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Coalescing binary systems of compact objects to (post) / -Newtonian order.
V. Spin effects
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We examine the effects of spin-orbit and spin-spin couplings on the inspiral of a coalescing binary
system of spinning compact objects and on the gravitational radiation emitted therefrom. Using a
formalism developed by Blanchet, Damour, and Iyer we calculate the contributions due to the spins
of the bodies to the symmetric trace-free radiative multipole moments which are used to calculate
the waveform, energy loss, and angular momentum loss from the inspiraling binary. Using equations
of motion which include terms due to spin-orbit and spin-spin couplings, we evolve the orbit of a
coalescing binary and use the orbit to calculate the emitted gravitational waveform. We 6nd the
spins of the bodies affect the waveform in several ways: (1) the spin terms contribute to the orbital
decay of the binary, and thus to the accumulated phase of the gravitational waveform; (2) the spins
cause the orbital plane to precess, which changes the orientation of the orbital plane with respect
to an observer, thus causing the shape of the waveform to be modulated; (3) the spins contribute
directly to the amplitude of the waveform. We discuss the size and importance of spin effects for the
case of two coalescing neutron stars, and for the case of a neutron star orbiting a rapidly rotating
10Mo black hole.

PACS number(s): 04.25.Nx, 04.30.—w, 04.80.Nn, 97.80.Fk

I. INTRODUCTION AND SUMMARY

Coalescing binary systems of compact objects are the
most promising source of gravitational waves which could
be detected by laser interferometric gravitational wave
detectors such as the currently funded U.S. Laser Inter-
ferometric Gravitational Wave Observatory (LIGO) and
French-Italian VIRGO detector [1]. These systems con-
sist of neutron stars or black holes whose orbits decay
because of the dissipative eKect of gravitational radia-
tion. The binary pulsar PSR 1913+16 is an example of
such a system and has given us our 6rst evidence that
gravitational waves exist [2]. Laser interferometric grav-
itational wave detectors will be able to observe the very
late stages of the inspiral of coalescing binaries (typically
the final several minutes) as the gravitational wave fre-
quency sweeps through a detector's bandwidth from 10
Hz to 1000 Hz.

In the previous papers in this series [3—6] we have stud-
ied the evolution of coalescing binary systems using a
post-Newtonian approximation. The post-Newtonian ap-
proximation involves an expansion of corrections to New-
tonian gravitational theory with an expansion parameter
e = v2 = m/r, which is assumed to be small (we use units
in which G = c = 1), where m = mi+m2 denotes the to-
tal mass of the system, and where r and v are the orbital
separation and velocity. Since we are interested in the
late stages of the inspiral, where the fields may not be so
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small and the velocity not so slow, we use an expansion
carried out to the highest practical order. We use equa-
tions of motion carried out to (post) ~2-Newtonian order,
the order at which the d.ominant gravitational radiation-
reaction damping forces occur. Schematically the equa-
tions of motion are given as

d'x/dt' = —(mx/r') [1+O(e) + O(e ') + O(e')

+O("~)+ ],

where x = x~ —x~ denotes the separation vector be-
tween the bodies and r = ~x~. We use a gravitational
waveform carried out to (post) ~2-Newtonian order be-
yond the quadrupole formula. Schematically,

h" = —Q'~ 1 + 0(e ~ ) +. O(e) + O(e ~ ) + . .2

D TT'

(1.2)

where Q'~ represents the usual quadrupole term (two
time derivatives of the mass quadrupole moment ten-
sor), D is the distance between the source and an ob-
server, and TT denotes that the transverse traceless part
of the tensor should be taken [(post) -Newtonian contri-
butions have recently been derived by Blanchet et al. [7]].
Given a set of initial conditions, we evolve the orbit with
the equations of motion and calculate the emitted grav-
itational radiation. In previous papers we ignored the
eKects on the motion and radiation due to the spins of
the bodies. It is the purpose of this paper to take these
eKects into account.

The contribution of the spins of the bodies to the equa-
tions of motion has been stud. ied by numerous authors
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[8—ll]. They include a contribution due to a spin-orbit
interaction and a contribution due to a spin-spin inter-
action. In Sec. II we write down the spin-orbit and
spin-spin contributions to the equations of motion and
show that, although they are formally post-Newtonian
corrections to the equations of motion, for compact bod-
ies they are effectively (post) ~ -Newtonian and (post)2-
Newtonian corrections, respectively, in part because they
involve factors of order (B/r) where B is the size of the
body which is on the order of m for a compact body.
We add these contributions to our previous equations of
motion, and obtain equations of motion valid for arbi-
trary masses and spins. Our equations of motion neglect
tidal efFects; for compact binary systems these efFects
are expected to be very small until the very late stages
of inspiral [3,12]. We also ignore rotationally induced
quadrupole efFects which would enter at the same order
as spin-spin efFects; these also are expected to be small
until very late stages, except possibly for very rapidly
rotating Kerr black holes [12]. The major effect of the
spins on the orbital evolution is that they cause the or-
bital plane to precess, thus changing its orientation in
space. The spins themselves also precess; the precession
equations are also written down in Sec. II.

Recently, we calculated the spin contributions to the
symmetric trace-&ee radiative multipole moments which
we used to calculate the spin contributions to the en-
ergy lost &om a binary system due to the gravitational
radiation emitted &om the system [13]. In Sec. III we
present the details of that calculation, and calculate the
spin contributions to the gravitational waveform, the an-

gular momentum lost from the system, and the linear
momentum ejected Rom the system.

Since the emission of gravitational radiation tends to
circularize the orbits of the binary system [3], we study
the system under the assumption of circular orbits. This
assumption should hold until the very late stages of in-
spiral when either the bodies start to merge, tidal efFects
become important, or the innermost stable circular orbit
is reached in which case the system undergoes a transition
from inspiral to plunge [5,14]. Assuming circular orbits,
we calculate the spin-orbit and spin-spin contributions to
the energy loss and variation of the orbital &equency, and
hence to corrections in the accumulated orbital phase.
In Table I we compare these contributions to the analo-
gous contributions due to the quadrupole term and other
post-Newtonian terms for various binary systems. These
contributions to the orbital phase are important since,
in order to extract information from the observed wave-
forms, theoretical templates must match the observed
waveform to within about one cycle (which corresponds
to half an orbit) over the several hundred cycles that
appear in the sensitive region of a detector's bandwidth
(between roughly 40 Hz and 100 Hz). Note that the
templates do not have to match the observed waveform
within one cycle over the entire bandwidth from 10 Hz to
1000 Hz (as suggested by Cutler et al. [15]) since the de-
tector is more sensitive to the signal at some frequencies
than in others [16]. As seen in Fig. 2 of Ref. [17], 60% of
the signal to noise from a binary inspiral will accumulate
between 40 Hz and 100 Hz due to the shape of the LIGO
noise spectrum, and to the fact that there are more orbits

TABLE I. The contributions to the number of orbits for an inspiraling binary system which is in
a I IGO-type detector's bandwidth, from quadrupole (Quad), post-Newtonian (PN), tail, spin-orbit
(SO), and spin-spin (SS) terms. Masses are in units of Mo. In the first table, the observed inspiral
begins when the gravitational wave frequency enters the bandwidth at the seismic cutofF around
10 Hz, and is cut ofF when either the quadrupole radiation of the binary has left the detector's
bandwidth (at around 1000 Hz), or when the binary reaches its innermost stable circular orbit at
which point the binary will plunge to a single object in one or two orbits. In the second table,
we list the contribution to the number of orbits in the narrower bandwidth of 40 Hz to 100 Hz.
The spin contributions shown are the maximum contributions assuming the bodies are maximally
spinning (y = y „). The magnitude and sign of the spin contributions depend on the specific
orientations of the spins with respect to the orbital plane.

m]
1.4
0.9
0.5
1.4
1.4
10
5

m2
1.4
1.8
2.0
10
100
10
10

&10 Hz

174
178
187
68
15
46
56

f,„, (Hz)
1000
1000
1000
345
42
183
245

pg~t m
7.3
7.5
7.5
5.6
5.1
6.0
6.0

Quad
8015
9581
15128
1787
337
300
547

PN
219
249
351
106
66
29
43

Tail
-104
-119
-175
-90
-112
-25
-35

SO
+44
+53
+82
+63

83
+15
+22

SS
+1.2
+1.2
+1.3
+1.0
+0.3
+1.0
+1.2

m1
1.4
0.9
0.5
1.4
10
5

m2
1.4
1.8
2.0
10
10
10

~40 Hs m
68
70
74
26
18
22

&100 HF,

37
38
39
14
9.3
11

Quad
623
745
1175
139
24
43

PN
33
37
531
16
4.7
6.8

Tail
-19

-33
-18

-5.3
-7.3

SO
+12
+14
+22
+13

+3.3
+4.6

SS
+0.5
+0.5
+0.6
+0.3
+0.3
+0.3
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at lower &equencies. In Table I we list the orbital phase
contributions for both the restricted bandwidth (40—100
Hz) and the entire bandwidth (10—1000 Hz) of a LIGO-
type detector. We see that the spin-orbit correction to
the accumulated orbital phase is iinportant (unless the
spins are very small), while the spin-spin contribution is
negligible unless rapidly rotating black holes are present.
Note that the contributions of the post-Newtonian terms
are less important in the narrower bandwidth than in the
entire bandwidth since the sensitive region of the band-
width is at low &equencies, for which post-Newtonian
corrections are less important in most systems. Con-
versely, the use of matched templates may allow estima-
tions of spins via the spin-orbit terms [13,15].

Using the equations of motion and the equations of
precession, we numerically evolve the orbit for a binary
system of arbitrary masses and spins. Using the orbit
we are then able to calculate the gravitational waveform
emitted by the system. If the spins of the bodies are not
aligned perpendicular to the orbital plane, the orbital
plane will precess in space thus changing its orientation
with respect to an observer. Since an observed grav-
itational waveform depends upon the orientation of the
orbital plane with respect to the observer, this precession
will cause the waveform to be modulated. Figure 1 shows
an example of this modulation. We see that these modu-

0.3

lations depend significantly upon the observer's location
with respect to the source, and upon the orientation of
the detector relative to the incoming wave. The size of
the modulations also depends upon the relative magni-
tudes of the orbital angular momentum L and the total
spin S and upon their relative orientation. (See Fig. 2
for a description of the source coordinate system. ) If the
angle between L and S is small, the modulations of the
waveform will be small. If ~S~ && ~L~, then the modula-
tions are small regardless of their relative orientation. For
a circular orbit ~L[ = p(rm) / to leading order, while for
each spin we define ~S~~ = y~m& where 0 & y~ & y
where y „=1 for a black hole and depends on the un-
certain nuclear equation of state for neutron stars. For
most neutron star models y „& 0.7 [18]. In Fig. 3
we compare the relative sizes of L and S for the case of
equal masses and for the case of a 10:1 mass ratio. We
see that ~S~ && ~L~ almost always for the equal mass case,
so that the modulations of the waveform will be small.
For a neutron star orbiting a rapidly rotating massive
black hole, however, the modulations can be substantial
if L and S are suKciently misaligned. The modulation of
the waveform due to the spin-induced orbital precession
has also been independently studied by Apostolatos et
al. [19].

