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Evolution of distorted rotating black holes. II. Dynamics and analysis
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We have developed a numerical code to study the evolution of distorted, rotating black holes. This
code is used to evolve a new family of black hole initial data sets corresponding to distorted "Kerr"
holes with a wide range of rotation parameters, and distorted Schwarzschild black holes with odd-
parity radiation. Rotating black holes with rotation parameters as high as a/m = 0.87 are evolved
and analyzed in this paper. The evolutions are generally carried out to about t = 100M, where M is
the ADM mass. We have extracted both the even- and odd-parity gravitational waveforms, and 6nd
the quasinormal modes of the holes to be excited in all cases. We also track the apparent horizons
of the black holes and Bnd them to be a useful tool for interpreting the numerical results. We are
able to compute the masses of the black holes from the measurements of their apparent horizons,
as well as the total energy radiated and Bnd their sum to be in excellent agreement with the ADM
mass.

PACS number(s): 04.30.Db, 04.25.Dm, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

In this paper we present the first results for the evolu-
tion of initial data sets corresponding to axisymmetric,
rotating vacuum black holes. We developed a numerical
scheme and code based on an extension of earlier work at
NCSA [1—4] on distorted, but nonrotating, axisymmetric
black holes. In a companion paper, referred to henceforth
as paper I [5], we describe the numerical methods, gauge
conditions, and code tests developed for a code to evolve
rotating black hole spacetimes. With this new code we
have been able to evolve and study a new family of dis-
torted rotating black hole data sets. The construction of
these data sets was outlined in paper I, and will be dis-
cussed in another paper in this series [6], which we refer
to as paper III. In this paper we focus on analyzing the
physics of the evolution for a number of di8'erent rotat-
ing black hole data sets, with both even- and odd-parity
radiation. We also consider the evolution of nonrotating
black holes that have been distorted by the presence of
odd-parity gravitational waves.

These rotating black holes can be highly distorted, al-
lowing one to study their nonlinear dynamics. These
studies will be useful not only in understanding rotat-
ing black hole spacetimes, but also in studying the late
stages of black hole collisions with angular momentum,
just after the holes have coalesced. At that time they
will have formed a single, highly distorted rotating hole
similar to the configurations studied here.

In analyzing these rotating black hole evolutions, we
have developed a series of tools that allow us to study
gravitational waves, apparent horizons, and other quan-
tities of interest. Using these tools we have extracted the
waveforms for both the even- and odd-parity radiation
emitted by a distorted rotating black hole, and we find
that the quasinormal modes of the hole are excited. The
extracted waveforms are also used to compute the energy
carried away from the black hole via gravitational waves.

We locate and study the geometry of the apparent hori-
zons in these spacetimes, and find that their geometric
structure can be used as a key tool in analyzing the evo-
lution. We show how to extract information about the
oscillation &equency, the mass, and the angular momen-
tum of the black hole.

The organization of this paper is as follows. In Sec. II
we define the variables used in our simulations and de-
scribe the variety of initial data sets we evolve and an-
alyze in this paper. In Sec. III we present an analysis
of "near zone" results from evolving various initial data
sets, including an analysis of the physics that can be
extracted &om apparent horizons. Section IV contains
a discussion of our extraction methods to compute the
even- and odd-parity radiation in the spacetime, while
Sec. V contains a discussion of the results of evolving the
data sets. Finally, in Sec. VI we conclude and discuss
future directions this research will take.

II. CODE AND INITIAL DATA

The code we developed to evolve rotating black hole
data sets has been discussed in detail in Ref. [5]. We will
not discuss any details of the numerical methods used to
evolve the spacetimes here, but for context we define our
notation for the primary variables used in our code.

A. De6nition of variables

We build on earlier work of Ref. [1,4] on nonrotating
black holes in defining the variables used in our code. Ad-
ditional metric and extrinsic curvature variables must be
introduced to allow for the odd-parity modes present in
this new system. Previously only even-parity modes were
present. We define the variables used in our evolutions
as
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In these expressions g is a logarithmic radial coordi-
nate, and (8,P) are the usual angular coordinates. The
relation between g and the standard radial coordinates
used for Schwarzschild and Kerr black holes is discussed
in paper I. As in Ref. [4], the conformal factor @ is de-
termined on the initial slice and held fixed in time af-
terwards. The introduction of 4 into the extrinsic cur-
vature variables simplifies the evolution equations some-
what. The various factors of sino are included in the
definitions to explicitly account for their behavior near
the axis of symmetry and the equator, as discussed in
paper I.

q = sin 0qG,

qa=qo(e ++e ),
s~ = (g + go)'/~'

(~a)
(~b)

(3c)

The extrinsic curvature is computed following Bowen and
York, with a &ee parameter J that specifies the angular
momentum of the hole. For more details of how the con-
straints are solved, refer to paper I. Here we simply point
out that the Bowen-York solution to the momentum con-
straint is

B. Initial data

H~ —3e 'J,
Hy ——0.

(4a)
(4b)

ds = @ e ~(drI +d8 ) +sin 8dg

where the "Brill wave" function q is given by

TABLE I. This table gives summary data for evolutions
of pure Kerr spacetimes. J is the total angular momentum
of the spacetime; a/rn is the usual rotation parameter in the
Kerr metric.

Case
k1
A:2

J
2.5
5.0

a/m
0.481
0.677

We constructed a new class of initial data sets corre-
sponding to distorted rotating black holes and odd-parity
distorted nonrotating black holes. The construction of
these data sets is described in paper I and in more de-
tail in paper III. Here we brieHy describe the diferent
classes of data sets and describe our parameter choices
for evaluation and analysis. There are three basic fami-
lies of black hole data sets that are evolved and analyzed
in this paper. The first series of data sets, labeled in Ta-
ble I as runs k1 and k2, correspond to Kerr black holes
with rotation parameters a/m = 0.48 and 0.68, respec-
tively. As described in paper I, these data sets have been
transformed &om Boyer-Lindquist coordinates into our
logarithmic g coordinates and then evolved.

The second family of initial data sets that we consider
are related to the rotating black hole initial data of Bowen
and York [7], but we have added a "Brill wave" to distort
them with a construction similar to that of Ref. [8]. As
described in paper I, the initial three-metric p g is chosen
to be

We note that for J = 0, the data sets reduce to the
"Bnll wave plus black hole" distorted black hole data sets
described in Ref. [1], and for the Brill wave parameter
q = 0 the Bowen- York solutions result.

The initial data sets described in Table II whose name
begins with an r (r0—r5) describe a sequence of distorted
rotating holes of increasing rotation. The run rO has no
angular momentum, while run r5 is a pure Bowen-York
black hole without a Brill wave added, but with a signif-
icant amount of rotation. As we will see in Sec. IIIA3
below, it is rotating so fast (a/m = 0.87) that its hori-
zon cannot be completely embedded in three-dimensional
Euclidean space, yet we are able to evolve it accurately.

