f —2u/m + f —4u/m + + f —2Su/m

+f —3ou/m + f 30u—/m + (12)

r=0

where fi, f2, . . . , fi s, . . . are smooth functions on S .
Some of these functions may vanish, but Chrusciel and
Singleton [15] prove that there exist Robinson-Trautman
space-times for which fi s is nonvanishing.

This implies a rather surprising fact that, in gen-
eral, the Robinson- Trautman metrics cannot be smoothly
extended through the null hypersurface 'R+ given by
u = +oo. There exist an infinite number of nonisomet-
ric Robinson- Trautman extensions through '8+ which are
obtained by gluing a given Robinson-Trautman space-
time to any other Robinson-Trautman space-time with
the same Inass, as shown in Fig. l. In particular, we may
join the radiative metrics to the Schwarzschild metric so
that the Robinson- Trautman space-time "settles down"
to the Schwarzschild space-time including the interior of
the Schwarzschild black hole. The extension through the
horizon is C, in general. There exist extensions which
are C through 'R+—an example can be obtained by
gluing a copy of the Robinson-Trautman space-time to
itself, as one does in the Kruskal diagram for two copies
of the Schwarzschild space-time. (The extensions will
even be smoother in special cases in which some of the

coefficients of the terms u~ e ""/ vanish. )
In order to see the smoothness across '8+, one intro-

duces an advanced time coordinate e by v = u+ 2r +
4mln(r/2m —1), and Kruskal-type coordinates u, v by
(see, e.g. , [19])

u = —exp( —u/4m),
v = exp(v/4m) .

[Such coordinates in the context of the Robinson-
Trautman metrics were first used by Tod [19] and taken
over by Chrusciel [14]. Here we modified v used in [19,
14] by a constant additive factor so as to make the di-
mensions in v and in the final metric (14) correct. j The
hypersurface u = +oo now becomes a boundary given by
u = 0. The original metric (1) becomes

where

32m3
exp( —r/2m) dudv —16m'4du'

+2r P dgd(,

—w, Rl,(1 r
q2 12m

(14)

with B and As being given by (6). In terms of u, the
expansion (12) becomes

f =1+ fiu + f2u + . . + fi4u
—4mf -s(ln lul)(u)'"+ f»u

Because of the presence of the ln lul terms, the function f
is not smooth at the u = 0 —indeed it is C if fi s g 0.
The full metric (14) is C, since 4 entering goo contains
the additional factor e / 1/u .

Although from a physical point of view a C func-
tion may appear as good as a smooth function, the dif-
ference between the corresponding metrics is, in princi-
ple, observable. The resulting space-times, despite the
fact that they have a "Schwarzschild-like" event horizon
at r = 2m, should better be called Robinson-Trautman
black holes.

Before we turn to the cosmological Robinson-
Trautman metrics we shall discuss some properties of the
Schwarzschild —de Sitter solution.

III. THE SCHWARZSCHILD —de SITTER
METRIC AND SYNCHRONOUS COORDINATES

r =0

FIG. 1. Starting with arbitrary, smooth initial data
for the Robinson- Trautman equation at u = uo, the
Robinson-Trautman metrics converge exponentially fast to a
Schwarzschild metric as u —+ oo. However, the vacuum exten-
sian beyond the null hypersurface 'R+ (u = +oo) that includes,
for example, the interior of the vacuum Schwarzschild black
hole, can only be done with a finite degree of smoothness.
(See the text for more details. )

Although the solution generalizing the Schwarzschild
metric to the case of a nonvanishing cosmological con-
stant was found in 1918 [20], its global structure has been
analyzed in detail only recently [21]. Gibbons and Hawk-
ing [4] and Lake and Roeder [22 give a brief discussion of
its conformal diagram; however, only Bazanski and Fer-
rari [21] performed its "Kruskalization" in detail. They
considered the general case of a Schwarzschild black hole
in a de Sitter universe, thus omitting "extreme" black
holes and naked singularities. In the following, we shall
also restrict ourselves to such general black-hole cases.