There is also an explicit contribution to the waveform
due to radiative multipole moments generated by the
spins of the bodies. This contribution is relatively small
until the late stages of inspiral. In Fig. 4 we compare
the spin-orbit and spin-spin contributions to the wave-
form with the quadrupole contribution and higher-order
post-Newtonian contributions for the last few orbits be-
fore coalescence. We see that the spin-orbit contribution

0.2
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w~e

~ &+~
5 +a ~ ~

sr+

I I I I ~ II I I i I IIII I Its&l I I I I I I IWI I

0.1 10 100

Time to Coalescence [(M/11 Mo) sec]

FIG. 1. Amplitude modulation of gravitational waveforms
by spin-induced orbital precession, plotted against time to
coalescence. System consists of a nonspinning 1Mo neutron
star and a maximally spinning black hole of 10MO. Spin and
orbital angular momentum vectors are initially misaligned by
11.3 . Initial orbital inclination relative to J is i. The angle
p represents the orientation of the detector relative to J, with
the detector located on the T axis (see Fig. 2) such that
the source is directly overhead. Curves show envelope of the
quadrupole waveform for various detector orientations (The
curves for the cases p = 0, i/2, and i would lie on top of
one another, and so the erst two have been shifted upward
for ease of presentation). Gravitational-wave frequency runs
from 10 Hz on the right to 300 Hz on the left.

FIG. 2. The source coordinate system. The total angular
momentum J initially lies along the z axis. The detector is
located in the x-z plane. The spherical angles (i, o.) define
the direction of the Newtonian angular momentum LN which
is perpendicular to the orbital plane. In terms of celestial
mechanics, the angle of ascending nodes is o + m/2.
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FIG. 3. A comparison of the magnitudes of the orbital an-
gular momentum and spin angular momentum as the binary
inspirals. (a) The equal mass case (assuming the bodies are
maximally spinning). (b) The case of a 10:1mass ratio.

is comparable to the higher-order post-Newtonian con-
tributions, while the spin-spin contribution is practically
negligible.

The rest of the paper presents the details. In Sec. II
we assemble the equations necessary to evolve the or-
bit. In Sec. III we derive the spin corrections to the
radiative multipoles, and calculate the spin corrections
to the gravitational radiation emitted, energy lost, angu-
lar momentum lost, and linear momentum ejected from
the binary system. In Sec. IV we examine the system
in the limit of circular orbits, and in the limit of small
precessions. In Sec. V we present our results for vari-
ous numerically evolved orbits. Finally, in Sec. VI we
discuss these results, and their implications for extract-
ing useful information &om observations. In Appendix A
we discuss the issue of "spin supplementary conditions"
used to 6x the center of mass of the spinning bodies to
post-Newtonian order. In Appendix B we list the post-
Newtonian corrections to the circular orbit waveform. In
Appendix C we compare our results with calculations in-
volving test masses orbiting spinning black holes.

FIG. 4. Gravitational waveform plotted against orbital
phase for a 10:1.4 mass-ratio system. The smaller body's
spin is aligned with the orbital angular momentum I, while
the larger body's spin is tilted by an angle of 30' with respect
to L. Plotted is (D/2p)h+ for an observer at 0 = 90'. Plots
begin at an orbital separation of 15m and terminate at 10m.
(a) The total waveform. (b) The quadrupole contribution
to the waveform. (c) The first higher-order post-Newtonian
correction [O(e ~ ) beyond the quadrupolej. (d) The next
post-Newtonian correction. (e) The leading-order spin-orbit
contribution to the waveform (f) Th. e leading-order spin-spin
contribution to the waveform (note the difFerent scale). No-
tice the modulation due to the precession of the orbital plane.

II. ORBITAL EVOLUTION EQUATIONS

A. Equations of motion

= N + +PN + &SO + &2PN + +SS + +RR

where

(2.Z)

Equations of motion for two bodies of arbitrary mass
and spin have been developed by numerous authors (for
reviews and references see [8—llj). By eliminating the
center of mass of the system, we convert the two-body
equations of motion to a relative one-body equation of
motion given by

m
RN = ——I1,r2 (2.2a)

2 m 3.2
RpN = ——n (1 + 3&)u —2 (2 + Il) —— rlr —2 (2 —rl) rv-

r2 r 2
(2.2b)

Sm
as() = — 6n (n x v) 2S+rs ( m )

Smvx VS+3 rh
~

+3r nx 3S+
m ) I

m
(2.2c)
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m -3 ( 4 15 .4
a2pN = ——n —(12 + 29@) — + g(3 —4g) v + —g(l —3')r'

r2 4 8

——g (3 —4') v r' ——q(13 —4)7) —v —(2 + 25' + 2g )
r'—3 22 1 m 2 2m 2

2 2 r r

rv—')7(15 + 4g)v —(4 + 41' + 8g ) ——3g(3 + 2rI)r'
2 r (2.2d)

ass = — (n(Sq . S2) + Sq(n S2) + S2(n Sq) —5n(n Sq)(n. S2)),pr4
(2.2e)

28 m .„2 2m .2 2 m
+RR = r'6 18v + ———25r' —v 6v —2 ——15r'

r3 3 r r (2.2f)

where aN, apN, and a2pN are the Newtonian, (post)—
Newtonian, and (post)2-Newtonian contributions to the
equations of motion, aRR is the contribution to the equa-
tion of motion due to the radiation-reaction force, and
aso and ass are the spin-orbit and spin-spin contribu-
tions to the equations of motion which we have ignored
previously, and where x—:xq —x2, v = dx/dt, n = x/r,
)(), = mgm2/m, g = p/m, bm = mg —m2, S—:Sg + S2,
and b, —:m(S2/m2 —Sq/mq), and an overdot denotes
d/dt

It should be noted that the above expression for aso
is not unique; it depends on a "spin supplementary con-
dition" (SSC) which is related to the definition of the
center-of-mass world line x& for each body A. The
above form of as~ is for the covariant SSC given by
S& u~„——0, where u& is the four-velocity of the center-
of-mass world line of body A, and

and ass are not. As a result, the orbital plane will precess
in space (except for specific spin orientations) resulting
in modulations of the observed waveform. We will dis-
cuss this efFect in more detail in Sec. IV. Iyer and Will
[20] have derived post-Newtonian corrections to aRR at
O(e ~2) and O(e4) where the latter are the spin-orbit cor-
rections to radiation reaction.

B. Spin precession equations

In addition to the precession of the orbital plane, there
are precessions of the spin vectors themselves. This ef-
fect has been studied by numerous authors [8—10]; the
relevant equations are

=1 3
Sg ——— (LN x Sq) 2+ — —S2 x Sqr 2m, )

S„" —= 2 (2.3)
+ 3(n S2)n x S, (2.4a)

where w~ denotes the stress-energy tensor of matter
plus gravitational fields satisfying ~""„=0, and square
brackets around indices denote antisymmetrization. Note
that the spin vector S of each body is defined by S&
2~,~A, S&". We discuss the issue of SSC's in more detail
in Appendix A. Here we simply wish to emphasize that
since we have chosen a center-of-mass world line for each
body through our choice of a SSC, we must ensure that
all our calculations are consistent with this choice.

Since the spin of each body is of order mR~6~ where
RA is the size of body A and 6~ is its rotational velocity,
we see that the spin-orbit and spin-spin accelerations are
of order (R~/r)vv~ and (R~/r) v&, respectively, com-
pared to the Newtonian acceleration; these terms thus
are formally of (post)~-Newtonian order. For compact
objects, however, R~ is of order m, while 6~ could be
of order unity for suKciently rapid rotation, so that the
spin-orbit and spin-spin accelerations are efFectively of
(post)s) 2-Newtonian and (post)2-Newtonian order, re-
spectively. If the bodies are slowly rotating, the spin
contributions to the acceleration will be even smaller.

It is interesting to note that while aN, apN, 82pN, and
aRR are all confined to the orbital plane, in general aso

=1 3m, ~
S2 ——— (LN x S2) 2+ — —Sg x S2r 2 m2)

+ 3(n S~)n x S2 (2.4b)

t'7 3 hm
LN x

~

-S+ — &
~

+3(n. Si)(n x S2)r&

+ 3(n s~)(n x s,)). (2.5)

It is useful to note that the precession of spins is a post-
Newtonian effect, since IN r = (v/r)(p/r) = e(d/dt),
and S;/rs m;Rv/rs es ~(d/dt).

where LN = p, (x x v) is the Newtonian orbital angular
momentum, and where the first term in each expression
is the precession due to spin-orbit coupling, while the
second and third terms are due to spin-spin coupling. It
is straightforward to show that the total spin S evolves
as
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Since the precession equations have the form S~
A~ x S~, the magnitudes of the spins remain constant.
The spin S~ instantaneously precesses about the vector
A~ with a precession frequency given by ~p~ l = ~A~~.
It is an instantaneous precession since A~ is precessing
itself in some complicated manner. Notice that if both
bodies are spinning, the total spin S (with rare excep-
tions) does not have constant magnitude as the spins
precess.

that is, a Lagrangian which is a function not just of the
relative position and relative velocity, but also of the rel-
ative acceleration [21]. In our previous papers [5,13] we
transformed the Lagrangian into relative coordinates and
used it to compute the energy and total angular mo-
mentum of the system which are conserved to (post)—
Newtonian order, in the absence of radiation reaction.
Combining our expressions for the nonspinning case and
the spinning case, the energy is given by

C. Constants of the motion

Through (post)2-Newtonian order, the equations of
motion can be derived &om a generalized Lagrangian,

I

where

E = EN + EpN + Eso + E2PN + Ess ~ (2.6)

EN = p —v (2.7a)

T

3 1 m 1 m, . 1(m~
EpN = p ) —(1 —3g)v + —(3+ rI)v —+ g r'——

8 2 r 2 r 2ir) (2.7b)

I' Sm
Eso = —IN. S+r3 m (2.7c)

E2pN = p —(1 —7p + 13' )v ——ri(1 —3q) —r + —(21 —23& —27& ) —v
5 6 m 4 1 m 4
16 8 r 8 r

1 m ' 1 m22 1 m '
+ —(14 —55rI+4g ) — v + —rI(l —1521)—v r ——(2' +. 15@)8 r r r

m 2
+ —(4+ 62@+ 12@*)(

—
) 4'),

1
Ess = —(3 (n . Sg) (n S2) —(Sq S2)),

(2.7d)

(2.7e)

and the total angular momentum is given by

J =I, +S,

I = LN+ &r I+ I so+ &2PN,

(2.8)

(2.9a)

Note that there is no spin-spin contribution to J. It is
straightforward to show that to (post) -Newtonian order,
E = J = 0, where it is understood that whenever the
relative acceleration is found in the time derivative, the
equation of motion carried to the appropriate order is
substituted.

1 2 m
LpN = L~ —v (1 —3g) + (3 + g)— (2.9b) D. Precession of the orbital angular momentum

(((, m 6 hm
Ls~ = ——nx nx

]
3S+ ).

Since the total angular momentum J is conserved (in
the absence of gravitational radiation), it is clear that
the orbital angular momentum L must precess as

f bm——~x ~x~S+ 42) ), (2.10)L= —S,(2.9c)

where S is given by Eq. (2.5).
If we restrict ourselves to the case of one spinning body,

then
3 2 4 1 m 2L2p N = LN —(1 —7q + 13ri )v ——rj (2 + 5r() r'—
8 2 r

1 2 m 2+ —(7 —10@—9rI )—v
2 r
1 m 2

+ —(14 —41@+4q') (
—) (2.9d)

ml &S= — — ]. +3 IN @Sm. ) k )
(2.11)

where m, is the mass of the spinning body. Since to
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lowest order J = L~ + S, then 0.2 I I I I
(

I I I I
I

I I I t
~

I I I I

S= — —1+3 JxS
8

Similarly, since L = LN to lowest order,

(2.i2)
0.1

L= — —1+3 JxL
8

(2.i3)
0

These two equations imply that L and S precess about
the Axed vector J at the same rate with a precession
frequency given by -0.1

cu„=
/

i+3/Jf f mi
2rs ( ma)

(2.i4)

Note that LN is not necessarily parallel to L because
of the Lso terms, so that the orbital plane (determined
by LN) does not precess in the simple manner above.
Instead the varying Ls~ terms cause it to wobble slightly
on an orbital timescale as it precesses about J. This is
illustrated in Fig. 5.

