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The parameters of inspiraling compact binaries can be estimated using matched filtering of
gravitational-waveform templates against the output of laser-interferometric gravitational-wave de-
tectors. The estimates are most sensitive to the accuracy with which the phases of the template
and signal waveforms match over the many cycles received in the detector frequency bandwidth.
Using a recently calculated formula, accurate to second post-Newtonian (2PN) order [order (v/c)
where v is the orbital velocity], for the frequency sweep (dF/dt) induced by gravitational radia-
tion damping, we study the statistical errors in the determination of such source parameters as the
"chirp mass" M, reduced mass p, and spin parameters P and cr (related to spin-orbit and spin-spin
effects, respectively). We find that previous results using template phasing accurate to 1.5PN order
actually underestimated the errors in M, p, and P. Templates with 2PN phasing yield somewhat
larger measurement errors because the 2PN corrections act to suppress slightly the importance of
spin-orbit contributions to the phase, thereby increasing the measurement error on P. This, in turn,
results in larger measurement errors on M and p because of the strong correlations among the
parameters. For two inspiraling neutron stars, the measurement errors increase by less than 1670.

PACS number(s): 04.25.Nx, 04.30.—w, 97.60.Jd, 97.60.Lf

I. INTRODUCTION

Inspiraling compact binary systems, composed of neu-
tron stars and/or black holes, have been identified [1,2]
as the most promising source of gravitational waves for
interferometric detectors such as the American LIGO
(Laser Interferometer Gravitational-Wave Observatory
[3]) and the European VIRGO [4]. These systems evolve
under the infIuence of gravitational radiation reaction, so
that the gravitational-wave signal increases in amplitude
as its &equency sweeps through the detector &equency
bandwidth, from approximately 10 Hz to 1000 Hz. (This
characteristic signal is often referred to as a "chirp. ")
Inspiraling compact binaries are especially promising be-
cause recent estimates [5,6] indicate that their event rate
could be as large as 100 per year, for signals detectable
out to hundreds of Mpc by the advanced version of LIGO,
and because the signal can be accurately predicted using
general relativity.

That the signal can be calculated with high accuracy
is essential for the measurement of the source parameters
[7], which include distance, position in the sky, orienta-
tion of the orbital plane, and the masses and spins of
the companions. Loosely speaking, the measured sig-
nal is passed through a linear filter constructed &om the
expected signal h(t; 8) and the spectral density of the
detector noise [8] (see below). The signal-to-noise ratio
S/N(8) is then computed. Here, the expected signal and
the signal-to-noise ratio are expressed as functions of the
vector 8 which collectively represents the source param-
eters. The actual value of these parameters, which we
denote 8, is unknown prior to the measurement. When
8 = 8 the linear filter becomes the Wiener optimum filter
which is well known to yield the largest possible signal-

to-noise ratio [8]. The source parameters can therefore
be determined by maximizing S/N(8) over a broad col-
lection of expected signals h(t; 8), loosely referred to as
"templates. "

The gravitational-wave signal can be characterized by
a growing amplitude and a phase which accumulates non-
linearly with time [1]. The signal undergoes a number N
of oscillations, varying from 600 to 16000 depending on
the nature of the system (see below), as the frequency
sweeps through the detector bandwidth. It has been es-
tablished that it is the phasing of the signal which plays
the largest role in parameter estimation [7,9,10]. This is
because a slight variation in the parameters can quickly
cause h(t; 8) to get out of phase with respect to the true
signal h(t; 8), thus seriously reducing S/N(8) from its
maximum possible value. Therefore a good match be-
tween the template's phase and that of the measured
signal, throughout the N cycles, singles out, to a large
extent, the value of the source parameters. (Clearly, this
is only true for those parameters which afI'ect the phas-
ing of the waves, such as the masses and spins of the
companions; see below. )

In principle, the gravitational-wave signal &om an in-
spiraling compact binary can be calculated exactly using
general relativity (this would require the numerical in-
tegration of Einstein's equations). In practice, however,
one must rely on some approximation scheme. It appears
appropriate, in this context, to adopt a slow-motion ap-
proximation [ll], and to solve the field equations using
a combination of post-Newtonian and post-Minkowskian
expansions [12]. To date, the waveform has been cal-
culated accurately through order (v/c)4 (where v is the
orbital velocity) beyond the leading-order, quadrupole-
formula expression [13—15]. Leading-order expressions
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are referred to as "Newtonian"; the waveform is there-
fore known to second-post-Newtonian (2PN) order.