In the standard Schwarzschild-type coordinates the
metric reads
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f 2m A,), f 2m A, ) -'
ds' = —

l
1 — — r—'

l

dt'+
l

i — — r—'
l3 ) ( r 3 )

+r (d8 + sin 8drp ), (17)

0&9Am &1
is satisfied. Hereafter we shall assume this, if not stated
otherwise. As shown in [21], the metric (17) can be writ-
ten in the form

where m & 0 is the mass of the central hole and A ) 0
is the "repulsive" cosmological constant. If A = 0 we get
the Schwarzschild metric; for m = 0 we get the de Sitter
metric in static coordinates. Neither of these coordinate
systems covers the whole manifold. The Killing vector
8/Bt is timelike in a certain region of r provided that the
condition

u=t —r*, (24)

instead of t, we convert the metrics (17), and (19) into,
respectively,

( 2m A,ds = —
l

1 — — r —du —2dvdr
r 3

+r (d8 +. sin 8d(p )
= —@du —2dudr+ r (d8 + sin 8dp ). (25)

2m & r+ & 3m, 2m & b+ ( +oo, (26)

This is exactly the Robinson-Trautman form (1). (It is
also the generalization of the Schwarzschild metric in the
outgoing Eddington-Finkelstein coordinates. ) It is not
diKcult to show that for fixed m but increasing A from
A = 0 to A = 1/9m, the parameters r+ and b+ mono-
tonically increase within the intervals:

ds = C(r)—dt +4 (r)dr +r (d8 +sin 8d(p ),
(»)

whereas r++ decreases:

+oo&r++ &3m. (27)
where

4(r) = (r —r+) (r++ —r) (r + r+ + r++)
r(r+2 + r+ r++ + r+2+)

(2o)

2

2
r++

2

(n 4~1
cos —+ —

l3 3 )
cos—

3 '

(o. 2~)
cos

l

—+ —
l~3 3) '

(2i)

where cos o. = —3m@ A. Here r = r+ describes the black-
hole horizon, and r = r++ is the cosmological horizon.
Only r = 0 is a real singularity. For r+ ( r ( r++, the
solution (17) is static.

In [21], Kruskal-type coordinate systems are found in
which the metric (19) is regular in the neighborhood of
either the black-hole horizon or the cosmological hori-
zon. Here we shall first convert the metric (17) into a
Robinson- Trautman form.

Define the usual "tortoise-type" coordinate r* by

lr —r+
Ir*= —= 6+in

4(r) r + r+ + r++

—b++ ln + b+ lnr+r++r++ E r+ )

where
r+ r++

~+ = A, ~++ =—
1 — r+ 1 r++

1
2

(22)

(23)

In contrast with [21], we have added a constant term
to r*; this makes the limit A + 0 more transparent:
r++ ~ ~, 3 r++ ~ 1, b++ ~ 2r++, b+ —+ r+. Now, byA 1

introducing the retarded time coordinate

The parameters r+, r++, 0 ( r+ ( r++, are two real
positive roots of the equation goo

——0; the third root r
is negative. These roots can be parametrized as (see, e.g. ,

[23])

Further, it is easy to see that b++ & 0; it decreases from
+oo for A = 0 to a minimum positive value, and then
increases back to +oo for A ~ 1/9m . At the black-hole
horizon, we have t —+ +ao, r* ~ —oo, and u —+ +oo;
at the cosmological horizon, t —+ +oo, r* ~ +oo, and
u remains finite. On the other hand, the advanced time
coordinate,

(28)

remains finite at the black-hole horizon, while v ~ +oo
at the cosmological horizon.

In order to cover the black-hole horizon by regular co-
ordinates, let us introduce Kruskal-type null coordinates

u = —exp( —u/2b'+),
v = exp(v/2h+) .

The metric (25) now reads

1

2 +
)
i+8++ /8+

4Ab2 r+e ~

r++3++.
x (r + r+ + r++) ++ dztdv

+r (d8 + sin 8dy ) .