In the case of two spinning bodies L, Sq and S2 pre-
cess in a very complicated manner (with few exceptions),
which can only be examined numerically. Figure 6 shows
an example of such a precession. Note that in this case
the orbital plane tilts back and forth as it precesses about
J. In Sec. IV we will examine the precession of the spins
and orbital angular momentum in the case of nearly cir-
cular orbits, and examine the efFect of gravitational radi-
ation on the simple precession for one spinning body, and
on the more complicated case of two spinning bodies.

-0.2
-0.2

I I I I I I I I I I I I I a I I I I I

-0.1 0 0.1

L„/L
0.2

III. CRAVITATIONAL RADIATION EQUATIONS

FIG. 6. The complicated precession of the orbital angular
momentum L (in the absence of gravitational-radiation damp-
ing) for a 2:1 mass-ratio system with equal spins which are
initially aligned in the orbital plane. Although the spins are
equal, they precess at difFerent rates so that at a later time
they almost cancel one another. This leads to the tilting of
the orbital plane as it precesses about J. See Pig. 10 for the
e8'ects of gravitational radiation on the precession.

I I ) l I I I t I I I I )
I r

A. Symmetric trace-free radiative multipoles

0.1
Our goal is to calculate the efFects of the spins of the

bodies on the gravitational radiation waveform emitted
by the inspiraling binary and on the energy, angular mo-
mentum, and linear momentum radiated from the sys-
tem. Thorne [22] showed that these quantities can be
calculated using symmetric trace-free radiative multipole
moments. For example the gravitational waveform to
(post) ~ -Newtonian order is given by

(2) ] (3) ] (4)
hij Ixg + Iij k Nk + Iijkl NkNl

D 3 12

-0.1

-0.1 0

L„/L
0.1

I I a ~ I I I ~ I I I I

1 (5)
Iijklrn NkNlNm, +

60

4 (2) 1 (3)
kl(i Jj )k Nl + Jj)km NlNm

3 2

FIG. 5. The wobble of the orbital plane during simple pre-
cession (in the absence of gravitational-radiation damping).
Plotted are the x and y components of the unit vector L&
which defines the orbital plane. The total angular momen-
tuxn J is directed out of the page. If the orbital plane were
not wobbling as it precessed, the plot would be a circle whose
radius depends on the inclination of the orbital plane with
respect to J.

2 (4)
Jg)kmn NlNmÃ~ +

15
TT

where IU are the mass mu"l'tipole moments (see be-
low), I'~ ' " are the current multipole moments, D is
the distance from the source to the observer, ¹ is a
unit vector from the center of mass of the source to
the observation point, the notation (n) over each mul-
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tipole moment denotes the number of derivatives with
respect to retarded time, e'~" is the completely antisym-
metric Levi-Civita symbol, and parentheses around in-
dices denote symmetrization. To the accuracy we need,
the mass quadrupole moment I'~ needs to be calculated
to (post)3)'2-Newtonian order beyond the lowest order,
the mass octopole moment I'~" and current quadrupole
moment J~" need to be calculated to (post) -Newtoruan
order, I'~~i and J~" need to be calculated to (post)~) 2-

Newtonian order, and I'~" and J~" need to be known
only to lowest order.

Blanchet, Damour, and Iyer [23,24] (BDI) have devel-
oped a formalism for calculating these radiative multi-
pole moments in terms of integrals over the source stress-
energy. We use the BDI formalism to evaluate the spin-
orbit and spin-spin corrections to the radiative multipole
moments to the necessary order.

Ma88 multipole moments

The mass multipole moments in harmonic coordinates
(the coordinates in which our equations of motion are
written) are given to post-Newtonian order by Eq. (3.34)
in Blanchet and Damour [23] as

Toi (3.4b)

T" = p*v'v~+ pb'~, (3.4c)

where p' = p(1 + 3 v + 3U) is the so-called "con-
served density" (it satisfies a continuity equation to post-
Newtonian order) [25], with p the local mass density, v
the velocity, and U the Newtonian gravitational poten-
tial; II is the specific internal energy density, and p is the
pressure.

Substituting Eqs. (3.3) and (3.4) into Eq. (3.2) for the
case 1 = 2, the mass quadrupole moment is given by

Following previous post-Newtonian calculations [4,26],
we choose the following provisional definition for the cen-
ter of mass for each body:

I" = ) (x'x') p*(x) 1i —v' —Ui3

1 d'ill d'xi—
14 dh2 A

20 d

21 dt
(x'x'x") p*(x)v"d'x . (3.5)~ ~

I~(u) = j(x~)~Y a(xu)d'. T, '= 1 -
~ 1-2 1- 3xA x'p* (x) 1+ —8& + II ——U~ d x, (3.6)m~ z 2 2

4(2t + 1) d
(

iL)sTF i( )d3
(l i 1)(2l i 3) du

+
2(21 i 3) du2

~x3~(x ) o(x, u)d x,

where

1-2 1- 3m~ —— p'(x) 1+ —8~ i II ——U~ d x,
A 2

(3.7)

(3 2)

where I denotes a multi-index (i.e., x~ = x"x" x"),
the superscript STF denotes that only the symmetric
trace-free part is to be taken, and the source densities
are given by

where 8& ——v' —v&, v& ——dx&/dt, and U~ is the Newto-
nian potential produced by the Ath body itself. It turns
out that this definition of the center-of-mass world line
does not correspond to the center-of-mass world line of
our equations of motion chosen through the use of a SSC,
but rather to one given by a different SSC. There does
exist a transformation between the two world lines, given
by [27]

o.(x, t) = T"i T",

o'(x, t) = T '.

(3.3a)

(3.3b)
2

xA
1

; xA+ (v~ x S~)
2YDQ

(3.8)

T" = p*(1i II+ —,
'v' —U), (3.4a)

In previous calculations involving nonspinning bodies
we were able to evaluate the integrals by assuming a point
particle limit. Taking into account the spins of the bod-
ies, however, precludes this. Instead we will assume the
bodies to be well-separated, approximately spherically
symmetric (in harmonic coordinates), stationary, rigidly
rotating compact objects whose structure is given by that
of a perfect fluid. We will then neglect any effects due
to the finite size of the bodies with the exception of each
body's spin. The stress-energy tensor for a perfect fluid
to the order we need is

This shift in the world line is of post-Newtonian order,
and so it can be neglected at lowest order. We choose
to use our provisional definition of the center of mass to
evaluate the integrals, and then use the transformation
on the result so that it is consistent with our equations of
motion. See Appendix A and Ref. [27] for more details.

Equation (3.5) has been evaluated by several authors
[4,26] for the case of nonspinning bodies, i.e. , 8~ = 0.
By substituting x' = x& + x& and v' = v& + v& into
Eq. (3.5), using the center-of-mass definition Eq. (3.6)
and a virial theorem, and neglecting terms containing
x&X& which are O(P3) relative to x&x& where P = B/r,
Blanchet and Schafer [26] have rewritten Eq. (3.5) as
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I" = ). mA(*A*A)' ' 1+ —VA —): —
21d,

3 p'(x)VA(xAxAxA)' 'd'x
A BgA TAB A

14 Ck

A A 2 p x (3.9)

The third integral in Eq. (3.9) is just the mass quadrupole moment of body A, which is of O(P ), and so we
will neglect it. The last integral in Eq. (3.9) will also vanish because of our assumptions of approximate spherical
symmetry and rigid rotation. This just leaves integrals of the type

p (x)xAvAd x = p (x) xAvA + xA vA d x

a

~ ~

~

~

~a

3 y [a b] (a b)

A A

1 b 1 8 g b 3= -S„+—— p'(x)x„x„d x,
2 2dt

where we have used Eq. (2.3) evaluated to lowest order. The second term on the right-hand side vanishes by our
assumption of stationary spherical symmetry so we will neglect it. Changing the spin tensor to a spin vector we obtain

(3.10)

Substituting Eq. (3.10) into Eq. (3.9) and carefully counting the STF parts we obtain

I' = ) mA(xAxA) 1+ —vA —)™
A BgA

20d . j a STFA:mA(xAxAxA) vA
21 dt

STF 4 d i j- STF+
d 2 mAxA(xAxA) + 3 xA(vA x SA)

d
xA(xA x SA) (3.11)

Using Eq. (3.8) so that we have a consistent center-of-mass definition with our equations of motion, the mass
quadrupole moment becomes

I ' = ) mA(x„x„) 1+ -v„—)
A BgA

20d ' j a STF amA(xAxAxA) VA
21 dt

j-, STF 4 d i j- STF+ 2 mAxA(xAxA) + 4 xA(vA x SA) xA(xA x SA) (3.12)

We rewrite the mass quadrupole moment in relative
coordinates by using the transformations

j STF 29 2 1 mI*~ = & (x x~) 1+ —(1 —3&)"—-(5 —8&)—
42 7 r

Xy=X m 1 bm~ ml q+ —q v —— + —(vx Lh),
m 2 m ( r ) m

(3.13a)
(3.14a)

——(1 —3ri) err'(x*v~ )7
11 8 .- STF

+ —(1 —3ri)IJ,r2(v'v')sTF + —g x'(v x ()'
21 3
4 .- STF——rI v'(» x ()~ + I,'~,

X2=X m 1 Sm( m&
+ —g v2 —— + —(vxA),

m 2 m ( r f m

(3.13b)

which can be obtained from a constant of the motion that
can be taken as the center of mass [28].

The relative mass quadrupole moment to (post)s~2-
Newtonian order is

where (—:S + —A, and where It;&
is a rexninder that

tail effects need to be included at (post) ~2-Newtonian
order. See Wiseman [6] and Blanchet and Damour [29]
for more details on gravitational wave tails.

Note that the spin-orbit correction is a (post) ~-
Newtonian correction for compact objects. Since a spin-
orbit contribution to a multipole requires a term involv-
ing 6A and a spin-spin contribution 6A6B, it is easy to see
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that Eq. (3.2) implies that there are no spin-orbit cor-
rections to the higher mass multipole moments at lowest
order and no spin-spin contributions at lowest order or
at post-Newtonian order. Therefore the remaining mass
Inultipole moments to the appropriate order are as given
by Wiseman [4]:

I'~ = —p (x'x~x ) 1+ —(5 —19i1)v
bm; -

k STF 1 2

m 6

——(5 —13i1)——(1 —2q) rr'(x*x' v")
6 r

Using Eq. (3.10) the current quadrupole moment is then
given by

STFJ = ) m~ z~(3c~ x v~) + — z~S&
A

(3.18)

Note that the spin-orbit correction is electively
(post)i)' -Newtonian order. Repeating the calculation for
the current octopole moment we obtain

+ (1 —2g)r'(. v'Tv")~ )7,

I""' = p(1 —3g) ( x' x' x" z)

(3.14b)

(3.14c)

- STFJ*'" = ) m~ x~z~(x~ x v~)"
A

STF
+ 2 xAxASA o (3.i9)

I""' = —p (1 —2)7) (x'x'x" x'x ) . (3.14d)
bm i . „, STF

m

Transforming Eqs. (3.18) and (3.19) into relative co-
ordinates and adding the post-Newtonian correction to
the current quadrupole moment derived by Wiseman [4],
we obtain

2. Cut vent multipole moments

STF
Ji L &iab b aL d3& (3.i5)

The current multipole moments are given to lowest or-
der as

(3.2Oa)

bm j- STFJ" = —p x'(~ x v)' 1+ —(13 —68')v'
m 28

1 m 5+ —(27+ 30') —+ —(1 —2g)rr
14 r 28

j- STF 3
x v'(x x v)~ ——i1(x'A~)

Jij g iab

A

p*(x)v x x'd x (3.16)

for the current quadrupole moment.
Substituting x' = xA + xA and v' = vA + 6A into Eq.