Case
r0
r1
r2
r3
r4
r5
o1
o2

J
0.0
2.5
5.0

10.0
10.0
15.0
0.0
0.0

Qo
1.0
1.0
1.0
1.0
0.5
0.0
2.0
2.0

1.0
1.0
1.0
1.0
1.0
NA

1.0
1.0

gp
1.0
1.0
1.0
1.0
0.0
NA

2.0
2.0

2
2
2
2
2

NA

NA
NA

NA
NA
NA
NA
NA
NA

TABLE II. This table gives input parameters for each of
the runs. J describes the amount of angular momentum in
the system, Qo the amplitude of the Brill wave placed in the
spacetime, 0 gives the width of the Brill wave, gp gives the lo-
cation of the peak of the Brill wave distortion, and the param-
eter n (n') describes the radial dependence of the distortion
in the metric (extrinsic curvature).
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Finally we have considered a third family of distorted
black hole data sets that correspond to odd-parity radi-
ation superimposed on nonrotating black holes. In this
case the three-metric p p is described by the same Brill
wave parameters in Eq. (3) above, but the extrinsic cur-
vature is taken to be

H@ = @ q~ (n' + I) —(2 + n') sin 8 sin" 9, (5a)

H~ ———O' B„qG.cos 0 sin 9. (5b)

The parameter n' is used. to describe an "odd-parity" dis-
tortion. It must be odd, and have a value of at least 3.
This family of data sets does not describe rotating black
holes, as discussed in paper I and in more detail in pa-
per III. The two data sets in Table II whose name begins
with o (ol and o2) represent a family of odd-parity distor-
tions of nonrotating holes. As we will see in Sec. IIIA3
below, the angular index n' is related to the dominant
S mode in the distortion of these holes. Both an n' = 3
and an n' = 5 data set are given because the former emit-
ted virtually all of its radiation in the E = 3 mode and
we were also interested in examining significant E = 5
radiation from an odd-parity distortion.

We summarize the dimensionless angular momentum
parameter (a/m) of these spacetimes in Table III where
three difFerent measurements are tabulated. The mean-
ings of the columns are as follows: (a/m);„= J/MzDM,
and would be the rotation parameter of the system if
none of the radiation escapes to infinity. (a/m)
J/M&H, where MAH is the mass of the apparent horizon
defined by Eq. (10) below, and would be the rotation pa-
rameter of the final system if the area of the black hole
did not increase at all during the evolution. These two
measurements are made on the initial data sets without
evolving them. Finally (a/m)„ is the value of (a/m) ob-
tained by measuring the shape of the apparent horizon
surface during the evolution as discussed below and in
Ref. [9].

III. NEAR ZONE I H YSICS

In this section, we discuss details of the "near zone"
evolution of several black holes, focusing on the appar-
ent horizon. We present an apparent horizon finder, and
discuss the dynamics of the apparent horizon as a tool to
study the physics of the near zone. Although extremely
important to the numerical evolution, the behavior of the
metric functions themselves generally does not illuminate
the physics of the system, and is not discussed here. We
refer the interested reader to paper I for discussion of
metric evolution.

A. Horil, ons

In this section we examine the properties of the black
hole apparent horizons in the spacetimes evolved here.
The apparent horizon is defined as the outermost trapped
surface. Because a knowledge of the future is required to
identify the event horizon, the concept of an apparent
horizon is useful in numerical relativity. The location of
the apparent horizon depends only on information known
within a given time slice, is always inside the event hori-
zon [10], and coincides with the event horizon in a sta-
tionary spacetime. As shown in Ref. [11],where studies
of perturbed event and apparent horizons were made, ap-
parent horizons can closely approximate the event hori-
zons even in dynamic spacetimes, and share many dy-
namical features with them. In this paper we focus on
the apparent horizon, but will treat the event horizon of
highly distorted black holes in a future work.

Mathematically the apparent horizon condition is ex-
pressed by requiring the expansion of all outgoing null
normals to the surface to vanish. This condition can be
written as [12]

D s +Kgs s —try=0,

Case
r0
r1
r2
r3
r4
r5

m znin

0.000
0.342
0.432
0.511
0.696
0.868

m max

0.000
0.600
0.698
0.759
0.827
0.886

G m cr
0.000
0.351
0.436
0.512
0.703
0.870

TABLE III. This is a table of a/m values calculated from
the initial data. (a/m);„= J/M~DM on the initial slice and
will be the final value if all the energy in the spacetime goes
into the horizon, and (a/m) „=J/MAH on the initial slice
which will be the final value if the surface area of the hori-
zon does not increase during the evolution. The parameter
(a/m)„ is the angular momentum extracted from the horizon.

where s is the outward-pointing normal vector to the
surface in the three-dimensional subspace. If such a sur-
face exists, it is said to be a marginally trapped surface.
In some cases multiple surfaces satisfying this condition
can be found, and the outermost one is then defined to
be the apparent horizon. The apparent horizon finder
searches for a solution to this equation by making an
initial guess, and then iteratively solving the above non-
linear equation via the Newton-Raphson method until we
obtain the desired accuracy [9].

The initial guess that we use is an g =const surface
where the value of g used is the outermost value which
satisfies the condition

1 ( 0„4' O„DI H~4" + " —2
D p D

0.480
0.675

0.481
0.677

0.481
0.67? on the equator (0 = vr/2). This may be interpreted as the

condition that the light rays confined to the equatorial



52 EVOLUTION OF DISTORTED ROTATING. . . . II. 873

plane have null expansion. The radius thus determined
provides us with a good estimate of the position of the ap-
parent horizon. This technique proved valuable because
it made it easier to follow the horizon when it jumped
outward from the throat at about t 10M. This partic-
ular complication is a result of using an antisymmetric
lapse that vanishes on the throat of the black hole, pre-
venting evolution there (except through the shift terms).
The initial apparent horizon is usually located on the
throat (the throat is guaranteed to be a minimal surface,
but not necessarily an apparent horizon). With a lapse
that vanishes on the throat, the horizon often remains
there until some evolution has occurred, at which point
it may jump out discontinuously. This technique does
not require the horizon position &om previous time steps
to be recorded, allowing us to find the horizon as in&e-
quently as we wish, or to find it again if it becomes lost.
This trick has been quite successful and uses up little
CPU time. Once we have locat;ed the horizon with this

method, it can be analyzed to provide physical informa-
tion as we describe in the following sections.

Masses

In addition to the Arnowitt-Deser-Misner (ADM)
mass, which was calculated on the initial slice, we are
interested in obtaining a dynamic mass d.uring the evolu-
tion. The measure we will use for this is an "areal mass"
based on the irreducible mass (as given by the apparent
horizon) and the angular momentum of the black hole.

The horizon finder returns the location g(8) of the ap-
parent horizon on a given slice. In order to study the
geometric properties of the horizon, &om which impor-
tant physical information can be obtained, it is useful to
determine the two-dimensional submetric induced on the
surface by defining a new coordinate ( by the equation
g = q (8) (. We now have

dl' = O' Ad('+ B+A('
~

—(8) ~

d8'+ Ddg'+ 2Fdgd82 (drj
gd8

The submetric that we are interested in may be found by
letting ( be equal to 1. The surface area of the horizon
is, therefore,

A = 2vr sin84 d8 B+A
~

—(8)
~

D —F2.
n

(9)

For a Schwarzschild black hole the mass is given by M;,
below, and for a Kerr black hole the mass is determined
by both the surface area and angular momentum of the
hole [13],according to the relationships

M;, = (1Oa)

and

AH Mir +
lr

(lob)

Although our spacetimes are not stationary and hence
the apparent horizon does not coincide exactly with the
event horizon, these are quite useful quantities to take
for the dynamical mass. The above formulations describe
the minimum mass of the final Kerr black hole that is pos-
sible at the end of the evolution [14]. However, as shown
in Refs. [11,15] the event and apparent horizons are of-
ten quite close, even in dynaxnic spacetimes, and the mass
described in Eqs. (10) should often be a good approxima-
tion to the event, -horizon-based mass. The masses com-
puted in this way will be used extensively in analyzing
the evolutions presented in Sec. V below.