(29)

(3o)

Letting A ~ 0, we obtain back the metric (14) with
4 = 0. Clearly, at the black-hole horizon with r = r+,
u = 0, v finite, the metric (30) is regular. Analogously,
we can find Kruskal-type null coordinates covering the
cosmological horizon in which the metric is again regu-
lar; since, however, we shall not need them in the fol-
lowing, we refer to [21]. The conformal diagram of the
Schwarzschild —de Sitter space-time is given in Fig. 2. No-
tice that both future and past infinities are spacelike as
a consequence of A ) 0. (In the following section, this
point is discussed for a general cosmological Robinson-
Traut man space-time. )

Next, we shall introduce the synchronous (Lemaitre-
type) coordinates in the Schwarzschild —de Sitter space-
time. These coordinates have not been discussed so far
in literature. We connect new coordinates with free par-
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r=D 2+ (r = oo)

where

(1 Zs)2
4Z~

g —H (R+~)

and we introduced the "Hubble paraxneter"

(40)

r=0 (r = oo) (41)

FIG. 2. The conformal diagram for the Schwarzschild —de
Sitter space-time. The world line R = const (0 = const,
&p = const) represents the history of a free particle moving
radially outward across the past black-hole horizon and across
the cosmological horizon towards future (spacelike) infinity.
For an observer moving with such a particle, all "traces" of
the hole disappear as he approaches Z'+; only the de Sitter
geometry persists.

In the coordinates r, R the metric (17) reads

(2m
ds = dr +—

~
+ H r

~

dR ~r (de +sin gdy2),

(42)

with r being given in term of R and r by (38)—(40). The
metric is regular at the horizons r+, r++. The parti-
cles with B = const, 0 = const, &p = const, satisfy the
equations [see (32), (33)]

ticles moving radially outward across the past black-hole
horizon and across the cosmological horizon towards in-
Bnity since such coordinates are suitable for the discus-
sion of the cosmic no-hair conjecture. (The world line of
such a particle is illustrated in Fig. 2.)

Introduce the function

(31)

dr (2m
dt (r
dr (2m
dr qr
dt—=i1-
dr

(43)

and the coordinates ~, B by the relations

h,
dv =dt — —dr,

1 —h2

1dR= dt+ — dr,
h 1 —h2

or, inversely,

dr = h(dR+ dr),
dt =,(dr + Ii'dR) .

1 —h2

Hence, we obtain r(r, R) by integrating (34)

i2mR+r =
I

+ —r'
I

dr.
)

The integral can be calculated explicitly to yield

(32)

(33)

(34)

(35)

(36)

Hence, these particles, with 7. being their proper time,
move &om the singularity (r = 0, R+ r = 0), across the
past black-hole horizon (r = r+, t = —oo), through the
static region (r+ ( r ( r++, dt/dr ) 0), and then can-
tinue across the cosmological horizon (r = r++, t = +oo)
towards infinity (r = oo, r —+ +oo) (cf. Fig. 2). The
equation for dr/dr also shows immediately that the par-
ticles cross both horizons in a finite proper time and reach
r = oo only with 7 —+ oo. Their local velocity, as mea-
sured by local static observers at r = const, 0 = const,
p = const in the static region r g (r+, r++), is given

by vi, = dli, /dri, = (2m/r + Hzrz) 2. At the hori-
zons v~, ——1 since the local "static" observers themselves
"move" there with the velocity of light.