(3.16), using the center-of-mass definition Eq. (3.6), and
neglecting terms of O(P ), we obtain

J" = ) E m~x~z~vg + xg p (x)z~v~d z
A A

STF

+ x~ p*(x)z~e~d x . (3.17)
A

At leading order, the current quadrupole moment J'~
is a moment of angular momentum density; thus it will
give an orbital angular momentum contribution as well
as a spin contribution [effectively at O(ei) 2)]. Although
there is also a post-Newtonian correction to the current
quadrupole moment, spin-orbit terms arising from this
correction will be effectively a (post) ~ -Newtonian cor-
rection, which is higher than we need, since the contribu-
tion of J'~ to the waveform is already O(e )'

) at leading
order.

Substituting Eqs. (3.3) and (3.4) into Eq. (3.15) we
obtain

- STF

A,
- STFJ""= p(1 —3)7) x'x'(~ x v)" y 2g(x'z'(")

(3.20b)

The final moment we need is given by

J*~"' = —p, (1 —2q) x'x~z" (x x v)' . (3.20c)
m

Note that there are no spin-spin contributions to the cur-
rent multipole moments at this order.

B. Gravitational waveform

Taking time derivatives of the radiative multipole mo-
ments (3.14) and (3.20), substituting the equations of
motion (2.1) where appropriate, and substituting the re-
sults into Eq. (3.1), the gravitational waveform is given
by

h" = —Q" + P"Q" + PQ" + PQ" + P"Q*'2p
D so

%=2 V V ——A A~ 2
m ~ 2

r (3.22a)
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Pv' q" = 2 —2n~'v'~ —in*n' (N. nj+ n'—n' —2v'v' (N v)),m r r (3.22b)

pQ'~ = —(1 —3)7) 4—3in'n~ —8n~'v l (N. n)(N. v) + 2 3v'v — n—'n (N. v)3 r r

m+ r
3v —15i + 7—n'n~ + 30in~'v~l —14v'v~ (N . n) + ——i(5 + 3g)n~'v~l

P ) 3 r
2 m ' j m 2 1 29m+ (1 —3q)v' ——(2 —3g) —v*v' + —(1 —3g)i' ——(10 + 3q)v' + ——n'n',
3 r r 3 3 r (3.22c)

PQ~~o ———(A x N)~'n ~ (3.22d)

P1.5Qij bm 1m .2 2 m A 2 A

(1 —2)7) ——(45i —9v —28—)n'n~ + 58v'v —108in~'v~~ (N ~ n) (N ~ v)
m 4 r r

+ — nn ——4v v~ (N . v) + ——(3v —7i + 6—)in n ——(21v —105im i; - 3 m 5 2 .2 m
2 r r 4 r 6

+ 44—)n~'v'~ ——iv'v' (N . n) + ——10n~'v'~ —2vn n' (N . n) '(N . v)
)r 2 2 r

bm1m 2 m+ ——(N n) n'n~i r (15 —90)7) —v (63 —54@) + —(242 —24')m12r r

i'v'v~ (186—+ 24rl) + 2n 'v i (63 + 54') ——(128 —36') + v (33 —18')r

hm - 1, m 2 i m
(N v) —v*v' —(3 —8)7) —2v2(1 —5)7) —n~*v'l i (7 + 4g)—

m 2 r r

m 3 .2 1 m 1 2—n'n~ ——(1 —2g) i + —(26 —3)7)———(7 —2)7)v
r 4 3 r 4

(3.22e)

+ 3i(N . n) —2(N. v) S+

SmP Qz~z ———n''n~ (n x v) 12S+ 6r m

m

m

Sm—n~' vx 9S+ 5
m

(
n&l —v~' nx 2S+2

+ in~' nx 12S+ 6
m

( Sm—2(N. n) S+ Lh, xN v'l
m

(3.22f)

(4) I

P Q, ,)
——2— IN (u —u) in~ —~+ —du,

m 'v (u 5 11

p 0 (2s) 12
(3.22g)

P'Q'
vv (

' ((S,n. Sn, ) —5(S.S,)(n S,)j + 2n~'S', (n Sv) + 2n~'Sv (n S,)), (3.22h)

the waveform due to the tail, where Ig = p (x'x~)
Notice that it depends upon the past history of the bi-
nary's inspiral (u is a retarded time), and that s is an
arbitrary matching parameter. See Wiseman [6] and
Blanchet and Damour [29] for more details about gravita-

where Q'~ is just the standard quadrupole term, Po sQ'~'
and PQ2~ were derived by Wagoner and Will [30],
P Q'~ was derived by Wiseman [4], and PQ&~& and
P Qso are the'explicit spin-orbit corrections to the
waveform. P~ sQ2~, &is the leadin. g-order contribution to
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tional wave tails. Note that we have included the leading
order spin-spin contribution to the waveform even though
it is efFectively a (post) -Newtonian term. It is due en-
tirely to substituting ass into the time derivatives of the
mass quadrupole moment. Note that we have simplified
Eq. (3.21) by using relations such as

- STF
A&(i ~) ~A:

TT
bx N a~)

Figure 4 shows the different contributions to the wave-
form for the final few orbits of an inspiraling binary sys-
tem. tA"e see that the spin-orbit contribution is compa-
rable to the other post-Newtonian contributions, but the
spin-spin contribution is almost negligible.

C. Energy loss

The radiative energy loss in terms of STF radiative
multipoles is given by Thorne [22] as

(3) (3) 5 (4) (4) 16 (3) (3)

dt 5 189 9I;~I;~ + I,~I,I;~I, + J,~ J;~, 3.23

dE
dt

= EN + EPN + ESO + Etail + ESS ) (3.24)

where

for the accuracy we require. Taking time derivatives of
the radiative multipole moments (3.14) and (3.20), and
substituting the equations of motion (2.1) where appro-
priate, the energy loss is given by

where EpN was found by Wagoner and Will [30] and Eso
and Ess were reported in our previous paper [13]. EI;)
depends upon the past history of the system and can only
be evaluated explicitly for simple cases. Notice that the
spin-spin contribution to the energy loss, which is efI'ec-
tively a (post) -Newtonian correction, comes &om using
post-Newtonian equations of motion in the derivatives of
the mass quadrupole, and also from the contraction of
the current quadrupoles. We have ignored (spin) -terms
which are the same order as the spin-spin terms. In Fig.
7 we compare the spin contributions to the energy loss
with the other contributions for an inspiraling binary sys-
tem. Again we see that the spin-orbit contribution can
be significant, while the spin-spin contribution is almost
negligible.

D. Angular momentum loss

The radiative angular momentum loss in terms of STF
radiative multipoles is given by Thorne [22] as

dJ' 2 (2) (3) 5 (3) (4) 16 (2) (3)

dt 5 126~gI, II & + IgtmIkim +—~pi JI I, )9

(3.26)

for the accuracy we require. Taking time derivatives of
the radiative multipole moments (3.14) and (3.20), and
substituting the equations of motion (2.1) where appro-
priate, the angular momentum loss is given by

dt
—= &N + &pN + &so + &t;) + &ss, (3 27)

EPN =

EN (3.25a)
8 m2 " (12v' —11''}

r4

2 m p2 2

105 r4 (785 —852') v —160(17 —q) —v4 m 2

r

+ 8(367 —15') i. —2(1487 ——1392')v I'

(mi'
+ 3(687 —620')r' + 16(1 —4g)

where

60

40

(3.25b)

~ 8 mp ~ 2 2 m
Eso = —— LN . S(78'' —80v —8—)r

X
20

~ W
K0

+ 41(51v* —45v' + 4—
m r

(3).

) = ——pI PQ—~2 1.5
5 ~ d tail&

(3.25c)

(3.25d)

-20

-40 I I I I I I I I I I I I I I I I I

Ess = —— —3(n. Sq)(n. S2) (168v —269I' )
~ 4 mp 2 ~ 2

+ 3(Sg S2) (47v —55' ) + 71(v. S~)(v. S2)

—171v((v. S,)(S.Sg) + (S.S,)(v. S2))),

(3.25e)

5 10 15

Number of Orbits

FIG. 7. The energy lost due to gravitational radiation plot-
ted against orbital phase for a 10:1.4 mass-ratio system (with
spins initially aligned as in Fig. 4). Plots begin at an orbital
separation of 15m, and terminate at 10m. Plotted are the
lowest-order Newtonian (N), post-Newtonian (PN), spin-orbit
(SO), and spin-spin (SS) contributions to the energy loss.
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~ 8m@ m
JN ———— LN 2v —3r + 2 —

)r5 r (3.28a)

JpN = — LN (307 —548rj)v —6(74 —277')v r + 2(372+ 197rj) r'—
105 r5 r

m, fm~'
+ 15(19—72') r' —4(58 + 95)7)—v —2(745 —2q) (3.28b)

~ 4p 2m 2 2 ~m 58m
JsQ — ——(r' —v ) A —r' —nx 4(v x S) + — (v x A)5r3 3r m r 3 m

m f ., 41, 4m hm, , 2m)+—nx (nx S)~ 15r' ——v + —— + (nx A)l 9r' —8vr
~

3 3r~ m
~ 3r)

( m, .,) Sm 5m+r'v x (n x S) 18—+ 44v —55r + 5 (n x 4) ——+ 4v —5r
) m k3

71 50m~ bm ~ . 35 m~+vx (v x S) 36r' ——v ——— + (v x E) 18r' ——v —9—l

3 3 r ) m ")
( .2 2 163m) ( 2 2 71m~ bm+ LN - 65i —37v — —

~
S + 35i —19vpr ( 3 r) ~

3 r) m
(3.28c)

Jtail PE IN' P Q&ss,
.i+ IN PQtss—ii (3.28d)

(2) (3) (2) (3) (2) (3)
Jss = ——Sss*" Ix (sss) ls (sss)+ Is (ssss) 4' (sx)+ ~so ( x) ~so (sx))5 9

(3.28e)

where JpN was calculated by Junker and Schafer [31].
Note that J&,.~ depends upon the past history of the sys-
tem. To avoid lengthy expressions, we have left Jss in
terms of derivatives of the multipole moments, where we
have specified which contribution to the equations of mo-
tion should be substituted for the accelerations which
appear in the time derivatives. Note that while JN and
JpN are in the direction of LN, in general Jso and Jss
are not.

where

+ v 38i —50v —8—~ 2 2 m
r (3.31a)

8 bm , m . - , , m-
PN— g — in 55v —45i + 12—

105 m r r

E. Linear momentum loss
Pso = —— 4r'(v x Ch, ) —2v (n x A)

8p, m 2

15 r5

The radiative linear momentum loss in terms of STF
radiative multipoles is given by Thorne [22] as

—(o x v) (3s(n. 6) + 2(v . 4))), (3.31b)

(4) (3) 16 (3) (3)

dt 63 ' 45
—I, A;I.I +—e' k I iJat (3.29)

dP
dt

= PN + Pso) (3.30)

for the accuracy we require. Taking time derivatives of
the radiative multipole moments (3.14) and (3.20), and
substituting the equations of motion (2.1) where appro-
priate, the linear momentum loss is given by

where PN was studied by Fitchett [32]. Note that PsQ,
which is efFectively a (post) ~ -Newtonian correction, can
be directed out of the orbital plane. There is no spin-spin
contribution to the linear momentum loss at this order.
Wiseman [4] has derived the post-Newtonian corrections
to P. In Fig. 8 we plot the momentum ejected for a typi-
cal inspiral. Notice that even in the presence of spinning
bodies, the momentum ejection is periodic, and there-
fore there is no large buildup of momentum ejected in a
specific direction.
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50

1

(d P"/d t)„x1 Os
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5
(dp "/dt)so x10s

~ 2
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Nurr1ber of Orbits

FIG. 8. The linear momentum ejected due to gravitational
radiation plotted against orbital phase for a 10:1.4 mass-ratio
system (with spins initially aligned as in Fig. 4). Plots begin
at an orbital separation of 15m, and terminate at 10m, .

where A = LN x n, LN = LN/~LN~, and the orbital an-

gular velocity u is defined by v = in + r~A. A cir-
cular orbit on a fixed plane is given by the solution

r = (i) = (dLN/dt) = 0. This solution exists if
res = —n. a, A a= 0, and IN-a = 0, where we have
substituted r = 0 into the right-hand sides of Eqs. (4.1).
Examining the equations of motion (2.1) (while ignoring
the radiation-reaction terms), we see that circular orbit
solutions exist only if the spins are aligned perpendicular
to the orbital plane. If we instead define a circular orbit
as one that has a constant orbital separation, but allow
the orbital plane to precess, there exist circular orbit so-
lutions for the case of one spinning body, but not for the
case of both bodies spinning with general orientations.