2. Oscillations

dy=dP — . d8,D sin 0

B'=O' B+A~ (8)
~

(Oq ) ' F'
)

E' = 0,
D' = C4D.

(1la)

(lib)

(1lc)

(11d)

The polar circumference and the equatorial circumfer-

Once we have the two-metric on the horizon's surface
we can measure the horizon geometry. An example of
such a measurement is C„,the ratio of polar circum-
ference (C„)to the equatorial circumference (C,) of the
apparent horizon. The horizon of a stationary black hole
has a characteristic shape that depends upon its rota-
tion parameter a/m [16]. For a stationary or a dynamic
black hole, this shape can be used to obtain the rota-
tion parameter, as discussed in Ref. [9]. There it was
shown that the horizon oscillates about this equilibrium
stationary shape with the quasinormal mode &equencies
of the black hole. We can plot the shape parameter C„
as a function of time to measure these horizon dynam-
ics. Here we extend this technique and. apply it to new
spacetimes not considered in Ref. [9].

To obtain the polar and equatorial circumferences we
first transform the two-metric so that it becomes diago-
nal. This is accomplished by introducing a new coordi-
nate, y. The metric on the two-surface defined by the
apparent horizon now becomes
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ence may now be defined as Oscillating Horizon for run r4

C„= do (12a) 0.96

and 0.94

C. = $ dgv'D' (12b)
0.92

0.90

0.88

It was shown in previous work [9] that the E = 2 and
f. = 4 quasinormal mode (QNM) frequencies can be seen
in the function C„,which can also be analyzed to obtain
the rotational speed (a/rn) of the spacetirne. This is ac-
complished by first fitting C„to the fundamental E = 2

QNM, the first overtone 8 = 2 QNM, and a constant
ofFset from unity. We assume that the oscillations are
dominated by the S = 2 quasinormal ringing radiation
going down the horizon. As discussed in Ref. [9], the
ringing radiation is generated at the "peak of the poten-
tial barrier" located outside the horizon. Part of this sig-
nal propagates away from the hole and part goes down
the hole, causing the horizon to oscillate as the signal
crosses it. The of&et is used in the fit because a rotat-
ing black hole will not be spherical (a sphere would have
C = 1) but should be oblate (in equilibrium), produc-
ing an "of&et" in C„.The fitted value of the constant
offset can then be used to obtain the value of a/m for
the surface, since for a Kerr black hole the oblateness is
a unique function of the rotation parameter. [We note
that the following function is an approximation gener-
ally accurate to within 2.5% for a/m as a function of C:
a/m = QI —(—1.55+ 2.55C„)z.] In Table III we show
the value of the rotation parameter a/m for the family
of data sets labeled rO—r6 obtained with this method.

Finally, as the horizon oscillations should be caused by
radiation &om all black hole modes excited during the
evolution, not just the E = 2 modes, one can analyze the
function C„for other modes as well. For example, the fit
to the shape parameter in terms of the E = 2 QNM ex-
pansion functions can be subtracted &om the actual func-
tion C, leaving a residual of higher modes. In Ref. [9]
we showed how this remaining signal was dominated by
I. = 4 QNM's for some spacetimes.

For the odd-parity distorted holes (ol and o2, not
shown), the oscillations in C„are second order in the
metric perturbation. As a result the spectrum of &e-
quencies in the surface vibrations that result &om the
8 = 2 and 8 = 3 QNM's will be much larger. Therefore
the oscillations are more complicated than in the previ-
ous cases. Further details of the surface oscillations of
these black holes will be given in Sec. IIIB.

In Fig. 1 we plot C„asa function of time for simulation
r4. This is a distorted Bowen-York hole rotating quite
rapidly. The solid line shows the value of C„extracted
from the horizon. The dashed line shows the fit to the
two lowest 8 = 2 QNM's, and the straight horizontal
dashed line shows the constant onset that came &om the
fit. Note that the fit matches the oscillation quite well
except at very late times, when we expect the code to be
less accurate, particularly near the horizon where met-
ric functions tend to develop steep gradients [17]. This

0.86

0.84

0.82

0.80
10.0 20.0 30.0 40.0 50.0

Time (M„oM)

60.0 70.0

analysis shows that the black hole is oscillating about a
Kerr black hole with a rotation parameter of a/m = 0.70,
consistent with estimates made on the initial slice.

Figure 2 shows a similar plot for the function C„and
its fit for run r5. Run r6 divers &om runs 6)—r4 in that
r5 is a pure Bowen-York black hole. It is thus much
more noticeably oblate, with C„-0.81, as opposed to

0.86

Oscillating Horizon for run r5
c„=cpcE

0.82

0.80

0.78

0.76

0.74

0.72
10.0 20.0 30.0 40.0

Time (M„)

I

50.0 60.0

FIG. 2. This figure shows t „(theratio of polar to equato-
rial circumference of the apparent horizon) as a solid line and
an 1 = 2 quasinormal mode 6t form run r5. The horizontal
short and long dashed line is the ofFset from sphericity, de-
termined by the 6t, showing that the black hole is oscillating
about a Kerr hole with rotation parameter a/m = 0.87.

FIG. l. In this figure we plot the function C (the ratio of
polar to equatorial circumference of the apparent horizon) as
computed by our code for run labeled r4, a distorted rotat-
ing black hole. We have removed the early part of this plot
where the horizon "jumps out" so that we can more clearly
see the surface oscillations. The line labeled "equilibrium" is
the ofFset from sphericity determined by our 6t. This onset
implies that the system is oscillating about an "equilibrium"
Kerr black hole with a rotation parameter of a/m = 0.70.
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C„0.89 for the run labeled r4. In this case the analysis
shows the rotation parameter to be a/m = 0.87.

Table III gives the results of extracting a/m by this
method in column 3 for runs %—r5. This table shows
that in all cases the value extracted &om t „during the
run is very nearly the lower limit J/MADM. This means
that in the runs under consideration in this paper nearly
all the radiation is going into the hole, because the hole
achieves nearly the maximum possible mass (or minimum
possible rotation parameter).

0.87M. The angle 8 (measured &om the z axis) at which
the embedding should cease to exist can be found. The
equation for this angle is

5+ 3b

3 (b —1)

(14a)

where

x = 17+ 10b + 3+3 (11+12b + 4b2) (14b)

8. Embeddinga and

A valuable feature of the horizon geometry is its three-
space embedding. By embedding the horizon we can
obtain a visual impression of its overall distortion in a
coordinate-independent way. The Kerr geometry is a
sphere in Boyer-Lindquist coordinates, but it is not so
when embedded in three-space. Instead it is an oblate
spheroid that becomes increasingly flattened along its
axis of rotation as its spin increases. If its rotation pa-
rameter a/m exceeds ~3/2, it is impossible to completely
embed the figure in flat space, as shown by Smarr [16].

The procedure for 6nding the embedding starts by
defining a new coordinate z which is part of a Hat three-
metric and is identi6ed with the two-metric of our sur-
face:

1 —(a/~)'. (14c)

Note that for the region 0 & 0.4' the embedding never
disappears.

This effect can actually be used to measure the rota-
tion parameter for rapidly rotating holes. For a dynamic
rotating black hole, as shown above the horizon geome-
try will oscillate about the stationary Kerr shape. For an
extremely fast rotator or highly distorted black hole the
oscillations may distort the horizon so much that the em-
bedding fails at times during the evolution (or in extreme
cases the embedding may never exist). In Fig. 4 we plot
the value of 6I for which the embedding fails as a function

dz +dp + p dP = B'do +. D'dP .