The detailed expression for the 2PN waveform is com-
plicated: The dependence on the various angles (position
of the source in the sky, orientation of the detector, ori-
entation of the polarization axes) is not simple, and the
waves have several frequency components given by the
harmonics of the orbital frequency (assuming that the
orbit is circular [16,17]). For the purpose of this paper,
and following Cutler and Flanagan [10], we shall use a
simplified expression for the waveform. We shall ignore
all post-Newtonian corrections to the wave's amp/itude,
and single out its dominant frequency component at twice
the orbital frequency [1]. Thus, setting G = c = 1,

h(t; 8) = r Q(angles)M(vrMF) cos 4(t).

(1.2)

In Eq. (1.1) we use the most accurate expression avail-
able for the phase function 4(t). It is determined by the
2PN expression for the frequency sweep [13]:

dF
dt

(z-~F) ~ 1 —
~

+ —g ~(~MF) ~

5~~2 g336 4

~ (4' —P) (z-MF)
f'34103 13661 59

18144 2016 18

(1.3)

Apart from the parameters introduced previously, dF/dt
also depends on L, the direction of orbital angular mo-
mentum, and on Sq and S2, the spin angular momen-
tum of each companion. This dependence is hidden in
the "spin-orbit" parameter [18]

Here, r is the distance to the source, Q a function of the
various angles mentioned above, F(t) the gravitational-
wave frequency, and C(t) = J'2vrF(t)dt the phase. We
have also introduced the (so-called) chirp mass M: If
p = mqmz/(mq + m2) is the reduced mass and M =
mq + m2 the total mass, then

conclusions, can be found in Ref. [23].
Our main conclusion is that 1.5PN phasing underesti

mates the uncertainty in such parameters as ~, g, and
P: 2PN phasing predicts somewhat larger measurement
errors. This is true even when no attempt is made to
determine the spin-spin parameter o. If, however, o is
also estimated, then the measurement errors become even
larger. This is because the number of estimated parame-
ters has increased with respect to the number contained
in the 1.5PN waveform.

An independent analysis by Cutler and Flanagan [24]
shows that 2PN waveforms are not suKciently accurate
for the purpose of parameter estimation: They produce
systematic errors which are larger than the statistical
errors inherent to the measurement process. This is be-
cause the 2PN waveform fails to rexnain in phase with
the true general-relativistic signal, even when the source
parameters are exactly matched [25—27]. To construct
templates such that the systematic errors will fall be-
low the measurement errors will require an expression
for the wave's phasing accurate through at least 3PN or-
der [25—27]. To achieve such a high degree of accuracy is
a major challenge for gravitational-wave theorists.

We shall consider the following three "canonical" bi-
nary systems: system A—two neutron stars, with mz ——

m2 ——1.4Mo, system 8—neutron star and black hole,
with mq ——1.4M~ (the neutron star) and mz ——lOM~
(the black hole); and system C—two black holes, with
my ——m2 ——10M'.

For each of these systems Table I summarizes the con-
tribution from each term in Eq. (1.3) to the total number
of gravitational-wave cycles received in a I IGO-VIRGO-
type detector.

The remainder of the paper is organized as follows.
In Sec. II we review the theory of parameter estimation,
as developed in previous papers by Finn [28] and Cutler
and Flanagan [10]. In Sec. III we carry out the calcu-
lations for the waveform (1.1), and compute the antici-
pated uncertainty in the measured values of the source
parameters. Our results are summarized and discussed
in Sec. IV.