If we first average the spin-orbit and spin-spin terms
in the acceleration over an orbit, then we can obtain or-
bits of constant separation for arbitrary spins and ori-
entations. In order to average over an. orbit we need to
assume that the spins and orbital plane remain constant
over an orbital period, in other words, that ur„/u is smail.
For circular orbits

(4.2)

to leading order. Using Eq. (2.14) for the case of one
spinning body we see that

IV. CIRCULAR ORBITS 1+31 ~J[ m '&' m

2m f'
(4.3)

A. Circular orbit lixnit

Xl R = P —'P4J ) (4.1a)

a = P(d + 2T(d, (4.1b)

(dLI
LN R = —Phd A.

dt )
(4.1c)

Gravitational radiation tends to circularize the orbit
of an inspiraling binary. Therefore we would like to ex-
amine the last several minutes of the inspiral with the
assumption that the orbit is quasicircular; that is, the
orbit is circular on an orbital time scale, but inspirals
on a radiation-reaction time scale. This is a reasonable
assumption, since Lincoln and Will [3] have shown that
virtually all captured binaries will have suKcient time to
circularize their orbits before plunging to coalescence.

The equations of motion can be rewritten using the
identities

Since /3[ & fLf+ [S/, /L//m = rg(r/m) ~, and [Sf/m
y(m, /m), where y ( 1, then we see that

(4.4)

which is small [= O(m/r)] until the very late stages of
the inspiral, where the whole circular orbit approxima-
tion breaks down anyway. %'e would expect a similar ar-
gument to hold for the case where both bodies are spin-
ning, since the spins' instantaneous precessions have a
form similar to that of the precession in the single spin
case (see Sec. IIB). An examination of numerical evolu-
tions of the precession equations confirms this.

In examining circular orbits, we will assume an orbit
where r = 0 and r~ = —(n. a) where the brackets de-
note an average over an orbit. %e therefore obtain the
following expressions for a circular orbit. The orbital ve-
locity is given by v = ru where

m2
p ct) = — 1 —3 —

77
—— ' g 8' 2

i=1,2

m»2
+3g l

— + 6+ —g+q).
3 - - m 2

2%1/2 (21 ' 22) 3(LN 21)(LN ' 22) ),2 r
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where S~ ——y~m&s~. The energy and angular momentum are given by

E= —— 1 ——(7 —9)(—) 4- ) 2(Lx s) 2 *+9
I (

—
)2 r 4 )

1 1
(7 49rl rl ) 17X122 (sl ' ss) 3(LN ' sl)(LN ss)

)8 2 r (4.6)

m 1 . - &m,'3=9(mr) & Ln 1+2(—)
——) 2;(Ln s;)I 3 s+79 I (

—
)r 4 ( m~ ) r

I

3 ~S4s A m 1 1/2)7X1X2 (sl s2) —3(Lx . 4) (L)A( 4) — + S —4)M(mr) )4 r
2—7

For a circular orbit, the waveforxn is given by

1-(5 —9q)
2

( m,'ys; 4 ' +gm' (=„)
'

(47)

2p m 05 ' m )
~ m g 5 m

(4.8)

where

Q" = 2 A'A~ —n'n' (4.9a)

P ' Q,"= 6(N. n)n~'A~l ~ (N A) n*n' —2A'A~
m

PQ*.' = —(1 —3rI)((N n)' 5n'n' —7A*A' —15(N n)(N. A)nI*A'I

+ (N A)' 3A*A' —n*n'
) + —(19 —39)(n*n' —A'A') + nI*(A x N)'I,

m 2
(1 —2)7) —(N A) (n'n~ —4A'A~) + —(N n) (N A) (58A'A~ —37n'n~)

4

6
——(N . n) n 'A~l + 15(N n)(N . A) n~'A~l —(N A) —(101 —12)7)n'n~

121, 1 - „; 2; . - ( bm——(19 —4g)A'A~ ——(149 —6q)(N. n)n 'A~ — A*A~ Lg . 5S q 3 b,
2 6 m~ ( m )

( bm & , ( bm l '
, ( bm—6n'n~ L/.

,
2sy A! /2A' Ilx Sy A /n~' Ax 9S/5

m ) ( m ) ~
m

t' gm ) - ' ( ) ( Sm~2~ N-A! S+ A xN n~~+2 N-n ! S+ 8 xN A'~

) . & ) ~
- )

(4.9b)

(4.9c)

(4.9d)

f

vrhere A' = v'/!v! for a circular orbit. The energy loss aud angular momentum loss for a circular orbit are given by
s

dE 32 ~ m 5 ~ 1 m 1 - - - m,'= ——g — 1 — (2927 + 420)7) —— —p y;(L)A( s, ) 73 '- + 75'dt 5 r ( 336 'p 12, ( m )
m 3/2 1 m '——)7yzgz 223(sz sq) —649(L~ sz) (L~ sq)r 48 P )'

(4.10)

dJ 32 ~ m ~
~ ~ - ((m. )'~' L, 1—

dt 5

1 m 1
(2423 + 588') —— —) y;(L)A( s;)! 53

336

+ 52rI
~

—4s (
—

)) r
m,'.+ —) A;4;~ 37 ','+429

~ (
—

)24 ' 'g m~ ) (4»)
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where the 4m terms are due to the gravitational wave tail.
The rate of inspiral is given by i = (dE/dt)/(dE/dr). Taking Eq. (4.10) and dividing it by the derivative of Eq.

(4.6), we obtain

dr 64 m s i 1 m 7 f m,'.—= ——q — 1 — (1751+588') —— —) y;(LN s;)
l

» ', +»g
ldt 5 r ( 336

m»2 m'—4n — ——@yips 59(si s2) —173(LN sy)(LN ' s2)r 48
(4.12)

The above expressions can be inverted to express everything in terms of the orbital &equency. For a given orbital
frequency, the separation is given by

(r/m) = (m~) ~ 1 ——(3 —g)(m~) i ——) y, (LN . s;)
~

2- ' + 3q
~

(m~)-23 1 ( m,'
3 3. - * 'im'

7

(19
g i

—+ —g
~

——77yy/2 (s] S2) —3(LN sy) (LN s2) (meed)i4 9) 2
(4.13)

Using Eqs. (4.12) and (4.13), we find that the evolution of the orbital frequency is given by
I

96 s i 1 m,'—= —g(m~) 1 — (743 + 924@)(m~) — —) y; (LN s;) i
113 ' + 75'

i5 I
336

m~ ——gyqy2 247 si s2 —721 I N si LN s2 m~
48

(4.14)

The evolution of the orbital frequency can be used to calculate the accumulated orbital phase of the binary. The
orbital phase as observed by a phase sensitive detector such as LIGO or VIRGO is given by

ddt = —. dw, (4.15)

where t; is the time at which the signal enters the sensitive bandwidth (corresponding to a lower frequency u; set
by seismic noise) and ty is the time at which the signal leaves the sensitive bandwidth (corresponding to an upper
frequency tuf set by photon shot noise), the time at which the orbit begins to plunge (corresponding to a frequency
mt of the innermost stable circular orbit), or the time when the two bodies begin to coalesce. The result is

1 -53
329

(mar;) i —(met ) i + (743 + 924') (mv;) —(mary)1008

m2
+ —) y, (LN . s;) ~

113 ' + 75'
I

—10vr (m~;) i —(m~y)24.

5
247(sz s2) —721(LN . si) (LN . s2) (m~, )

'~ —(m~ f )48
(4.16)

The term with 10' is the tail contribution to the orbital phase. Table I shows the contribution of each term to the
orbital phase for several cases.

B. Radiation-reaction effects on the precessions

When averaged over a circular orbit, the orbital angu-
lar momentum and spins precess as

L=
i
4+3

i
Si+ (

4+3
i

S2 x LN
m2)

2rs (, mi) ( m2)

3(LN ' 82)S1 X LN —3(LN . Si)S2 x LN)

(4.17a)

(4.17b)

(LN x S2)(4+ 3 ) + Si x S2
2r3 m2

—s(LN . S,)L~ x Sg). (4.17c)

1 m. &
Si ——

s (LN x Si)i 4+3 i+St x Si
2r3 m, )
—3(LN . Sg)LN x Si),
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Since (Ls~) = 0 over an orbit, the precession of LN is
also given by Eq. (4.17a) with L replaced by LN. Thus
we see that for a circular orbit the magnitudes of the
vectors L, LN, and S,. are conserved on average during
precession in the absence of radiation reaction.

For a binary system inspiraling due to gravitational
radiation, there is a loss of total angular momentum given
by J. We assume that the individual spinning bodies are
sufficiently axisymmetric that they will emit negligible
gravitational radiation on their own, so that their spins
are unaffected by radiation damping to the order which
we are considering. (See Ref. [19] for a more rigorous
argument. ) This means that the angular momentum loss
is entirely &om the orbital angular momentum, and that
the total change in orbital angular momentum is the sum
of the precession and the radiation damping.

Let us examine this in more detail for the case of one
spinning body, where we only consider the leading order
damping effects. Then we have [see Eqs. (2.12)—(2.14)]

0.2

0.1

0

-0.1

-0.2
-0.2

~ —~ I I I I
I

-0.1

L„/L
0.1

I I I I I II I I I l I I I I I I I I I

0.2

S=~pJX S,

LN = &pJ X LN —ERRLN)

&RRLN)

(4.18a)

(4.18b)

(4.18c)

FIG. 9. The simple precession of the orbital angular mo-
mentum L in the presence of gravitational radiation damping
for an inspiraling system with a 2:1 mass-ratio with only the
larger body spinning (the spin is perpendicular to L). Notice
that the inclination of the orbital plane with respect to Jo
increases as the binary inspirals (i = arcsin[(L + L„) ~ ]).