Solving this expression for z gives
Embedding for run r4

2
z = d0 B' — i' D'

and

p= vD'. (13c)

This equation is then integrated numerically to obtain
the embedding functions z(g) and p(0). In Fig. 3 we
show the embedding of the evolving horizon for run r4.
At time t = 5M the horizon is still &ozen and has its
initial prolate shape with C = 1.228. At time t = 10M
the horizon has become noticeably oblate, overshooting
its equilibrium value, and by the late time of t = 50M it
has settled down to very near its equilibrium Kerr value.
The dark solid line shows the shape of the Kerr hole with
the rotation parameter determined &om the procedure
above. (The area has been normalized to take account of
the difBculty of resolving the peak in A that can cause
the area to grow spuriously, as discussed below and in
Ref. [9].)

For a Kerr black hole, when the rotation parameter
a/m becomes large enough and the integrand of Eq. (13b)
becomes imaginary, the embedding ceases to exist. How-
ever, this generally happens only over a small portion of
the horizon surface, near the symmetry axis. This em-
bedding failure will begin to occur when a/m, = ~3/2

tv 0

0
P

FIG. 3. This 6gure shows the three-space embedding of the
distorted rotating black hole run labeled r4 at various times.
Although the black hole's apparent horizon is initially prolate,
it eventually settles down to the appropriate oblate Kerr black
hole shape denoted by a dark solid line.
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1.0

Vanishing of Embedding 8 [
—1+5 6 —3 cos(20) + 36 cos(20)]

(1 + 6) m2 [3 + 6 + cos(2 8) —6 cos(2 0)]

0.8 t

0.6

04

0.2

0.0
10.0 30.0

Time (M~)
50.0

FIG. 4. This plot shows the position at which the Eu-
clidean three-space embedding of the apparent horizon van-
ishes for run labeled r5, a Bowen-York rotating black hole,
with angular momentum parameter J = 15 (solid line). As
discussed in the text, for rapidly rotating holes the horizon
embedding fails near the axis at an angle determined by the
rotation parameter. The dashed line shows the angle at which
the embedding fails for an "equilibrium" Kerr black hole with
a/m = 0.87.

of time for the case r5. This is a pure Bowen-York hole
with J = 15, corresponding to a/m = 0.87.

The run labeled r5 is the fastest rotating black hole
we have simulated to date, and it pushes the limits of
our code, but it nevertheless produces a good result,
in agreement with theory. The straight horizontal line
represents the embedding limit of the analytic Kerr so-
lution with the given value of a/m = 0.87, which was
the rotation parameter that was extracted &om the os-
cillation about t „asdiscussed above. Note that this
black hole horizon is never globally embedded in three-
dimensional Euclidean space, although the horizon al-
ways exists. Note also that by measuring the horizon ge-
ometry, we can determine the rotation parameter at least
two different ways: by measuring C„asin Fig. 1 (see dis-
cussion above) and by measuring the angle at which the
embedding ceases to exist (although this only works for
holes which have a/m ) ~3/2). Furthermore, these mea-
surements agree with estimates of the rotation parameter
determined &om the initial data alone.

where 6 = gl —a2/m2 as before. The mapping of the
Gaussian curvature onto the surface helps to bring out
small deviations in the local curvature of the surface that
would not be apparent in the embedding diagram itself.

In Fig. 5 we show a horizon history embedding dia-
gram for the case ol, which is an odd-parity distorted
nonrotating black hole. As we discuss in detail in Sec. V,
this data set has predominantly E = 3 radiation (99%%uo of
the total energy radiated is carried in this mode). As
in the cases shown in Ref. [9], each E-mode pattern is
qualitatively different &om the ones studied previously.
In Fig. 6 we show a similar diagram for the run labeled
o2, which has a significant 8 = 5 component. Again, the
pattern is qualitatively diferent from the I = 3 (or /. = 2

or E = 4) pattern, and has not been seen before.
These distinctive patterns can be understood by ana-

lyzing the expression for the Gaussian curvature. The
metric variable E enters the Gaussian curvature as a
second-order term (to first order it vanishes identically).
This function carries the odd-parity radiation in our
gauge, as discussed below. Therefore, if I" oscillates pre-
dominantly at the E = 3 normal mode &equency denoted
by ~g—3, then the period of oscillation one will see in the
Gaussian curvature plot will not be ~g 3 as a result of
this nonlinearity. Instead one will see 2ug —3, and so the
pattern cycle will repeat twice as quickly as it would have
if F had entered the Gaussian curvature to linear order.

Gaussian Curvature For Run oI

Tti2
"

..X ll. lCVL, -426

B. Horizon history diagrams 10 20 30 40 50

As we have shown in Ref. [9] it is useful to construct
a "horizon history" embedding diagram that shows the

det
evolution of the surface in time. In order to bring trang ou

etails of the local curvature of this surface, we also com-
pute the Gaussian curvature K of the horizon surface and
map it to a colormap or greyscale. For details of this con-
struction we refer the reader to Ref. [9], but for reference
we present the formula for Kerr here:

FIG. 5. We show the horizon history diagram for the run
labeled o1. The Gaussian curvature ~ is mapped to a grag ay
scale on the surface of the horizon. The vertical axis gives the
angular location on the horizon, and the horizontal axis traces
out the time development. As discussed in. the text, we see
a pattern that repeats at twice the E = 3 QNM frequency in
accordance with theoretical expectations. In the figure, dark
regions are more highly curved than light regions.
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Gaussian Curvature For Run 02

10 20

Time

30 40 50

FIG. 6. In this plot we show the horizon history diagram
for the run labeled o2. Hence the Gaussian curvature shows a
diamond pattern, a result of the mixing of several frequencies
of the E = 3 and E = 5 quasinormal modes. In the figure, dark
regions are more highly curved than light regions. See text
for details.

IV. FAR ZONE PHYSICS

A. Wave mode extraction

In previous sections we have analyzed properties of the
near zone features of these new black hole data sets, fo-
cusing on geometric measures of the horizon. These ef-
fects provide important probes of the physics of the near
zone, and can also be used to determine important prop-
erties of evolving black holes that Inay not be known,
but for the most part these effects are not measurable
by gravitational wave experiments such as the Laser In-
terferometric Gravitational Wave Observatory (LIGO).
In this section we turn to analysis of the physics of the
far zone, where important features such as gravitational
waves can actually be observed.

One of the principal features of a dynamical black hole
spacetime which has been possible to study analytically
is linearized gravitational waves. Therefore, it is useful
for us to measure them in highly distorted black hole
spacetimes to determine information that linear theory
cannot predict, such as the final mass of a black hole
in a perturbed spacetime or the waveform emitted dur-

This is what one sees in Fig. 5. The pattern repeats ev-
ery t —5.24M instead of every t 10.48M, which is the
period of the E = 3 fundamental mode.

In Fig. 6 the S = 5 modes are present to a much
stronger degree, and so we see a mixture of the E = 3
and E = 5 modes. This creates a diamond pattern rem-
iniscent of the diamond pattern seen on the surfaces of
even-parity black hole horizons generated with an n = 4
perturbation, as described in Ref [4]. In general, however,
this pattern is more complicated than the n = 4 pattern,
as it should include four sequences: 2ug 3, up 3+ Mg —5)
and 2ug

ing the nonlinear generation of gravitational waves, and
to provide several useful checks of our code. Although
the processes that generate these waves may be highly
nonlinear, far from the hole the waves may be treated
as linear perturbations on a fixed background. For all
the simulations presented in this paper we extracted the
radiation at a distance r = 15M.