2

P = —) 113(m;/M) + 75@ L.~;,12
(1.4)

where ~; = S,/m;, and the "spin-spin" parameter
[18,19]

( 247X& ' X2 + 721L X&L X2).48
(1.5)

The purpose of this paper is to estimate the anticipated
accuracy with which the various parameters (such as M,
q, P, and o) can be determined during a gravitational-
wave measurement. This analysis difFers from that of
Cutler and Flanagan [10] in that it incorporates terms of
2PN order into the phasing [terms of order (7rMF)4~s in
Eq. (1.2)]; their calculations were accurate only through
1.5PN order (terms of order 7rMF). Previous analyses
also include Refs. [9,20—22]. An independent analysis,
difFerent from ours in many respects, but reaching similar

System
Newtonian
IPN
Tail
Spin orbit
2PN
Spin spin

A
16 050

439
-208
17@

9
—2'

B
3580
212
-180
14P
10

—3%

C
600
59
-51
4p
4

TABLE I. Contributions to the accumulated number of
wave cycles measured in a LIGO-VIRGO-type detector. The
frequency entering the bandwidth is 10 Hz (seismic limit); the
frequency leaving is 1000 Hz (system A) (shot noise), and 360
Hz (system B) and 190 Hz (system C) (innermost circular or-

bit). The various contributions correspond to various terms
in Eq. (1.3). Newtonian, first term within the square brack-
ets; 1PN, second term; tail, 4m(vrMF); spin orbit, P(mMF);-
2PN, (vrMF) ~ terms with o = 0; and spin spin, o (7rMF) ~ .
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II. PARAMETER ESTIMATION: THEGRY

s(t) = h(t; 8) + n(t), (2.1)

where n(t) represents the detector noise, assumed to be
a stationary, Gaussian random process. Finn shows that

p(8ls) oc pl' (8) exp( ——,'(h(8) —slh(8) —s)}, (2.2)

where pool (8) is the a priori probability that the signal is
characterized by 8 (this represents our prior information
regarding the possible value of the parameters) and where
the constant of proportionality is independent of 8.

The inner product {.
l ) is defined as follows [10]. The

statistical properties of the detector noise can be summa-
rized by its autocorrelation function C (w) = {n(t)n(t +
r)), where angular brackets denote a time average. {It
is assumed that the noise has zero mean. ) The Fourier
transform of the autocorrelation function gives the noise
spectral density

5'„(f) = 2 j C„(e)e' '~ e)e, (2.3)

which is defined for f ) 0 only. The inner product is
defined so that the probability for the noise n(t) to have
a particular realization no(t) is given by p(n = no) oc

exp[ —(nolno)/2]. It is given by

(2.4)

The theory of detection and measurement of
gravitational-wave signals was put on a firm statistical
foundation, rather similar to that underlying the theory
of radar detection [8,29]. This was done by various au-
thors, including Finn [28] and Cutler and Flanagan [10].
In this section we review the various aspects of the theory
which are relevant for our purposes.

We assume that some criterion has been applied to
conclude that a signal originating from an inspiral-
ing coxnpact binary has been received by a network of
gravitational-wave detectors. It is therefore known that
a signal of the form h(t; 8) has passed through the de-
tectors, and we seek to determine the value of the source
parameters 8 and the measurement error A8 = 8 —8,
where 8 denotes the true value.

Finn [28] has derived an expression for p(8]s), the
probability that the gravitational-wave signal is charac-
terized by the parameters 8, given that the detector out-
put is s(t) and that a signal h(t; 8), for any value of the
parameters 8, is present. The detector output is given
by

parameters can be estimated by locating the value 8
at which the probability distribution function (2.2) is
a maximum. This is the so-called maximum-likelihood
estimator [8]. We define p, the signal-to-noise ratio as-
sociated with the measurement, to be the norm of the
signal h{t;8),

(2.6)

(2.7)

where ",a" denotes partial di8'erentiation with respect
to the parameter 0, and L0 = 0 —0; summation
over repeated indices is understood. We assume that p
is suKciently large that the higher-order terms can be
neglected. The calculation yields 2( b = (h blh —s) +
(h lh b), and we assume once more that p is large enough
that the first term can be neglected (see Refs. [10,28] for
details). We arrive at

p(8ls) oc pl l(8) exp —2I' bA0 48 (2.8)

where

(2.9)

evaluated at 8 = 8, is the Fisher information matrix [29].
We therefore see that in the limit of large signal-to-

noise ratio, p(8ls) takes a Gaussian form. From Eq. (2.8)
it can be established that the variance-covariance matrix