In order to bring the metric (42) into the form in which
the de Sitter metric in "standard" coordinates arises ex-
plicitly, we relabel the radial comoving coordinate B as
a new coordinate y given by

1R+ r = ln 2/Y(Y+ 1) + 2Y+ 1 + const,
/3A

(37) The metric (42) then reads

(44)

where

Y= rA

6m
(38)

Relation (37) can be inverted (we put the additive con-
stant equal zero),

ds = —d7. +e (1 —Z )s

(1+Z')
x

q1 —Zs) dy +y (d8 +sin 8dp)

where Z is given by (40), or

(45)
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fD 3
(46)

This is the exact form of the Schwarzschild —de Sitter met-
ric in the outgoing comoving coordinates. Hence it de-
scribes a white hole in the de Sitter universe (cf. Fig. 2).
The past central singularity at r = 0 is given by Z = 1.
As r increases, Z decreases; at r —+ oo, or B+ 7. ~ oo,
we find Z ~ 0, and the metric (45) turns into

ds = —d'r + e dZ + Z (d0 + sin Odp ) . (47)

This is the de Sitter metric written in the standard
synchronous Friedmann-Robertson-Walker form with the
exponentially growing ("inflationary" ) expansion factor.
Keeping the leading order terms in the expansion of the
Schwarzschild —de Sitter metric (45) for 7 ~ oo, we ob-
tain

ds = d7. +—e dy +y (d0 +sin Odp )
2m

e 2dy —y (dO + sin Ody )

+O(e' ). (48

Observe that the "traces" of the central black hole, char-
acterized by the terms in which the mass m enters, com-
pletely disappear as 7. —+ ao in full agreement with the
cosmic no-hair conjecture. Of course, a completely dif-
ferent picture is seen by observers falling into the hole

those, however, are not described by our "outgoing"
comoving coordinates.

Before concluding this section, let us give the asymp-
totic relation between the Robinson- Trautman-type coor-
dinates {u,r, 0, p) and the inflationary-type coordinates
(w, y, 0, p) for large r and large 7 in the present case of
the Schwarzschild —de Sitter space-time. It is easy to see
that the exact relation (37) for large r and large r implies

which implies ye = y'eH + O(e ). Therefore,
omitting primes, we can write down the asymptotic re-
lations at j+ (r —+ oo, w ~ oo) between the coordinate
systems (u, r) and (w, g) in the form in which the leading
terms are both linear in y:

IV. THE GLOBAL STRUCTURE OF THE
ROBINSON- TRAUTMAN SPACE- TIMES

WITH AQO

When a Robinson-Trautman space-time with A = 0 is
known in the standard form (1), it is straightforward to
generalize it to the case of a nonvanishing A (cf. [16]).
The metric still keeps the form (1) with P satisfying the
Robinson-Trautman equation (3). The only place where
A enters is the function C. The cosmological Robinson-
Trautman metric reads

ds = 4'~du ——2dudr + 2r P d(d(, (55)

where

C~ = A ln P —2r(ln P) „—2m A—r
3 (56)

We may still write P = f Po, as in Eq. (9), where Po satis-
fies (8) and f satisfies (5), (6). Since A does not enter the

de Sitter locally

r =ye +O(l),
"=H~+O(e )

These relations obtained in the special case of the
Schwarzschild —de Sitter space-time will motivate our
ansatz for an asymptotic transformation for general
Robinson- Trautman space-times in Sec. V.

H(R+~) (49)
~ ~ ~

i.e. , regarding (44), we obtain asymptotically, at r -+ oo,
7 H oo)

Hw + O(1) + O (
Mw)—

Next, for large r we can integrate (32)

H~ = Ht+ lnHr+ const,

(50)

(51)

and by realizing that r* -+ const at r ~ oo [see (22)],
we can choose a constant in the last relation so that [cf.
(24)]

Schwa

smological
with%) 0

warzschild)
&0

1
e " e (IIr) '+. = —+0 (e )Hy (52)

FI~ (~ I) 2 H7. ' —R'~' +'
—2H~' +f (II l)3 (53)

Finally, let us note that the de Sitter metric (47) pre-
serves its form at large w up to terms e under the
transformation (v, y) + (7', y') such that