The radiation energy in a black hole spacetime is
described by certain gauge-independent variables con-
structed &om the metric and its derivatives. The
technique was originally developed by Abrahams and
Evans [18] and applied to black hole spacetimes in
Ref. [3]. There are two classes of gauge-invariant radi-
ation quantities representing the two degrees of freedom
of the field, even parity and odd parity. Both are present
in our spacetimes and we describe them below.

Even parity

even

and

2(g —1)(g + 2) (4r 9'A;, + E(I. + 1)r k, )
E(E+ 1) A

(16a)

A = I.(8+1) —2+ 6M
(16b)

where the Moncrief functions [19] are given by

OG
kg ——K+ Sr-

Bp

We used the same wave extraction routines for the
even-parity wave forms as used in Ref. [3]. The routines
were developed to extract waveforms from perturbed
Schmarzschild black hole spacetimes that oscillate about
a spherical background. Because the distorted Kerr met-
ric does not settle down to something that is spherical,
but rather it settles down to something oblate, we should
expect to see this efFect in the extraction process, result-
ing in an offset in the Z = 2 and E = 4 waveforms. Thus,
the wave does not oscillate about zero, but instead will
be ofFset from zero depending on both the rotation pa-
rameter and the radius at which the wave is extracted.

However, the level of this offset is small and its vari-
ation rather too sensitive so that we have not been able
to use it to measure the rotation parameter reliably. As
shown below, we do see this efFect in waveforms extracted
&om distorted rotating black holes, and the offset value
is related to the rotation parameter as expected. The
offset we obtain &om the waveforms is of the right gen-
eral magnitude and sign for a given rotation parameter.
In principal one can account for the fact that the sys-
tem is a perturbed Kerr black hole, but to date we have
not carried out this analysis. However, as we show be-
low, the extraction assuming a spherical Schwarzschild
background can be quite useful without modification.

The even-parity wave extraction is given here. Note
that this extraction formula assumes a Schwarzschild
background. For each E mode we can extract independent
radiation waveforms. The gauge-invariant, even-parity
wave function is given by
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with

2MS=1—
r=e" )

(16d)

(16e)

(16f)

(hp l
4pi = r'&.

~

—
~

—@hi,
7 2 )

(h, )
@i2 ——hi + r0—E"')

(19b)

(19c)

2K 4H2 —— 4 A Ygp sinedo,
A2 p

A = — 4 Asinedo,
2 p

2' 4 (B —D) (—cos 8 Yjp s + sin 0 Yjp s, ) d0

(Z + 1) (S + 2) (e —1)

(16g)

(16ll)

(16i)

K= I. (g +. 1)G+ 4' (B+D) sinOYtpd0, (16j)
2 p

B = — 4 B sin0d8.
2 p

(16k)

and finally the Regge-Wheeler [20] perturbation func-
tions are defined in terms of the three-metric via

In our code we have used our gauge &eedom to elimi-
nate the metric function E (hi) and the method we use
to extract the radiation is effectively Eq. (19c). It is
also possible to measure the odd-parity radiation through
Eq. (19a) as we show below. Note that for the odd-parity
case, there is no "nonspherical odd-parity" part in a Kerr
black hole (in @i2) and so there is no offset expected or
observed for these waveforms.

The particular energy integrals for the odd-parity
modes are given here. Note that these expressions are
speci6c to our gauge and a Hat space background metric.
We Grst normalize our gauge-invariant odd-parity wave
function, based on Eq. (19c), as

With the normalization of @ given above one can show
that the total radiated energy in each 8 mode is given by

E = dt (oj,@)'.
327r

and

d0 —4105ir cos 0 sin OO„F
2

(20a)

Complete details of this extraction procedure are pro-
vided in Ref. [3].

2. Odd parity

d0 —/1155vr [5cos 0+ 3cos (30)] sin OB„F.16

(2Ob)

(E+ 1)!
dAP4, BsYtp,I —1! (18a)

In terms of the Regge-Wheeler formalism [20] there are
various ways to construct the odd-parity gauge-invariant
variable that measures the radiation in the system [19].
These measures are not linearly independent, and each
is constructed from two of the variables E, F, and P4,
which correspond to the Regge-Wheeler variables hq, h2,
and hp after appropriate angular integrals have been per-
formed. The gauge-dependent Regge-Wheeler variables
can be extracted &om the metric as

For general S the energy expression is this

.da (& —2)'
2vr 2 dO8„Fsin0 (88 —cot 0) BsYtp.

p 8+2!
(21)

In principle one can extract arbitrarily high 8 modes.
In practice we have only examined the 8 = 3 and E = 5
modes to date. With these normalizations, -the energy
radiated by each Z mode is given by

dA 4 E BsYtp,
(E —1)! (18b)

as in Ref. [21].

E= dt's,
327r

(22)

h2 = — dO O' F (Bs —cot 0) Os Yrp. (18c)
(E+ 2)!

2 l —2!

1
gp2 = &p+ —AIi2

2
(19a)

From these perturbation functions one can construct the
following gauge-invariant quantities, two of which are
given in Ref [21]:

B. Measurement of frequencies

To analyze quantitatively the frequency spectrum of
our radiation we used the following Fourier technique.
Because the quasinormal modes of black holes are all
damped, the Fourier spectrum of their &equencies will
be spread out. To counter this effect, before analyzing a
waveform we premultiply it by a factor exp(At), where A

is chosen to approximately cancel the effects of the damp-
ing (see Ref. [22] for a discussion of such techniques). As
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it happens, the damping time for the fundamental mode
is given approximately by A = 0.09/M, relatively inde-
pendent of the E value, and so this technique is helpful
for all modes.

We next decompose the &equency spectrum using the
procedure described below. The technique used here to
analyze the waveforms is preferable to a fast Fourier
transform (FFT), since an FFT may provide poor fre-
quency resolution for the wavelengths under study un-
less the sampling interval (AT) is quite long. For ex-
ample, to distinguish between the peaks in 8 = 2 and
I. = 3 QNM's would require a "sampling period" greater
than LT = 60M of oscillations. The Fourier technique
we present below, combined with the premultiplication
technique, can distinguish between them with only about
LT 17M of oscillations. We approximate the Fourier
transform function and its inverse by

f(t)e-' 'dt = ) f;b;(~)b, t,
2K

1 f (ur) e' d~ = ) f,b(t —t, )At, (23b)
2K

where we have defined

(23c)

and

)
—iwt; cr ur /4— (23d)

In the above equations, f (t) is the Regge-Wheeler or Zer-
illi function, (f;, t, ) are the set of points produced by the
numerical code [we should find that f; f(t, )], and t is
the time. The value of 0 was set to Lt.

Note that the presence of the first overtone of a quasi-
normal mode &equency cannot be as easily detected with
this technique (since the damping is so much greater). It
manifests as a small shift in the position of the peak of
the fundamental mode. The position of the peak will
also be afFected by the artificial growth in the mass that
occurs at late times, which is manifested in the wave-
form by lengthening of the wavelength of the radiation
as discussed in Ref. [3]. This artificial lengthening will
efFectively add a mixture of other &equencies to the spec-
trum, further broadening the peak.

0.20

1=3 Wave Mode Extraction
Fit to Fundamental and First Harmonic of i=3

0.10

0.00

in Ref. [5]. These evolutions correspond to runs labeled
ol and o2. These data sets do not possess angular mo-
mentum, but they do possess odd-parity radiation, in
contrast to the "Brill wave plus black hole spacetimes"
discussed previously in Ref. [I]. Strictly speaking, they
are odd-parity distorted Schwarzschild black holes, and
not rotating holes. Nevertheless, the odd-parity distor-
tions give rise to "rotationlike" features. We note that
these black hole data sets also contain even-parity radi-
ation, although of a much lower amplitude.