~~ is given by

gab {~ga~gb) (Ie—1)ab (2.10)

Here, angular brackets denote an average over the prob-
ability distribution function (2.8), and r is the inverse
of the Fisher matrix. We define the measurement error
in the parameter 0 to be

(2.11)

evaluated at 8 = 8, the estimated value of the source
parameters. In the limit of large signal-to-noise ratio, to
which we henceforth specialize, p(8ls) will be strongly
peaked about this value. We now derive a simpli6ed ex-
pression for p(8ls) appropriate for this liiniting case.

We first assume that pl l (8) is nearly uniform near 8 =
8. This indicates that the prior information is practically
irrelevant to the determination of the source parameters;
we shall relax this assumption below. Then, denoting
((8) = (h(8) —slh(8) —s), we have that ( is minimum

at 8 = 8. It follows that this can be expanded as

where g(f) is the Fourier transform of g(t),

g(t) e '~'dt; (2.5)

(no summation over repeated indices), and the correla-
tion coefBcient between parameters 6I and 0 as

an asterisk denotes complex conjugation.
In a given measurement, characterized by the partic-

ular detector output s(t), the true value of the source

{Ze.web)

&a&b

pub

Qgaagbb
(2.12)

by definition each c must lie in the range (—1, 1).
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p(')(8) ~ exp --', r.", (0 —e ) (e' —0') . (2.13)

Then p(8~a) will also take a Gaussian form, and the new
variance-covariance matrix will be given by

z= (r+r(')) '. (2.14)

It should be noted that, in general, p(8~a) will be peaked
at a value (8) which differs both from 8 and 8.

Cutler and Flanagan [10] (see also Ref. [28]) have
shown that in the limit of large signal-to-noise ratio,
Eq. (2.8) is valid even when p( ) (8) is not uniform near
8 = 8. In such cases the prior information plays an im-
portant role in the determination of the source parame-
ters. The exponential factor is still peaked at 8 = 8, but
8 no longer represents the maximum-likelihood estimate,
and the full probability distribution function p(8~a) may
not be a Gaussian.

For simplicity, and following Cutler and Flanagan [10],
we shall restrict attention to cases such that p( )(8) is a
Gaussian, given by

III. PARAMETER ESTIMATION:
CALCULATIONS

We proceed with the calculation of the Fisher infor-
mation matrix, Eq. (2.9), for gravitational-wave signals
of the form (1.1), and for gravitational-wave detectors of
LIGO-VIRGO-type. For such detectors the anticipated
noise spectral density can be approximated by the ana-
lytic expression [10]

S-(f) = 5So (fo/f)'+2+ 2(f/fo)' (3 1)

where So is a normalization constant irrelevant for our
purposes, and fo the frequency at which S„(f) is min-
imum; we set fo —70 Hz, which is appropriate for ad-
vanced LIGO sensitivity [3]. To mimic seismic noise we
assume that Eq. (3.1) is valid for f ) 10 Hz only, and
that S„(f)= oo for f ( 10 Hz.

First, we integrate Eq. (1.3) to obtain expressions for
O(F) and t(F), respectively, the phase and time as func-
tions of gravitational-wave frequency. (Throughout this
section we shall distinguish between E, the function of
time describing the frequency sweep, and f, the Fourier-
transform variable. ) Expanding in powers of (7rMF) ~

and truncating all expressions to 2PN order, we obtain

e(F) = y, ——(7rMF) ~ 1+ —
~

+ rj
~

(7—rMF) ~ ——(4' —p)(7rMF)
1 5 /743 11 i 5

16 3 i336 4 ) 2

f 3058673 5429 617
1016064 1008 144

(3.2)

where P, is (formally) the value of 4 at F = oo, and

5 4/743 11 ) 2s 8
t(F) = t, — M(7rMF) s~s 1+ —

~

+ —r)
~

(7rMF)'~s ——(4~ —P)(7rMF)
256 3 ( 336 4 ) 5

(3058673 5429 617
1016064 1008 144

(3.3)

where (formally) t, = t(oo). Of course, the signal cannot be allowed to reach arbitrarily high frequencies; it must be
cut off at a frequency F = F; corresponding to the end of the inspiral. We put 7rMF; = (M/r, ) ~ = 6 ~; r, = 6M
is the Schwarzschild radius of the innermost circular orbit for a test mass moving in the gravitational field of a mass
M [30].