J = ~J~ = (L + S +2LScosr) (4.19a)

z = cos LN J = cos L + Scos K J, 4.19b

we see that Eqs. (4.18) imply that

S=O, (4.2Oa)

L = —~RRL, (4.2ob)

J ARRL cos z) (4.2Oc)

K=O, (4.2od)

dZ ARRL
sin i.

d,h J (4.20e)

where J = J/~J~, and where eRR = (32/5)(p/m2)(m/r)4
is the rate of angular momentum loss due to gravita-
tional radiation. Defining L = ~LN~, S = ~S~, and

v = arccos LN . S

&RR

Cdp

&RRLJoxLN + 1 — (t —to)cosi Jo,J
(4.21)

valid for (t —to) «J/(LenR), which implies that J
spirals about Jo as it shrinks. As long as the ratio A =
(L6RR)/(J~„) «1, then J will remain relatively fixed
in space, precessing on a tight spiral around its earlier
direction. If the ratio A is not small, however, LN and
S will still precess about J, but J will start to tumble.
An example of this would be if L and S were nearly
equal in magnitude, but pointing in opposite directions
so that J = ~L+S~ «L. This is the case of "transitional
precession" described in Ref. [19].

If both bodies are spinning, the precessions of L and
S are more complicated (as in Sec. II), but the effects
of radiation damping are qualitatively the same. As the
binary inspirals, LN and J shrink and the maximum an-
gle between them grows. J remains relatively fixed in
direction as long as the precession time scale is shorter
than the inspiral time scale, and as long as the ratio A
is small, where we replace the precession frequency ~„
with the instantaneous precession frequencies ~„~ Fig-
ure l0 shows an example of this. Numerical evolutions
of the precession equations in the presence of radiation-
reaction agree with our description above.

As the binary inspirals, LN and J shrink and the angle
between them grows. This is shown in Fig. 9. The angle
rc, between LN and S remains fixed as they precess about
J, so that S tips toward J and at late times when J = S,
i approaches r Working to. erst order in (IeRR)/(Jcuz),
we can show that, if Jo is the initial direction of J,

C. Wave polarization states

The gravitational radiation emitted by the binary can
be written in terms of its two polarization states 6+ and
hx. The polarization states can be expressed as linear
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I I
)

I I I I
)

I I I l
i

I I hx = cos Oh " —sin Oh" . (4.23b)

0.1

The response of a detector will be the linear combination

h = F+h+ + Fx~x & (4.24)

0

where F+ and Fx are the antenna patterns which depend
upon the orientation of the detector with respect to the
binary:

I"+ ——2(1+ cos 8) cos 2gcos 2g —cososin2$ sin 2g,

(4.25a)

-0.1

I I I I I I I I I I I I I I I

F&&
——

2 (1 + cos 8) cos 2P sin 2g + cos 0 sin 2P cos 2g,

(4.25b)

-0.1

L„/L
0.1

FIG. 10. The complicated precession of the orbital angu-
lar momentum L in the presence of gravitational radiation
damping for an inspiraling system with a 2:1 mass-ratio and
equal spins which are initially aligned, and perpendicular to
L. Notice that the maximum inclination of the orbital plane
increases as the binary inspirals.

where (0, $) is the location of the binary with respect
to the detector (whose arms lie along the z and y axes
in the detector's coordinate system, with the z axis in
the vertical direction), and @ is the polarization angle
between the gravitational waves' polarization axes and
the direction of constant azimuth. (See Fig. 11.) For our
definition of the polarization axes, the polarization angle
is given by

combinations of the components of h'~ in some suitable
coordinate system. Normally one chooses a coordinate
system such that the orbital plane lies in the x-y plane,
and the source and detector are located in the x-z plane
as this simplifies the equations involved (see Ref. [33]).
If the bodies are spinning, however, this coordinate sys-
tem is not fixed in space. This does not prevent one
from using such a coordinate system (see Apostolatos et
al. [19]), but one must remember that it is precessing.
Instead, we choose our coordinate system such that our
z axis lies along some initial direction of J. VJe define

0 = arccos N Jp and choose a coordinate system in

which z = Jp and N = cosOz + sinOx lies in the x-z
plane (see Fig. 2). (Note that if 0 = 0, x can be chosen
arbitrarily. ) Following the method of Finn and Chernoff
[33] we define the radiation coordinate system such that

( N(J, xz)
@ = arctan

(Jp z —(Jp N)(z N) )
If N = +z, then

A

y Jp
g = arctan —(N I) „x. Jp

(4.26)

(4.27)

R

e =N,

Jp x N
i/2 '

1 —Jp. N 2

(4.22a)

(4.22b)

Vie
ector Arm

= v

e =yx N= (Jp N)N —Jp
X/2

'

1 —Jp N
(4.22c)

Then from Eqs. (3.2) and (3.3) of Ref. [33], the radiation
can be written in terms of its polarization states

h+ ——
z (cos Oh —h"" + sin Oh" —sin 2Oh '),

(4.23a)

FIG. 11. The detector coordinate system. The detectors
arms lie along the x and g axes. The angles (8, P) define the
location of the source, and the polarization angle Q describes
the orientation of the polarization axes with respect to the
projection of the detectors arms on the sky.



52 COALESCING BINARY SYSTEMS OF. . . . V. 839

If we de6ne 4 as the orbital phase with respect to the line
of ascending nodes (the point at which the orbit crosses
the x-y plane from below), then for a circular orbit the
polarization states will be given by

m 1/22p m 05 m m

(4.28)

where the quadrupole term is given by

coordinate system as opposed to a rotating one. In our
description o. varies as ~„t as the orbit precesses in
the case of simple precession. On the other hand, in our
description the polarization angle @ (4.26) (and thus the
antenna patterns F+ and F„) is constant during the bi-
nary s inspiral, while in the description of Ref. [19] it is
not. The two descriptions are of course equivalent; we
have simply made the complexity of the waveforms more
explicit.

Prom the above equations, it can be seen that the sig-
nal in the detector due to the quadrupole waveform can
be written as

Q+ ———2 [C+ cos 24 + S+ sin 24], (4.29)
h = t g cos24+ Sg sin24, (4.32)

and similarly for h&& where + is replaced by x, and where

C+ ——
2 cos 0 (sin n —cos i cos n) + 2 (cos i sin a
—cos n) —

2 sin 0 sin i —
4 sin 20 sin 2i cos n,

(4.3Oa)

where

4p m
[C+F++ CxFx],D r (4.33a)

S+ ——
2 (1 + cos 0) cosi sin 2n + 2 sin 20 sin i sin a,

(4.30b)

4p m
Sg = ——— [S+F+ + S)&F&(].D r

The signal can be rewritten as

(4.33b)

C„=—
2 cos 0 sin 2n (1 + cos i) —

2 sin 0 sin 2i sin n,

(4 3Oc) where

h = Aq cos [24 —hg], (4.34)

Sx ———cos 0 cos i cos 2o. —sin 0 sini cos o., (4.3Od)
Ag = (C~+. S~)

4' = (d —0!Cos 2. (4.31)

Note that our expressions for the polarization states
(specifically the quadrupole terms) are much more com-
plicated than the expressions in Apostolatos et al. [19]
because we have de6ned them with respect to a fixed

I

where (i, n) are the spherical coordinates describing the
direction of LN (see Fig. 2). We give the post-Newtonian
corrections to h+ and h~ in Appendix B. The evolution
of i and a is given by the precession equations (4.17).
The evolution of 4 is given by

bg = tan (Sg/Cg) .

D. Small inclination angles

(4.35b)

I et us examine the waveform in the limit of a small in-
clination angle i. This limit will be valid if the total spin
S is nearly aligned with the orbital angular momentum
L or if ~S~ (( ~L~. In Fig. 12 we show the region for
which the precession angle i is less than 0.2 for an equal
mass system. If we expand Eq. (4.29) through O(i ),
the overall signal amplitude due to the quadrupole term
(4.35a) will be given by

Ag = ——(F (0, P, @)[(1+ cos 0) + 2i sin 20 (1 + cos 8) cos n —i (1 —2 cos 0
+ 5cos 0) + 3i sin 8 (1+cos 0) cos2n] + 4F„(0,P, vP)[cos 8+i sin20cosa
—i cos20] + F+(0,$, $)F„(0,$, vP)[—2isin Osinn+ 3i sin 8cos8sin2a]) (4.36)

Notice that to lowest order in i the amplitude is con-
stant, independent of the precession angle o., and that the
modulations are of O(i) and have the same frequency as
the precession frequency, dn/dt For some detector . ori-
entations (see below), the O(i) terms are suppressed and
the modulations will be of O(i ) and go as twice the pre-
cession frequency.

We can use Eq. (4.36) to explain the features of Fig.
1. Note that this case has been presented in Cutler et al.

Ag = —cos 2p 1 —i + 3i cos 2n]
2p m
D r

i./2—2i sin4p sino. + 4i sin 2p (4.37)

[15], and in Apostolatos et al. [19] for a single detector
orientation which corresponds to p = i. In Fig. 1, 0
vr/2, F+ ——cos2p, Fx ——sin2p, and initially i 0.1, so
that
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I Ii,„= 0.2
mention that if neither body is spinning, the orbital plane
remains Gxed in space, and the waveform's amplitude in-
creases monotonically (apart from post-Newtonian mod-
ulations on orbital time scales; see Fig. 4) as the binary
inspirals.

60

40

20

s I i ~, I I, ~ s r I )0
0 50 100 150

Angle Between L„and S (deg)
FIG. 12. The region of validity for the small inclination ap-

proximation for an equal mass system. The 6gure plots the
minimum separation r/m for which the precession angle i is
guaranteed to be less than i „as a function of the angle
between L and S for several values of the average spin pa-
rameter y of the two bodies. For most neutron star models

y & 0.7. Note that at large angles "transitional precession"
may occur.

For p = 0, the modulations of the amplitude will have a
&equency of twice the precession &equency and will be
only a few percent (= (3/2)i2) of the overall amplitude.
For p = rr/4, Aq = 4i(p/D)(m/r) which is roughly 20'%%uo

(initially) of the unmodulated amplitude in the previ-
ous case and is unmodulated through O(i2). The other
three cases are modulated by a term with a &equency
of twice the precession frequency, and another term with
the precession frequency. For p = rr/8, the dominant
modulation is of O(i) and varies with the precession fre-
quency. In the other two cases (p = i/2 and p = i.),
both modulations are of O(i2) and contain both n and
2o. terms, which leads to their forms in Fig. 1. Finally, let
p = i + rr/4. Then Ag -- 8i(p/D)(m/r)

~
cos(n/2 —rr/4) [

which corresponds with Fig. 6 of Ref. [19].

V. RESULTS FOR SPECIFIC SY'STEMS

In this section we will describe several specific cases
involving a variety of masses and spins. For some cases,
we have solved the equations of motion and precession
numerically and used them to calculate the emitted grav-
itational waveform. In all the examples we will assume
the binary's orbit has been circularized prior to entering
the &equency bandwidth of a I IGO-type detector.

B. Spins perpendicular to the orbital plane

If the spins of the bodies are aligned with the orbital
angular momentum, the system evolves in a manner qual-
itatively similar to the case of nonspinning bodies. Since
the spins and orbital angular momentum are aligned,
none of them precesses so that the orbital plane remains
6xed in space. The only effects the spins will have are a
contribution to the orbital phase, and a correction to the
amplitude of the waveform.

The contribution to the orbital phase will be impor-
tant as it affects the accumulated phase of the waveform.
Since matched templates will be used to obtain infor-
mation about the binary &om the waveform, any effect
which causes the phase to change by one cycle over the
thousands in the bandwidth of the detector will be im-
portant. If the spin contribution to the phase can be
separated &om the other contributions, it could be used
to make an accurate determination of the spins. How-
ever, preliminary studies by Cutler and Flanagan [17]
suggest that the spin contribution cannot be separated
cleanly &om other contributions, but instead are strongly
correlated with them, thus making the determination of
the individual masses and spins more diKcult. Table I
compares the spin contribution to the orbital phase with
other contributions for various binary systems.