The run labeled ol represents a spacetime with virtu-
ally only an S = 3 distortion, as almost all the energy is
radiated in that mode. Figure 7 shows the E = 3 wave-
form extracted by the gauge-invariant waveform extrac-
tion method described in Sec. IV A 2 above. As one can
see, it is almost impossible to distinguish the fit from the
data. As we show in Table III, 99.96'Fo of the total energy
radiated is carried by the E = 3 mode. In Fig. 8 we show
the E = 5 waveform extraction for the same run. It is in-
teresting to note that even though it does not contribute
significantly to the energy, and the signal amplitude is
nearly four orders of magnitude smaller than the E = 3
signal, the E = 5 signal is still easily fit to the proper
mode.

For run ol we extracted the E = 3 radiation mode &om
both P~ and I' Both e.xtractions are plotted in Fig. 9.
The solid line illustrates the extraction &om the shift;
the dotted line traces the value extracted &om E. The
waveform extracted from P& was normalized so that it
had the same lower bound as the waveform extracted
&om F. This shows that it is possible to perform the
extraction &om the shift, although we have only done so
for this test.

Next we consider the run labeled o2, which has a larger
E = 5 signal. The Z = 5 extracted mode, shown in Fig. 10,
matches the Gt to the quasinormal modes quite well, as in

V. RESULTS AND DISCUSSION

In this section we discuss results &om evolutions of
the initial data sets listed in Tables I and II, combining
many of the analysis techniques discussed in the previous
sections. Together these tools provide a thorough and
remarkably consistent physical picture of the evolution
of these black hole spacetimes.

A. Odd-parity distorted Schwarzschild black holes

In this section we give results for evolution of the new
class of data sets we constructed and discussed briefly

-0.io—

-0.20
0.0 20.0 40.0

Time (M..M)

60.0

FIG. 7. We plot the extraction of the g = 3 waveform
from the odd-parity distorted nonrotating hole, run labeled
o1. The dashed line shows the Bt of this waveform to the
two lowest E = 3 quasinormal modes. Practically all of the
radiated energy is in this mode.
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1=5 Wave Mode Extraction
Fit to Fundamental and First Harmonic of 1=5

1=5 Wave Mode Extraction
Fit to Fundamental and First Harmonic of 1=5
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FIG. 8. TThis figure shows the numerically extracted E = 5
waveform and its fit to the two lowest E = 5 quasinormal
modes for the run labeled o1.

FIG. 10. We show the extraction of the E = 5 waveform
from an odd-parity distorted nonrotating hole, run labeled
o2. It is clear that the fit (dashed line) agrees well with the
numerically extracted function (solid line).

the previous case. (The 8 = 3 waveform, not shown here,
matches its quasinormal mode fit with the same level of
accuracy as in the previous case ol. ) After measuring
theE= 5&equency om our extracted waveform via
the Fourier transform technique discussed in Sec. IVB
above, we discovered that its quasinormal modes were
not tabulated in the literature. We corn uted th l
par o t e frequency to be 1.00 + 0.01. Subsequent cal-
culations by Edward Leaver, based on black hole pertur-
bation theory [23], yield the result 1.012 which agrees
with our result to within 1%. In Fig. 11 we compare the

Odd Parity Extraction

analytic E = 5 frequency with the Fourier transform (as
implemented by the technique described above) of our
data for the run labeled o2. A dotted line is placed on
the graph to show where the peak should be for a pure

= 5 wave. The secondary peaks do not represent real
equencies; rather, they are an artifact of the extraction

process.
Finally, we turn to a calculation of th '

d
masses in the system. The mass of th e apparent ori-
zon for the run labeled o1 is plotted in Fig. 12. The solid
line shows the instantaneous mass of the horizon, de6ned

y Eq. (10), and the long dashed line represents the to-

0.20 l

Fourier Transform of l=5 Mode

I

I

I

I

t

t ---- From+

50.0 p-

40.0

30.0 I-

Fourier Transform

20,0

,-0.20
0.0 20.0 40.0

Time {MADM)

60.0

FIG. 9. In thi fis figure we compare the E = 3 waveform ex-
tracted from the tttt shift P~ (dashed line) and from the metric

factor.actor. Although we generally use the extraction based on the
three-metric, this demonstrates that other techniques can be
used. Note that the waveform extracted from the P~ was nor-
malj. zed to have the same lower bound as the shift extracted
from I".

0.0 0.5 1.0
m(M ADM)

1.5 2.0

FIG. 11. ThisThis figure shows a Fourier transform of the data
extracted from the run labeled o2. The dotted line shows
real part of the 1 = 5 frequency, computed via black hole
perturbation theory.



52 EVOLUTION OF DISTORTED ROTATING. . . . II. 881

Apparent Horizon Mass vs. Time

MaH/MaoM
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Time (M.oM)
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FIG. 12. This figure shows the apparent horizon mass de-
fined in the text, for the run labeled o1 normalized by the
ADM mass (solid line). After about t = 40M the area of
the horizon slowly drifts up as a result of difBculties in resolv-
ing metric functions, causing an overestimation of the horizon
mass. (See text. ) The short-dashed line is drawn at 1, repre-
senting the total mass of the spacetime. The gap between the
short-dashed and lang-dashed lines is the amount of energy
emitted through radiation. As one can see, the mass of the
horizon and the energy of the radiation add up to the ADM
mass.

tal energy radiated away &om the black hole during the
evolution. All energies in this plot are normalized to the
ADM mass, and therefore it can readily be seen that the
sum of the final apparent horizon mass (as measured at
t = 25M) and the energy emitted through radiation (as
calculated by integrating the even- and odd-parity radi-
ation functions for 8 = 2, 3, 4, and 5 for the entire time of
the run) add up to the ADM mass. The very slight dip
in the mass at around 30M becomes less noticeable with
increasing resolution.

After about t = 35M the peak developing in the radial
metric function is not adequately resolved. As the hori-
zon is located near this peak, as discussed in paper I, its
area is not accurately computed after this time. However,
the simulation can be continued until about t = 100M
and accurate waveforms can be extracted throughout.
Furthermore, the calculations of the shape of the horizon
continue to be accurate throughout the evolution, even
though the area becomes inaccurate.

Horizon Mass for kI
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0.999—
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0.997

0.996—

300 X 30
150 X 24
75X12

Kerr black hole as a test case to show that our code was
able to evolve the Kerr spacetime accurately by comput-
ing its angular momentum during the evolution. Here
we apply two of the near zone measurements developed
in Sec. III for these spacetimes to show the numerical
properties of these evolved black holes.

In Fig. 13 we show the mass MaH of an a/m = 0.48
black hole (labeled kl) as a function of time for three dif-
ferent resolutions. The horizon mass should be strictly
conserved and equal to the ADM mass for a stationary
black hole. The high resolution (300 x 30) mass is plotted
as a solid line, the medium resolution (150 x 24) mass is
plotted as a dotted line, and the low resolution (75 x 12)
mass is plotted as a dashed line. The mass is nearly con-
stant until the large peaks discussed in paper I develop
and cannot be adequately resolved. By t = 40M, the
error in the mass is still less than 0.1'%%uo at all but the
lowest resolution and by t = 60M the error is still only
0.5'%%uo. Although the apparent horizon mass does not ex-
actly equal the ADM mass, it is within the error expected
given the level of angular resolution of the horizon. The
jaggedness of the lower resolution lines is a numerical ef-
fect. A new bump occurs each time the interpolator in
the horizon finder changes the set of grid zones it uses. It
is only visible because of the small range of MaH/MaDM
which we are viewing.