Next, we take the Fourier transform of Eq. (1.1) and calculate h(f) = I h(t)e 't~dt. It is sufficient to estimate

h( f) using the stationary phase approximation, according to which [31]

g(t )e'4(~o) (3.4)

if g(t) varies slowly near t = to where the phase has a stationary point: P (to) = 0 (a prime denotes differentiation with
respect to t) Substitutin. g Eqs. (1.1) and (3.2) into (3.4), discarding the irrelevant negative-&equency component,
and neglecting all post-Newtonian corrections to the amplitude of h( f), we obtain

where A oc M ~ Q( anlge )sr/, and

h(f) Qf 7/6 ig(f)— (3.5)
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@(f) = 2~ft, —P, ——+ (~M f) I 1+ —
i

+ —g ~(7rMf) I —4(47r —P)(7rMf)3,, 2O (743
4 128 9 i 336 4 )

I 3058673 5429 617
+ loe + q+ q —o vrM

1016064 1008 144
(3.6)

= 20A S f I I(7) (3 7)

where the integrals I(q) represent various moments of the
noise spectral density:

We have introduced the parameter e = 1. This gives us
the freedom, for future use, of removing the 2PN terms
from @(f) by setting e = 0.

We now substitute Eq. (3.5) into (2.6) and calculate
the signal-to-noise ratio. We readily obtain

2rla ~lap (3.13)

and

Finally, the components of F can be obtained by eval-
uating the inner products (h ~h s) using Eq. (2.4). The
I' g's can all be expressed in terms of the parameters 8,
the signal-to-noise ratio p, and the integrals I(q). The ex-
pressions are too numerous and lengthy to be displayed
here. As illustrating examples, we quote

+t ~—qi3
I(q) =— dx, (3.8)

r46

(3.14)

15
4096

q-'I'(~My, )-'I' J(14) + A, J(12)
—B4J(11)+ C4 J(10) p,

8 = (ln A, fpt„g„ln M, ln g, P, o') . (3 9)

We obtain

h, g ——h,

6 2 ——27ri (f/ fp) h,

h, 3
———ih, ,

(7rM f) I (1+A4v —B4v + C4v )6,
e

(~f) I (—
96

I (~~f) I t
32

'I'(~~f) 'I'-h,
,

-
64

(3.io)

where v—:(mM f) iIs. We also have defined

where x; = f;/fp ——(6 I vrMfp) is the frequency cut-
oK

As the next step toward the computation of the Fisher
matrix, we calculate the derivatives of h(f) with respect
to the seven parameters

p 1(e) oc exp —~(P/8. 5) ——(0/5. 0) (3.i5)

We consider all other parameters to be unconstrained

where J(q):—I(q)/I(7). We note that even though the
h, 's are expressed as truncated post-Newtonian expan-
sions in Eq. (3.10), they must be treated as exact when
computing F. This is to ensure that the eigenvalues of
the Fisher matrix are always positive definite.

The variance-covariance matrix Z can now be ob-
tained from Eq. (2.14), and the measurement errors and
correlation coefficients computed Rom Eqs. (2.11) and
(2.12). Before doing so, however, we must first state our
assumptions regarding the prior information available on
the source parameters.

We take advantage of the fact that the dimensionless
spin parameters ~z and ~2 must necessarily be smaller
than unity. (This upper bound is strict for black holes,
but only approximate for neutron stars. ) It follows Rom
Eqs. (1.4) and (1.5) that ~P~ must be sznaller than approx-
imately 8.5, and that ~o

~

must be smaller than approxi-
mately 5.0 [19]. Following Cutler and Flanagan [10], we
crudely incorporate this information into our calculations
by taking

and

4 (743' =
3 ~ 336

+
4 "y'

8
B4 ———(4m —P),5

I 3058673 5429 617
C4 ——2e + g+ g —cr

1016064 1008 144 ) '

743 33
A5 —— rl168 4

27
Bs ———(4' —P),

( 3058673 5429 617

(1016064 4032 96

(3.ii)

(3.12)

[32].