The leading-order correction to the waveform due to
the spins is a full post-Newtonian order higher than the
quadrupole part of the waveform. Thus it will be small
until the late stages of the binary's inspiral. In Fig. 4
we compare the spin contributions to the waveform with
other contributions.

C. One spinning body

In the cases in which only one of the bodies is spinning,
our numerical results agree with our analytic description
of Sec. IV. As the binary inspirals, L and S precess about
J, with both L and J shrinking, and L tipping away &om
J while S tips toward J (see Fig. 9). The angle between
L and S remains constant. J remains relatively Gxed in
direction unless L and S are nearly antialigned and equal
in magnitude, in which case the "transitional precession"
described by Apostolatos et al. [19] occurs.

Dependence of rnodnlation on detector orientation
and location

A. Nonspinning bodies

The case in which neither body is spinning has been
studied in previous papers [3—6]. Here we only wish to

The precession of the orbital plane causes the wave-
form amplitude to be modulated since the orientation
between the orbital plane and the detector is changing.
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The form of this modulation depends on the orientation
of the detector and its location with respect to the source.
In Fig. 1, which was generated &om numerical solutions,
we show how the modulation changes for different orien-
tations of a detector at a 6xed location. Notice that the
size and shape of the modulations vary greatly. These
modulations are discussed qualitatively in Sec. IV.

g. sects of higher-order parte of the ayaveforrn

So far, we have just examined how the precession of
the orbital plane modulates the dominant quadrupole
part of the waveform. The precession will also modu-
late the amplitude of the post-Newtonian corrections to
the waveform. This is illustrated in Fig. 13. Recall that
the different contributions to the waveform have differ-
ent dependences on the orbital phase, so that the over-
all waveform amplitude is not the sum of the individual
higher-order amplitudes. (Note that this is true even
without spins. )

D. Two spinning bodies

We are not able to solve the general two-spinning-body
problem analytically. We therefore present numerical so-
lutions of the equations of motion and precession. Most
cases involving two spinning bodies are qualitatively sim-

0.05

0.04

ilar to the case of one spinning body. The main difference
lies in the fact that the total spin S is not constant as
the spins precess, but rather oscillates between some S
and S „. This causes the angle i between L and J to
oscillate as L precesses about J in addition to its overall
increase due to gravitational radiation damping. In most
cases where spin effects will be important, these oscilla-
tions will be small. In each of the following examples,
we will examine a pair of inspirals which have the same
initial orientation of L and S, but in one case only one
of the bodies is spinning, while in the other case both
bodies are spinning.

If one of the spins is much smaller than the other,
it can be viewed as a perturbation of the simple pre-
cession involving the larger spin and the orbital angu-
lar momentum. Recall that the spin ratio will go as
~S&[/~S&~ = (y, /y2)(m, /m2)', so that if m, && m»nd
y2 is not small, then the spin of the smaller body will be
much smaller than that of the larger body, and the above
argument will hold. The overall shape of the modulations
of the waveform amplitude is the same in both the one
spin case and the two spin case. The main difference is
that the precession &equency is slightly different in the
two cases, which could lead to a noticeable effect on the
phase of the waveform. Figure 14 shows the difference in
precession rates.

If the masses of the two bodies are equal, Eq. (2.5) im-
plies that the only change in the evolution of S (and thus
in ~S~) compared to the one-spin case will be from the
spin-spin coupling. This coupling is weak so that it can
be viewed as a perturbation on the simple precession case.
Figure 15 illustrates this case. Notice that while the indi-
vidual spins precess wildly and in effect exchange places,
the total spin and orbital angular momentum remain ap-
proximately fixed relative to each other (r = const). This
leads to the overall shape of the modulations of the wave-
form amplitude to be very similar for the one-spin case
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FIG. 13. The amplitude modulations of the higher-order
terms of the gravitational waveform. AI and A3 are
of (post) ~ -Newtonian order beyond the quadrupole term,
while A4 is (post) -Newtonian order. The quadrupole en-
velope increase from 0.06 to 0.36 during the portion of the
inspiral which is plotted. Note that since the diferent terms
have difFerent dependences on the orbital phase, the overall
waveform envelope will not be the sum of the individual en-
velopes. The binary system is the same as in Fig. 1, but for
an observer at 0 = rr/4, with p = 0.

j.o 100
Orbital Frequency [(11 Mo/M) Hz]

FIG. 14. The rate of precession for the two-spin case and
the corresponding one-spin case for a 10:1 mass-ratio system
with the total spin S at an angle of rr/4 with the orbital an-
gular momentum L. In the two-spin case, the smaller body's
spin is aligned with L. In both cases the bodies are maximally
spinning.
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FIG. 15. An equal mass case in which the spins of the bod-
ies are equal in magnitude (gI ——yq

——v 2/2), with one spin
aligned with L and the other perpendicular to it. (a) The
modulation of the quadrupole waveform envelope. (b) The
components of the total angular momentum J. Notice that
3 remains relatively fixed in direction as the binary inspirals
due to gravitational radiation emission. Also plotted is the
angle between I and S, which oscillates about a relatively
constant value. (c) The components of SI. (d) The compo-
nents of S2. Notice that while the individual spins undergo
substantial precessions, the total spin precesses in a fairly sim-
ple manner. This causes the two-spin case to be similar to the
corresponding one-spin case.

and the two-spin case. As in the previous exaxnple there
is a difference in the precession frequency between the
two cases, which could lead to a noticeable effect on the
phase of the waveform.

In some cases, however, the oscillations in i can be
signi6cant, and cannot be viewed as a perturbation of
a simple precession case. Figure 16 illustrates this case,
for equal spins but different masses. Even though the
spins are equal in magnitude, the different masses will
cause them to precess at different rates [see Eq. (2.5)].
At some times the two spins will align and i will be at its
largest value. At other times the two spins will almost
cancel each other, and L will be aligned with J. Thus
the orbital plane will tilt back and forth as it precesses
about J. This leads to substantial differences between
the two-spin case and the one-spin case, as illustrated by
the complex modulations in Fig. l6.

Another case in which the second spin will be im-
portant is that of "transitional precession" described by
Apostolatos et al. [19]. Recall that in this case L and
S almost cancel each other, so that any perturbations
in S will cause noticeable effects. See Ref. [19] for more
details.

FIG. 16. The modulation of the quadrupole waveform en-
velope for a 2:1 mass-ratio system with the total spin S ini-
tially perpendicular to L. (a) One spinning body. (b) Two
spinning bodies with spins equal such that the smaller body's
spin is maximal (y = 1). Note the substantial differences in
the modulations between the two cases. This is a result of the
complicated precession when both bodies are spinning. See
Figs. 9 and 10 for a depiction of the precession of the orbital
angular momentum for these cases.

VI. CONCLUSIONS

In this paper we have examined the importance of
spin-orbit and spin-spin effects on the inspiral of a co-
alescing binary system of compact objects and on the
gravitational radiation emitted from such a system. The
inclusion of spin effects makes the study of coalescing
binary systems much more complicated because of the
extra degrees of freedom for the orbit, and the extra pa-
rameters upon which the waveform will depend. On the
other hand, if the effects due to the spins can be sepa-
rated from other post-Newtonian effects, more informa-
tion about the binary system can be extracted from the
observed waveforms.

The spins of the bodies have two major effects on the
inspiral of the binary. As long as the spins are not per-
pendicular to the orbital plane, the orbital plane will
precess, thus changing its orientation in space. In most
cases, this precession will be a relatively simple precession
of the orbital angular momentum L about the total angu-
lar momentum J. In some cases, however, the precession
can be quite complicated (see Sec. II). In addition to the
precession effect, the spins will contribute to the evolu-
tion of the orbital phase, in the same manner that other
post-Newtonian terms contribute (see Sec. IV and Table
I). The spin-orbit contribution can. be of the same magni-
tude as the post-Newtonian and leading-order tail contri-
butions to the orbital phase. The spin-spin contribution,
on the other hand, is quite small. These contributions to
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the orbital phase will change the rate of inspiral.
The spins will change the amplitude of the observed

waveform in several ways. The major effect the spins
have is due to the precession of the orbital plane. This
causes the orientation of the orbit to be changed with re-
spect to the detector, which results in modulation of the
amplitude of the waveform (see Sec. IV and Fig. 1). The
size and shape of the modulations are sensitive to the lo-
cation of the detector with respect to the binary system
and to the orientation of the detector arms. The spins
also directly contribute to the amplitude of the waveform
in the same manner that other higher post-Newtonian
terms contribute (see Sec. III and Fig. 4). The direct
spin contribution to the amplitude may be difncult to
detect because it is much smaller than the quadrupole
term and the leading-order post-Newtonian terms until
very late in the inspiral. The modulations due to pre-
cession, however, will be quite noticeable in many cases
involving spinning bodies.

The spins will also affect the phase of the observed
waveform in several ways. Since the spins affect the evo-
lution of the orbital phase, this will in turn affect the evo-
lution of the phase of the gravitational waveform since it
is related to the orbital phase. The phase will also be
affected by the precession of the orbital plane since the
point from which the orbital phase is measured is itself
moving (see Sec. IV). These two effects are indepen-
dent of one another as one may be present without the
other. These effects are very important, however, as the
sensitivity with which the phase of the waveform can be
measured is currently thought to be the best way of ex-
tracting information about the binary system.

In general, the effects of the spins on the waveform
amplitude will be small for the case of two coalescing
neutron stars. One reason is that for the majority of the
time in which the frequency of the gravitational waves
from the binary are in the bandwidth of a LIGO-type
detector, the orbital angular momentum will be much
larger than the spin angular momentum. For example,
over 95% of the gravitational wave cycles will occur be-
tween r = 174m and r = 37m for two 1.4Mo neutron
stars, and as Fig. 3 shows, L is at least 5 times larger
than S. This means that the inclination angle i will be
small throughout most, if not all, of the observed inspiral.
This implies that the small inclination angle approxima-
tion will hold, so that the amplitude modulations will
be on the order of i. For small enough i, one might be
able to ignore the modulations to erst order and treat
the orbital plane to be fixed perpendicular to J (which is
relatively fixed) instead of L (which is precessing). Then
the modulations can be treated as perturbations of O(i).

While the modulations of the amplitude of the wave-
form may be small, the spin effects on the phase of the
waveform are significant for a coalescing binary system of
neutron stars. While the spin-orbit contribution to the
orbital phase is less than one percent of the total (see
Table I), a neutron star with y = SNs/mNs as small as
0.01 can cause the accumulated gravitational wave phase
to change by a cycle from an equivalent system with no
spins over the bandwidth of 10 Hz to 1000 Hz. A further
contribution to the waveform's phase will come from the

precession of the orbital plane. This contribution should
vary at the precession frequency. Since L &) S for a bi-
nary neutron star coalescence, we may substitute L for
J in Eq. (2.14) and integrate over the inspiral, finding
that the binary precesses roughly 60—70 times over the
detector's bandwidth of 10 Hz to 1000 Hz.

Spin effects can be very important for coalescing binary
systems with a very massive black hole and a neutron
star. Since the spins can dominate the orbital angular
momentum, large precession angles are possible, leading
to very large amplitude modulations. Furthermore, the
spin-orbit contribution to the orbital phase is a larger
percentage of the total.