In Fig. 14 we show a similar graph for run k2, corre-
sponding to a Kerr black hole with rotation parameter
a/m = 0.68. Despite the higher rotation, all features
noted for run kl are preserved to a high degree. Because
there is more angular variation in the metric, there is
slightly less agreement between M~H and M~DM.

B. Kerr black holes
0.995

0.994
0.0 20.0

Time (M„)
40.0 60.0

Although a Kerr black hole is stationary and not dy-
namical, it does provide a useful test case for evolution.
Furthermore, as it is the "equilibrium" black hole about
which all other black hole spacetimes considered in the
paper oscillate, it is useful to study its properties.

Because there is no radiation in the system, we do not
expect the horizon to oscillate. In paper I we used the

FIG. 13. This figure shows the apparent horizon mass for
run kl (a/m, = 0.48) at three resolutions. It is clear that
the apparent horizon mass becomes more constant and agrees
better with the ADM mass as the resolution is increased. At
all but the lowest resolution we have about 0.5+0 accuracy in
the apparent horizon mass at the late times shown.
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FIG. 14. This figure shows the apparent horizon mass for
run k2 (a/m = 0.68) at three resolutions. It is clear that
the apparent horizon. mass becomes more constant and agrees
better with the ADM mass as resolution is increased. At all
but the lowest resolution we have about 0.1'p0 accuracy in the
apparent horizon mass.

C. Distorted Bovren- Yerk black hole

In this section we discuss results for the six initial data
sets labeled rO—r6. This represents a sequence of dis-
torted black holes with increasing values of the rotation
parameter, a/rn, beginning with a nonrotating case, la-
beled r6.

The first case we discuss is run rO, which has the same
construction as the "Brill wave plus black hole space-
time" discussed in detail in Ref. [1]. This spacetime was
evolved with an antisymmetric lapse across the black hole
throat, and so, although the data set is in the same class
as those evolved in Ref. [24], it has been evolved with a
new code capable of handling rotating black holes and
with a diferent slicing condition. The same simulation
was discussed in paper I, where a comparison of metric
functions was made to the evolution obtained with the
code described in Ref. [1]. In Fig. 15 and Fig. 16 we show
the now faxniliar E = 2 and 8 = 4 waveforms extracted
Rom the evolution, with a fit of the two lowest quasinor-
rnal modes in each case. The match is excellent. It is also
important to note that no odd-parity radiation is present
in this system and there are no Z = 3 or X = 5 waveforms
to show. (It is important to point out that odd parity
does not mean odd E, and even parity does not mean even
E. It simply happens that with equatorial plane syxnme-
try, which is present here, there are no odd-E, even-parity
modes or even-/, odd-parity modes. ) The new dynami-
cal variables used in this evolution remain exactly at zero
when there is neither odd-parity distortion nor rotation.

In Fig. 17 we show the mass of the apparent horizon
for run %, as defined in Sec. IIIA above. Note that
initially it does not change, as the antisymmetric lapse
&eezes the evolution at the throat where the apparent

FIG. 15. This figure shows the numerically extracted E = 2
waveform (solid line) and the least squares fit to the two lowest
8 = 2 quasinormal mode for this distorted nonrotating black
hole. This run was labeled rO.

horizon is found on the initial data set. Then at about
time t = 10M, the horizon is found out at a larger ra-
dius and evolves slowly outward, its mass increases as
more gravitational wave energy crosses the horizon sur-
face into the hole. (This "jumping out" of the horizon is
a common property of all simulations we have performed
with an antisymmetric slicing condition as discussed in
Sec. III A above. ) After a time of about t = 25M, there
is a slow upward drift in the mass as a result of di%cul-
ties in resolving the peak in the radial metric function A
that develops near the horizon [9]. By this time, nearly
all of the ingoing gravitational wave energy has entered
the black hole, and we compute the 6.nal mass of the hole
to be MAH ——0.915M~0M. We also have computed the

l=4 Wave Mode Extraction
Fit to Fundamental and First Harmonic of l=4

0.1

Data---- Fit

-0.3 L

0.0 20.0 40.0
Time {MaoM)

60.0 80.0

FIG. 16. This figure shows the numerically extracted E = 4
waveform and its fit to the two lowest E = 4 quasinormal
modes for the run labeled rO.
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FIG. 17. This 6gure shows the apparent horizon mass de-
6ned in the text, for the run labeled rO normalized by the
ADM mass (solid line). The short-dashed line is drawn at
1, representing the total mass of the spacetime. The gap be-
tween the short-dashed and long-dashed lines is the quantity
of radiation emitted. The mass of the horizon and the energy
of the radiation add up to the ADM mass.

total energy radiated through the dominant 8 = 2 mode,
as shown in Table IV, and plot it in Fig. 17. Note that all
the energy is accounted for to a high degree of accuracy.
The total energy radiated by the black hole, as computed
by integrating the Zerilli function, plus the anal mass of
the black hole, as determined by the mass of the appar-
ent horizon, gives the total ADM mass of the spacetime,
as one would expect.

Next we turn to the run labeled r1. This calculation
is similar to the previous run except that a noticeable
amount of energy is now being radiated in the 8 = 3
quasinormal mode, as shown in Fig. 18. The value of a/m
is extracted from C„,demonstrating that this technique
is efFective for small values of a/m, as shown in Fig. 19

FIG. 18. This 6gure shows the numerically extracted E = 3
waveform and its 6t to the two lowest 1 = 3 quasinormal
modes for the run labeled rl.

(although a/rn = 0.35 is considered to be "small" in this
study, the vast majority of black holes in the real universe
are probably smaller than this [25]).

Both runs r2 and r3 were typical of many simulations.
Each provides waveforms that fit equally as well as r4,
each locks on to the appropriate limit slice, and in both
cases the radiation energy plus the final apparent horizon
mass add up to the ADM mass. We show the plots for
the radiation in the E = 2, 3, 4, and 5 modes for run r2
in Figs. 20, 21, 22, and 23, respectively. In each case we
fit the wave function to the fundamental and erst har-
monic mode for the appropriate value of X. The value of
a/m used in the frequency fits was derived &om the value
extracted from the apparent horizon, although it made
very little difference whether the dependence of the QNM
frequencies on the rotation parameter was accounted for.
Except in the case of extreme rotations, the QNM &e-
quencies depended only weakly on a/m [23,26]. In the

TABLE IV. This table shows the total energy emitted as radiation divided by the ADM mass in
the rightmost column, and it shows the fraction of this energy emitted in the Grst four quasinormal
modes of the black hole spacetime.
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Oscillating Horizon for run rl
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0.0 40.0 80.0
Time (M„„)

FIG. 19. This figure shows C (the ratio of polar to equa-
torial circumference of the apparent horizon) as a solid line
and an 8 = 2 quasinormal mode fit from run rl. The long and
short dashed line is the of&et from sphericity, determined by
the fit, showing that the black hole is oscillating about a Kerr
hole with rotation parameter a/m = 0.35.
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FIG. 22. This 6gure shows the numerically extracted E = 4
waveform and its 6t to the two lowest f = 4 quasinormal
modes for the run labeled r2.
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FIG. 20. This 6gure shows the numerically extracted E = 2
waveform and its fit to the two lowest 8 = 2 quasinormal
modes for the run labeled r2.