IV. RESULTS AND DISCUSSION

Equation (3.12) implies that the Fisher matrix is block
diagonal. The parameter 0 = lnA is therefore entirely
uncorrelated with the other parameters, and we Bnd 0 q

——

AA/A = 1/p, ci = 0, in all cases. We shall no longer
be concerned with this parameter.

The results concerning the other parameters are dis-
played in Tables II and III. All calculations were carried
out assuming p = 10, and that the companions are spin-
less, so that P = o. = 0.

To obtain the results of Table II we have estimated only
six (including A) of the seven parameters, leaving o out.
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TABLE II. Measurement errors and correlation coeFicients for the estimation of six parameters
(cr is not estimated), assuming p = 10 and P = 0. The first column indicates whether or not prior
information was included in the calculation. The second column gives the value of e, introduced
in Eq. (3.6); e = 1 represents 2PN phasing. Then follows, in more suggestive notation, o2j fo (in
msec), o.3 (in radians), o4, o5, o6, c,c, and c (all dimensionless).

Prior e b, t,
System A (two neutron stars)

Yes 1 1.07 2.94 0.036%
No 1 1.08 2.97 0.037%
No 0 1.13 4.09 0.034%
No -1 1.16 4.96 0.032%
System B (neutron star and black hole)

0.279
0.282
0.243
0.213

133
1.35
1.24
1.15

-0.989
-0.989
-0.988
-0.986

0.994
0.994
0.993
0.992

-0.999
-0.999
-0.999
-0.999

Yes 1 1.72 2.27
No 1 1.76 2.32
No 0 2.04 6.24
No -1 2.20 8.68
System C (two black holes)

0.218%
0.226%
0.191%
0.171Jo

0.503
0.523
0.386
0.306

2.29
2.38
1.99
1.76

-0.993
-0.993
-0.990
-0.988

0.996
0.996
0.994
0.993

-0.999
-0.999
-0.999
-0.999

Yes
No
No
No

1
1
0

-1

1.50
2.40
3.53
4.01

2.19
4.99
9.27
14.7

0.54%
1.96%
1.42%
1.21%

1.46
5.50
3.16
2.22

8.19
30.8
19.5
14.9

-0.946
-0.996
-0.992
-0.989

0.956
0.997
0.994
0.992

-0.999
-0.999
-0.999
-0.999

In effect, we have truncated the original Fisher matrix to
a smaller, 6 x 6, matrix. This amounts to assuming before
measurement that the spin-spin parameter must be very
small; equivalently, this assumption can be implemented
by taking p( ) (o) to be very strongly peaked at o = 0.

For each of the three canonical systems, the first line of
Table II displays the measurement errors and correlation
coefficients as calculated using 2PN phasing (e = 1) and
the prior probability distribution function (3.15). The
second line shows the same quantities calculated without
utilizing the prior information. We notice that the prior
information makes virtually no difference for systems A
and 8, but is very significant for system C.

The third line of Table II displays the measurement
errors and correlation coeKcients assuming no prior in-
formation and 1.5PN phasing (e = 0). Our values agree
with those of Cutler and Flanagan [10,33]. We notice
that the errors calculated using 1.5PN phasing are al-
ways larger for t, and P„and smaller for M, rl, and

P, than those calculated using 2PN phasing. Thus, the
measurement errors on the masses and spins are under-
estimated when evaluated using the less accurate 1.5PN
phasing.

This can be explained with a simple argument. In
Eq. (3.6), the 1PN and 2PN terms [of order (7rMf)2~s
and (7rMf)4~s, respectively] combine, when e = 1, so
as to reduce the relative importance of the mMf term,
when compared to the situation when e = 0. In other
words, the relative contribution to the total number of
wave cycles coming from the mM f term is less for 2PN
phasing than it is for 1.5PN phasing (see Table I). It is
therefore expected that 2PN phasing will produce larger
measurement errors for P, since all information about P
comes from the AM f term. But because P is strongly
correlated with both ~ and g, it follows that these pa-

rameters will also come with larger measurement errors.
This is indeed what is observed. It is amusing to test
this explanation by artificially setting e = —1 in our cal-
culations, which we do in the fourth line of Table II. The
argument suggests that the errors in M, q, and P should
all decrease with respect to the values calculated using
1.5PN phasing, since the relative importance of the vrM f
term is now increased. This is indeed what the results
show.