FIG. 3. Starting with arbitrary, smooth initial data at u =
uo, the Robinson-Trautman metrics with positive cosmologi-
cal constant converge exponentially fast to a Schwarzschild —de
Sitter metric as u —+ oo. In the neighborhood of P at future
infinity Z+, the metric is approaching the de Sitter metric ex-
ponentially fast. Although traces of gravitational waves will
persist in other regions of future inanity, all geodesic observers
(such as Oi) will observe the metric to approach the de Sitter
metric exponentially fast within their past light cone. Ob-
server O2 falls into the black hole. The metric at the horizon
'R+ has only a finite degree of smoothness, however, although
this can be higher than in the case with A = 0.
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evolution equation for f, we may take over the results for
A = 0 described in Sec. II. The Robinson- Trautman met-
ric will now approach the Schwarzschild —de Sitter metric
in the form (25) as u ~ oo (see Fig. 3). The approach of f
to its Schwarzschild —de Sitter form is again characterized
by the inequality (10) and by the asymptotic expansion
(12). We shall also assume an analogue of (11): i.e. ,

fschvr de —si (57)

The presence of a positive cosmological constant does
not affect the smoothness of future infinity in these space-
times; however, the future null infinity becomes spacelike
in contrast to the cases with A = 0 (cf. Fig. 3). The
smoothness of X+ is easily seen if one introduces an in-
verse radial coordinate I = r and uses 0 = l as a
conformal factor. One Gnds

0 ds = 2dudl —l @~du ~ 2P 2dgd(

where

A
C'p = 6 ln P —2l (ln P) „—2ml ——l (59)

The full metric now takes the form

4Ab2 r~e ~ z~h /bp p ++ +
3r++r

x (r + r~ + rii) ++~ +dudv

—4h~@gdu g 2r P d(d(, (61)

where

R —l~ A, R— l,
q2 12m ' ) (62)

and R, Rp, P, Pp, Ag are given by Eqs. (6)—(9), with f
being of the form (60) above. The constant parameters
r~, r~~, b~, b+~ are the same as in Sec. III.

It is interesting to see how the presence of A infIu-
ences the smoothness of the extension of the Robinson-
Trautman metrics across the null hypersurface 'R+
("horizon") given by u = oo, or u = 0. In particular,
we may join the radiative Robinson- Trautman metrics to

It is easy to see that I = 0 is a regular hypersurface for
smooth P(u, g, g); and it is spacelike due to the presence
of the last term in 4~. As in the Robinson-Trautman
space-times with A = 0, past null infinity will not exist,
in general, because the Robinson-Trautman (parabolic)
equation does not admit smooth solutions both into the
future and into the past (cf e.g. , .[14]).

The presence of the cosmological constant, however,
may have a considerable effect on the smoothness of the
extensions through the null hypersurface A+ given by
u = +oo. The transformation to the Kruskal-type null
coordinates is now given by (29). Hence, instead of (16),
we find the expansion of f in terms of u to read

&=1+&ilul'"' +&2lul'"' +" +&i4lul""'
—2b+fi-s(»lul)lul""~ + &»lul""~ +"

(60)

the Schwarzschild —de Sitter metric so that a Robinson-
Trautman space-time with A g 0 "settles down" to the
Schwarzschild —de Sitter space-time including the interior
of the Schwarzschild —de Sitter black hole (see Fig. 3). As
summarized in Sec. II, such an extension will, in gen-
eral, be Cii in the case of vanishing A. With A g 0,
much higher smoothness can be obtained. Indeed, since
b~ ——r~/(1 —Ar+) [see (23)], the horizon 'R+ can be
made "arbitrarily smooth" by letting A approach arbi-
trarily close its extremal value, A -+ 1/9m (r~ ~ 3m),
which corresponds to an almost extreme Schwarzschild-
de Sitter black hole. Then b+ becomes arbitrarily large
and the terms ]ul

"~ +~ l, k = 4, 8, . . ., appearing in

(60), will guarantee arbitrarily high smoothness of the
function f at u = 0; this in turn determines the smooth-
ness of the functions R, P and thus of the full metric (61)
at u = 0. (Notice that C ~ entering gpp contains, in addi-
tion, the factor e"~ + —1/u which, however, decreases
the smoothness of the metric by 2 only. )

On the other hand, there are cases when the presence of
A can decrease the smoothness of the metric (61) across
u = 0. If 48~/m is not an integer, the second term in the
expansion (60), filul +~, is already not smooth. Since
4b~/m & 8 [see (26)], the function f is then at least Cs
and the full metric is at least t . For those values of A
which imply 4b~/m equals an integer, the smoothness is
always better than for A = 0. In general, denoting by n
the largest integer smaller than 4b~/m, the metric (61)
is at least C at u = 0. As mentioned above, n ~ oo
with 4b~/m m oo.