FIG. 23. This figure shows the numerically extracted f = 5
waveform and its fit to the two lowest E = 5 quasinormal
modes for the run labeled r9.
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FIG. 21. This 6gure shows the numerically extracted E = 3
waveform and its 6t to the two lowest 1 = 3 quasinormal
modes for the run labeled r2.
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FIG. 24. This 6gure shows the numerically extracted E = 2
waveform and its 6t to the two lowest E = 2 quasinormal
modes for the run labeled r4.
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FIG. 25. This 6 ure sbg re shows the numerically extracted E = 3
waveform and its 6t to the two le wo owest E = 3 quasinormal
modes for the run labeled r4.

FIG. 27. This 6 ure shgure shows the numerically extracted 8 = 5
waveform and its 6t to the two loe wo owest = 5 quasinormal
modes for the run labeled r4.
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case of the even- arit rad'-p '
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offset in the fit to accccount for the nonsphericity of the
spacetime. The fit is good in all

The calculation r4 is the second fastest rotator in this
series. T is rotation parameter (a/m = 0 7). ~ was attained
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ifferent construction from runs rO to r3. Lar e
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mass significantly. We show the plots for the rad'
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s or e ra iation
, and 5 modes for this run in Fi s. 24

25 26 and 27 . e e wave) ) , respectively. In each case we fit the wave
function to the fundamental and fi t h
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is goo in allt e appropriate value of E. Again, the fit is
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e extrinsic curvature are given by
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VI. CONCLUSIONS AND FUTURE WORK
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FIG. 26. This 6 ure shgure shows the numerically extracted E = 4
waveform and its 6t to the two lowest E =- 4
modes for the run labeled r4.

quasinormal
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imes are a signi-

time than theirheir nonrotating counterparts. In this pa er

in black ho
hole initial data sets.sets. "Te developed a series of tools to

o ro a ing ac
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analyze these spacetimes, including even- and odd-parity
waveform extraction and various techniques to study the
apparent horizons of these spacetimes. We showed that
measurements of the horizon can be used to determine
the mass, angular momentum, and oscillation frequency
of the black holes. Distorted rotating holes are shown to
oscillate about their stationary "Kerr" equilibrium con-
Figurations.

Studies of a new class of odd-parity distorted nonrotat-
ing black holes were also made, and the waveforms and
horizons were analyzed in detail. In all cases the normal
modes of the black holes were shown to be excited and
dominate the wave forms. We also determined, for the
erst time, the 8 = 5 quasinormal modes of a black hole
by direct measurement of our numerically evolved space-
times which were later verified by black hole perturbation
theory techniques by Leaver. Finally, we were able to de-
termine the final mass of the black hole by measuring the
horizon area and compared it to the total ADM mass of
the spacetime. The difference between these measure-
ments agreed with the total energy radiated to within a
few percent, showing the high degree of accuracy we are
able to obtain in these studies.

There is more work to be done in this for which our
code will be useful. We plan to discuss, in future papers,

other features of the initial data sets and to look at new
data sets. We plan to study spacetimes with "cosmic-
screw"-type symmetry, which allows for rotation with
equal and opposite amounts above and below the equa-
torial plane. Ultimately, we plan to study the collision of
rotating black holes.

ACKNOWLEDC MENTS

We would like to thank Andrew Abrahams, Pete Anni-
nos, David Bernstein, Larry Bretthorst, Karen Camarda,
Greg Cook, David Drabold, David Hobill, Peter Leppik,
Larry Smarr, and Wai-Mo Suen for many helpful sugges-
tions throughout the course of this work. We are also
especially grateful to Edward Leaver for computing the
S = 5 quasinormal modes of black holes so that we could
compare them to our results. This work was supported
by NCSA, and by Grants Nos. NSF PHY94-07882 and
ASC/PHY93-18152 (ARPA supplemented) . The calcu-
lations were performed at NCSA on the Cray Y-MP and
at the Pittsburgh Supercomputing Center on the Cray C-
90. Unpublished and future related work may be accessed
through our webserver at http: //jean-luc. ncsa. uinc. edu.
Symbolic manipulations were performed using MathTen-
sor and Mathematica.

[1] D. Bernstein, D. Hobill, E. Seidel, L. Smarr, and J.
Towns, Phys. Rev. D 50, 5000 (1994).

[2] D. Bernstein, D. Hobill, E. Seidel, and L. Smarr, Phys.
Rev. D 50, 3760 (1994).

[3] A. Abrahams, D. Bernstein, D. Hobill, E. Seidel, and L.
Smarr, Phys. Rev. D 45, 3544 (1992).

[4] P. Anninos, D. Bernstein, D. Hobill, E. Seidel, L. Smarr,
and J. Towns, in Computational Astrophysics: Gas Dy-
namic8 and Particle Methods, edited by W. Benz, J'.
Barnes, E. Muller, and M. Norman (Springer-Verlag,
New York, in press).

[5] S. Brandt and E. Seidel, preceding paper, Phys. Rev. D
52, 856 (1995).

[6] S. Brandt and E. Seidel (unpublished).
[7] J. Bowen and J. W. York, Phys. Rev. D 21, 2047 (1980).
[8] D. Bernstein, Ph. D. thesis, University of Illinois Urbana-

Champaign, 1993.
[9] P. Anninos, D. Bernstein, S. Brandt, D. Hobill, E. Seidel,

and L. Smarr, Phys. Rev. D 50, 3801 (1994).
[10] S. W. Hawking and G. F. R. Ellis, The Large Scale Struc

ture of Spacetime (Cambridge University Press, Cam-
bridge, England, 1973).

[11] P. Anninos, D. Bernstein, S. Brandt, J. Libson, J. Masso,
E. Seidel, L. Smarr, W.-M. Suen, and P. Walker, Phys.
Rev. Lett. 74, 630 (1995).

[12] J. York, in Frontiers in Numerical Relativity, edited by
C. Evans, L. Finn, and D. Hobill (Cambridge University
Press, Cambridge, England, 1989).

[13] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970).
[14] Note that if J/M~~ ) 2, then as the horizon area increases

M&H will actually decrease. However, no Kerr solution
has this perverse value of J/M;„and the final solution
we evolve towards must be a Kerr solution. In an axisym-
metric spacetime this means, therefore, that during the
subsequent evolution the hole's area must increase until
it is at least MAH = ~J. This extreme case does not
occur in any spacetime considered here.

[15] J. Masso, E. Seidel, W.-M. Suen, and P. Walker (unpub-
lished).

[16] L. L. Smarr, Phys. Rev. D 7, 289 (1973).
[17] E. Seidel and W.-M. Suen, Phys. Rev. Lett. 69, 1845

(1992).
[18] A. Abrahams and C. Evans, Phys. Rev. D 42, 2585

(1990).
[19] V. Moncrief, Ann. Phys. (N.Y.) 88, 323 (1974).
[20] T. Regge and J. Wheeler, Phys. Rev. 108, 1063 (1957).
[21] C. T. Cunningham, R. H. Price, and V. Moncrief, Astro-

phys. J. 224, 643 (1978).
[22] G. L. Bretthorst, Bayesian Spectrum Analysis and Pa

rameter Estimation (Springer-Verlag, New York, 1988).
[23] E. W. Leaver, Proc. R. Soc. London A402, 285 (1986).
[24] A. Abrahains and C. Evans, Phys. Rev. D 46, R4117

(1992).
[25] M. C. Miller and F. K. Lamb, Astrophys. J. 439, 828

(1994).
[26] E. Seidel and S. Iyer, Phys. Rev. D 41, 374 (1990).