To obtain the results of Table III we have estimat-ed all
seven parameters, including both A and cr, and used 2PN
phasing. For each of the three systems, the first line of
Table III displays the measurement errors and correlation
coeKcients calculated using the prior probability distri-
bution function (3.15). We notice that the measurement
errors are all significantly larger than those displayed in
Table II; this is expected from the fact that we are now
estimating a larger number of parameters.

It is interesting to ask how the measurement errors in-
crease as the number of estimated parameters increases.
In Ref. [10], Cutler and Flanagan initially estimate only
five of their six parameters, leaving P out. When they
next include P in their calculations, they find that the
measurement errors on M and p increase by a factor of
order 10. In this paper, on the other hand, we have ini-
tially estimated only six of our seven parameters, leaving
0 out. When we next include o in our calculations, we
find that the measurement errors on M, p, , and P only
increase by a factor of order unity. Thus, the inclusion of
0. in the calculation has less dramatic consequences than
the inclusion of P. This confirms a conjecture formulated
by Cutler and Flanagan [10] at the end of their Sec. III.
That this is so is largely due to the importance of prior
information in the estimation of cr.

In the second line of Table III we display the results ob-
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TABLE III. Measurement errors and correlation coefBcients for the estimation of all seven parameters, assuming p = 10,
P = 0, and o = 0. The first column indicates whether or not prior information was included in the calculation. The notation
is similar to that of Table II, and e = 1 in all cases.

Prior At AP AM/M
System A (two neutron stars)

ger

Yes 1.28 13.3 0.047%%up 0.507
No 2.72 46.9 0.120'Pp 1.578
System B (neutron star and black hole)

1.77
4.53

4.79
17.3

-0.956
-0.991

0.996
0.999

-0.648
-0.952

-0.964
-0.993

0.835
0.984

-0.660
-0.955

Yes 2.54 23.6 0.2807p
No 7.52 95.9 0.813'Pp

System C (two black holes)

0.873
3.10

3.02
8.98

4.74
19.4

-0.959
-0.993

0.997
0.999

-0.630
-0.961

-0.969
0.995

0.817
0.986

-0.650
-0.964

Yes
No

2.22
17.0

10.4
179

0.55'Fp

7.23'Pp

1.51
30.7

8.22
149

4.81
74.6

-0.849
-0.995

0.920
0.998

0.191
-0.962

-0.984
-0.999

0.257
0.984

-0.081
-0.978

tained when the prior information is not included in the
calculations. We notice that for all systems, the prior
information indeed plays a very important role. In fact,
we see that Eq. (3.15) provides nearly all of the informa-
tion regarding the spin-spin parameter 0. This explains
why the measurement error on a is always nearly equal
to 5.0, and its correlation coefficient with other param-
eters signi6cantly smaller than unity. Of course, these
results only apply to gravitational-wave measurements
with p = 10. To bring the error on o. well below the a
priori constraint ]o] ( 5.0, say, Ao & 3, the measurement
would require a signal-to-noise ratio larger than approx-
imately 45 for system A, 50 for system 8, and 110 for
system C.

We conclude with the following remark. It is clear that
the results displayed in Tables II and III depend on a
fairly large number of simplifying assumptions, and that
a more careful treatment might produce somewhat differ-
ent numbers. These assumptions include (i) the simpli-
fied form (1.1) for the waveform, (ii) the neglect of (not
yet calculated) higher-order terms in the post-Newtonian

expansion (1.3), (iii) the neglect of O(1/p) corrections in
the expression (2.8), (2.9) for p(e]s), (iv) the analytic
model (3.1) for the noise spectral density, and (v) our
rather crude incorporation of the prior information. We
shall leave for future work the difBcult task of carefully
examining the effect of these assumptions on our results.
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