We also expect to find analogues of the past black-
hole horizon and the cosmological horizon of the
Schwarzschild —de Sitter metric in a Robinson- Trautman
solution with A ) 0 (see Fig. 3). Possible analogues can
be considered in a way similar to Tod's treatment [19] for
the case A = 0.

V. THE COSMIC NO-HAIR CON JEC TURK

After having examined the behavior of the cosmologi-
cal Robinson-Wautman metrics at the null hypersurface
u ~ +oo, we shall now turn to their properties close
to X+, i.e., near r i oo, u finite (cf. Fig. 3). If the
cosmic no-hair conjecture is to be verified in these space-
times, we should be able to demonstrate that they all
approach the de Sitter space-time locally. For this pur-
pose, it would be sufficient to convert the metrics (55),
with 4'~ given by (56), into the Starobinsky asymptotic
form [24]. As will be indicated below, such an asymptotic
form automatically guarantees that the cosmic no-hair
conjecture is satis6ed.

Starobinsky's form represents the asymptotic behavior
of an inhomogeneous cosmological model with A ) 0 in
synchronous coordinates at large r (r being the proper
time measured by the observers at rest in these syn-
chronous coordinates). In Sec. III, the Starobinsky form
of the pure Schwarzschild —de Sitter metric was obtained
in Eq. (48). We now wish to find a similar form under
the presence of gravitational waves described by a general
Robinson- Trautman metric (55).

In order to convert the metric (55) into the de-
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sired form, we erst make an ansatz which is inspired
by the asymptotic form of the transformation (54) be-
tween the Robinson-Trautman-type coordinates and the
synchronous ("inflationary-type") coordinates for the
Schwarzschild —de Sitter metric.

Assume that the required transformation is of the
asymptotic form

r =Xe" —H '(f-;/f-)+) &-e ""
n=1

eH" = Hg —e-H

ds = dw +—e dy + (y/ f Po) 2d(d(

+h('. ) d~'d~& + ~-
22 P2

—mH7-h(m) d p, d V
pv (64)

Here f depends only on the spatial coordinates (x', i =
1, 2, 3} = (y, (, (};all h~ 's appearing in (64) also de-
pend only on z', but (z~}= (w, z'} so that the last two
terms in (64) involve dw as well. Nevertheless, the non-

diagonal components of the metric hp, hp, . . . can be(1) (2)

transformed away by transformations of the form

(m —1) (m) + —(m+2) H~
m

((m —1) ((m) + b (m+2)Hr— (65)

where m = 1, 2, 3, . . ., (y( ),(,( o)} = ()(, (, (}, and
the coefffcients a, b depend on (y( ), (( ), (( )}.Af-

ter choosing a's and b's so that ho. ——0, the metric (64)
reads

ds = —dv + e dy + (y/f ) (1+ z(() 2d(d(

+ —mH7 h( ) d-xd-j + —mH7 h( ) d 2
2

where H = gA/3, @ are functions of y, (,( to be
chosen appropriately, and f = f ~

~ = f (u -+
H ln ~Hy~, (, () is determined by the function f (u, (, ()
entering the metric (55). (Whenever the gravitational
waves are present, f g 1; only fs,h~ g, s; = 1 [cf. (57)].}
Under transformation (63), the metric (55) becomes

brings the metric (55) into the asymptotic form

ds = dr—+ e dy + f ~y2 (d82 + sin 8dy2)j

—mH7 h(m) d id (68)
m=o

ds = d~ + e —a,~(x') dx'dx' + O(l) . (69)