We have examined how the spins of the body affect
the inspiral of the binary system and the gravitational
radiation emitted there&om. There are many interesting
questions that remain to be examined. One is the inverse
problem: Given an observed waveform, how much infor-
mation about the spins of the bodies can be extracted'? A
related question is, how much will spin effects complicate
the extraction of the masses and other information &om
the waveform? Preliminary studies by Cutler and Flana-
gan [17] indicate that the spin-orbit contribution to the
orbital phase will be dificult to separate from the post-
Newtonian contribution which is used to determine the
mass ratio because of their similar dependences on (m, jr)
or (rnid) in the evolution of the phase [see Eq. (4.16)].
Further studies are needed to determine whether New-
tonian templates without explicit spin contributions to
the waveforms can be used on systems which have spins
without significant loss of signal-to-noise ratio. If not,
then the number of templates which will be needed to
study coalescing binary systems of compact objects will
increase significantly.
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APPENDIX A: SPIN SUPPLEMENTARY
CONDITIONS

When examining systems containing spinning bodies,
it is important to note that the form of the spin-orbit
acceleration asQ is not unique, but rather depends on
a "spin supplementary condition" (SSC). For example,
three different forms of asQ,
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as~ = —6n (n x v).
l
2S+(i) 1 „„( hm

m

( hmvx
i
7S+3

m

( hm+3i nx~3S+ A~ ),m
(Ala)

SSC, and we must insure that any future center-of-mass
definitions we use are consistent with this choice. In Sec.
III, we use an integral definition of the center of mass of
each body,

~ = 1 -* 12 1- 3
+A x'p* (x) 1+ —v~ + II ——U~ d x, (A5)

mA 2

(ii) 1 3„„( hm
aso = ——n (n x v)
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~

3S+(iii) 1 ( hm
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( hmvx ~7S+3
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+6i nx ~2S+( hm
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(Alb)

(Alc)

to evaluate the BDI multipoles, where

1 1- 3m~ —— p*(x) 1+ —6~+11——U~
A 2

(A6)

where 6& ——v' —v&, v& ——dx&/dt, and U~ is the New-
tonian potential produced by the Ath body itself. This
is a "natural" post-Newtonian definition since it uses the
total mass, kinetic energy, internal energy, and gravita-
tional potential energy of each body as the weighting fac-
tor. However, it turns out that this definition of the cen-
ter of mass is not related to the first SSC which we chose
for our equations of motion, but rather to the second SSC
(A2b). This can be seen by the following argument.

It is straightforward to show that the three SSC's can
be rewritten in the form

are given by the three different SSC's;
S„"—I SA"vA = 0, (A7)

SA uA ——0, (A2a)
where k = 1 for the first SSC, k = 1/2 for the second,
and k = 0 for the third. From Eq. (A3) we see that

2SAio + SA,jv~~ ——0, (A2b)
gi0 (

i Xi )
Oods

A
(A8)

S„"=0, (A2c) since the integration is done at constant time. It is
straightforward to show that, to post-Newtonian order,

respectively, where u& is the four-velocity of the center-
of-mass world line X& of body A, and

~so = (1+4U) T"——
l

V'Ul' .
8m

(A9)

SA" =2 z" —XA" ~" d x, (A3)
Substituting Eq. (A9) into Eq. (A8) and integrating the
lV'Ul terms by parts, we obtain

where w" denotes the stress-energy tensor of matter
plus gravitational fields satisfying 7.~ = 0, and square
brackets around indices denote antisymmetrization. Note
that the spin vector S of each body is defined by SA

~jk
26ij kSA ~

Barker and O' Connell [27] showed that these different
forms of as~ are equivalent if one takes into account that
the different SSC's are related to different locations XA
of the center of mass of each body. Furthermore, they
found transformations from the center-of-mass definition
given by one SSC to that of another. For example

(II3
A ;X~ + (v~xS~) .

. (&) 'e

2mA
(A4)

This shift in the center-of-mass world line is of post-
Newtonian order, and so it can be neglected at lowest;
order.

In Sec. II, we chose to use the form of as~ given by
the first SSC (A2a), since it is covariant. In doing so,
we have chosen a center-of-mass definition through the

S~ = p'(x)(x' —X~) 1+ —v ——U+ II d x.

(A10)

(121m~ 1
~~ =m»~ 1+-v ——). l+-v~~~

2 2 egg) 2

( 1, 1 .m &—m~ 1+ —v' ——) XA.
2 2 ~ r~~)

(All)

Thus our integral definition of the center of mass cor-
responds to the SSC definition (x& ——X&), if S*

zvAS'~, i.e., the second SSC. Imposing the general SSC
(A7) on Eq. (All), we see that, to post-Newtonian order,

, (I ) 2k —1
xA —XA + SAvA .

2mA
(A12)

Using our integral definition of the mass and center of
mass of body A (A5), we obtain
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I' = ) x'P*(x) I+ —x' ——II+ II d x) . (AIS)
A 2 2

Evaluating the integral in the manner used to evaluate
the mass quadrupole (in Sec. III), we obtain

1 2 1I' = ) mAx& 1+ —v~ ——)
A BgA

1+ —(v~ X SA) (A14)

Thus in order that the center of mass used in the STF
moments be consistent with that used in the equations
of motion, we must transform &om xA ——XA to XA

i(II) i(I)

in the moments by using Eq. (A4) (see Sec. III).
This is also consistent with Brumberg [11]who derived

the equations of motion &om our integral definition of
the center of mass, and found the form of aso to be that
of the second SSC without ever having mentioned the
concept of an SSC.

Another check of the consistency of our argument is
seen by evaluating the BDI mass dipole moment [23,24],
given by

1 2 1 mBI' = ) m~z'„1+ —v„——)
A

2 2 rB~A AB

+ (XA X SA) (A15)

where z& now refers to X& . Blanchet and Damour [23]
have proved on general grounds that

cL

I; =0. (A16)

APPENDIX B: POST-NEWTONIAN
CORRECTIONS TO THE WAVEFORM

FOR A CIRCULAR ORBIT

If we define 4 as the orbital phase with respect to
the line of ascending nodes (the point at which the orbit
crosses the x-y plane from below), then for a circular
orbit the polarization states will be given by

Taking two time derivatives of Eq. (A15) and substitut-
ing our equations of motion where appropriate, we verify
that Eq. (A16) does hold. [Alternatively, we could have
taken two time derivatives of the mass dipole before shift-
ing the center of mass of each body and seen that aso is
needed to ensure that Eq. (A16) holds. ]

where we have dropped the post-Newtonian terms as they
do not affect the calculation. We then use Eq. (A4)
to shift the center of mass xA &om that defined by the
second SSC XA to that of our equations of motion,i(II)

XA . The result isi(I)

h+ ———— ++P + — +P

(81)
where, for simplicity we include only the post-Newtonian
terms through PQ+, and

Q+ ———2 [C+ cos 24+ S+ sin 2CI], (82a)

1bm-P Q+ ——— 9 (aS+ + bC+) cos 34+ 9 (bS+ —aC+) sin31II
4 m
+ (3aS+ —3bC+ —2bK+) cos CI —(3bS+ + 3aC+ —2aK+) sin CI, (82b)

PQ+ ———(1 —3q) ( (a —b )C+ —2abS+ cos4CI+ (a —b )S+ + 2abC+ sin4CI j
+DC+ cos C + DS+ sin 4 + —( 4(1 —3q)(a' + b') + (19 —3g) Q+
—4(1 —3g) (a —b ) cos 2' + 2ab sin 24 K+), (82c)

and similarly for hx where + is replaced by x, and where K+ ——~ cos 0 (sin n + cos i cos n) —
2 (cos i sin n

+cos o. + 2 sin Osin i+ 4 sin20sin2i cosa,
C+ ——

z cos 0 (sin n —cos i cos n) + z (cos i sin n
—cos n) —

2 sin 8 sin i —
4 sin 28 sin 2i cos n,

(83a)
1

DC+ ——— [b,"sinncos8+ dcosn],m2

(83c)

S+ —~ (1 + cos 8) cosi sin 2n + 2 sin 20 sin i sin n,

(83b)
1

DS+ ——— [cZP —d cosi sin n],m2 (83e)
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8„=—cos 0 cos i cos 2o. —sin 0 sin i cos o., (B3g)

K&&
———

2 cos0sin2nsin i+ 2 sin0sin2i sinn, (B3h)

1
DC&& —— [4"cos o, —d cos 8 sin o.],m2

(B3i)

1DS„= [—A" cosi sin o. + cd],m2 (B3j)

a = —sinOsino. , (B3k)

Q„= —~ cos 8 sin 2n (1 + cos i) —
2 sin 0 sin 2i sin n,

(B3f)

APPENDIX C: A COMPARISON
WITH TEST-MASS CALCULATIONS

Recently, Poisson [34] has calculated the gravitational
waveform and energy loss due to gravitational radiation
from a particle in a circular, equatorial orbit around a
slowly rotating black hole. Poisson's calculations were
done using the Teukolsky perturbation formalism, which
is completely difFerent from the post-Newtonian calcula-
tions we used. In this appendix, we show that our re-
sults for the waveform and energy loss agree with those
of Poisson in the appropriate limit. Since we are only
interested in the spin-orbit terms, we will neglect all the
other post-Newtonian terms.

Poisson gives the energy loss as

6 = cos 8 sin i —sin 8 cos i cos o. , (B31)

dE 32 p 2 1o,3 1
(m~) ' 1 ——yBH(mw)

dt 5 m 4

and the spin-orbit contributions to the waveform as

(Cl)

c = cos 8 cosi cos o. + sin i sin 8, (B3m)

d = L sin8 —4 cosO, (B3n)

where (i, n) are the spherical coordinates describing the
direction of LN (see Fig. 2).

From the above equations, it can be seen that the sig-
nal in the detector can be written as a series

iss. = —(ma) (Qc —gnn sin 8sinO(mtc)
D

——(1 + cos 8) cos 2C (mtc) }
4 2

3
(C2a)

h&&
———(mu) Q&& + yBH sin 8 cos 0 cos 4(m~)2 3 2 3

2(N+1)
h = ) (C„cosnO + S sinn@), (B4)

+ —cos 8 sin 24(mu)
3

(C2b)

which can be rewritten as

2(N+1)
h = ) A„cos [nO —b'„], (B5)

where we have rewritten the equations using our nota-
tion.

Combining Eqs. (4.10) and (4.13) we find the energy
loss to be

where

~„=(C„'+S„')", (B6a)

= ——g (m~) ~ 1 ——) y, (LN s;)
32 2 1o 3 1

5 i=1,2

( m,'x
~

ll ' + 5q
~

(mar)m' (C3)

b„= arctan (S„/C„), (B6b)

and N is the 6nal post-Newtonian order beyond the
quadrupole term to which the waveform is calculated.
For example, if we look at only the quadrupole contribu-
tion to the waveform, then only the n = 2 terms will be
nonzero and

4p, m
[&+++ + |-"x&x],D r (B7a)

4p m
S2 = ———[S+I'+ + S&& Fx ] .

D r (B7b)

From Eqs. (B2) we see that the post-Newtonian cor-
rections to the waveform depend on diferent harmonics
of the orbital frequency than the quadrupole term. Eq.
(B5) splits the signal into the terms depending on the
di8'erent harmonics. Each term will have its amplitude
modulated by the precession of the orbital plane.

h,"= —(mls)*i (Q;s + 2Xnn(mtc)'i ni'(L x N)'i

+ —iinn(mtc) ln'ns —A'As ). (C4)

~sss

Substituting n = cos 4x + sin 4y and A = —sin 4k +
cos 4y into the above expression and inserting the results
into Eqs. (4.23), we obtain a result which matches that
of Poisson.

In the test-mass limit that we are considering, m1 ——p,
m2 ——m (with p (( m), g = p/m, yq ——Oi y2 ——gnH,
bm = —m, s2 ——LN, and L = yBHm LN. Substituting
these values into Eq. (C3) we see that our expression
for the energy loss agrees with that of Poisson in the
appropriate limit.

Combining Eqs. (4.8) and (4.13) and taking the above
test-mass limit of the spin contributions yields
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