Consider a world line x' = x(p) const. It is a geodesic

(in Fig. 3 indicated by Oq). Make a linear transformation
z' ~ z', x' —z(e)

——A'„x" such that a;~(0) = b;~. Now

introduce new coordinates y', T by

x' =y'e /(1 —H R )&

e = e (1 —H'R') ~ (70)

where R2 = (y ) + (y ) + (ys) 2. Putting y
Rsinocosp, y = Bsinesinp, y = Bcose, we And that
(69) takes the form

where we have reintroduced the standard angular coor-
dinates 8, p [q = ~2e'~tan(8/2) —cf. Eq. (7)], f
f ~

= f(u = H ln ~Hy~, 8, p), and h, depend on

(x'}= (y, 8, y}only. This asymptotic form of the metric
shows explicitly that for v —+ oo the space-time metric
does not approach the de Sitter metric globally. In con-
trast with the case of the pure Schwarzschild —de Sitter
black hole where outside of the hole all its "traces" dis-
appear as w -+ oo [cf. Eq. (47)], the gravitational waves
now leave "an imprint" on the X+ which is demonstrated
by the presence of the function f in the "angular" part
of the metric (68). Only as u -+ oo, y -+ oo, r -+ oo, so
that f + 1 (see the point P in Fig. 3), do the Robinson-
Trautman metrics approach the de Sitter metric since the
terms in (68) with the factor e H dominate those pro-
portional to e

In fact, the cosmic no-hair conjecture claims that a uni-
verse with a positive cosmological constant approaches
exponentially fast the de Sitter space-time only locally in
general. That this is so in our case can easily be demon-
strated as follows (cf. [25]).

Write the metric (68) in the form

m=p m=2

(66)

Furthermore, the metric coefficients hos (x(')) can be
transformed away by performing a transformation of the
form (63) in which g„are chosen appropriately.

To summarize, a transformation of the form

= —(1 ——R /dT +/1 — R2I dR2—
) & 3 )

+R (d8 + sin 8dP ) + ) e a( ) dy~dy
m=1

(71)

r =ye —H (f,„/f )+) A e
n=l

Hu H Hr+ ) ~— nHr— (67)

(, =~+ ) C„e-"H,
n=3

in which A, H, C are suitable functions of y, g, g

where a~(„) are functions of (y'} = (R, 8, P},and y = T
The transformation (70) cannot be applied globally it
is meaningful only for 1—H B ) 0. A geodesic observer
(say Oq in Fig. 3) moving with y = 0 will see, inside his
past light cone, the space-time approach the de Sitter
space-time exponentially fast as T ~ oo. Thus for a
&eely falling observer the observable universe becomes
quite bald. This is what the cosmic no-hair conjecture
claims.
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VI. CONCLUDING REMARKS

Starting from the exact model radiative space-times
with a positive cosmological constant, we demonstrated
the validity of the cosmic no-hair conjecture by purely
analytic means. We have also shown that these cosmo-
logical Robinson-Trautman solutions settle down to the
Schwarzschild —de Sitter solution at large retarded times.
The interior of a Schwarzschild —de Sitter black hole
can be joined to an "external" cosmological Robinson-
Trautman space-time across the horizon with a higher
degree of smoothness than in the corresponding case with
A = 0. As far as we are aware, these models represent
the only exact analytic demonstration of the cosmic no-
hair conjecture under the presence of gravitational waves.
They also appear to be the only exact examples of black-
hole formation in nonspherical space-times which are not
asymptotically flat. Hopefully, these models may serve
as tests of various approximation methods, and as test
beds in numerical studies of more realistic situations.

Finally, let us note that the ideas discussed here can

also be applied to the Robinson-Trautman space-times
containing an incoherent homogeneous radiation Geld
(null fluid). For A = 0, such space-times were studied
by Bicak and Perjes [26] who showed that they approach
the Vaidya metric asymptotically. With A g 0 the ra-
diating Vaidya metric in the de Sitter universe should
arise.
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