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Static axisymmetric approach for the head-on collision of two black holes
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This paper presents a semianalytical approach to the interaction of two (originally) spherically
symmetric black holes through a head-on collision process. It is shown that an expression for the
rate of emission of gravitational radiation can be derived from the so-called Weyl potential. The
total output of gravitational wave energy released is then calculated and the results are compared
to recent numerical investigations of this problem.
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I. INTRODUCTION

The two-body problem is one of the most outstanding
problems in general relativity. There are no exact solu-
tions to Einstein s field equations describing the space-
time geometry for such configurations. So far, because of
the diNculty in treating the field equations analytically,
the problem has mainly been treated either by numerical
methods (see [1,2] and references therein) or by post-
Newtonian approximations [3].

In this paper we give a semianalytical approach to the
head-on collision problem. We begin by considering an
exact solution of Einstein's field equations found by Weyl
[4]. This solution describes a geometry that can be inter-
preted as a static axisymmetric spacetime with two black
holes plus a conical singularity between them. It is possi-
ble to obtain the "force" of attraction between the holes
and consequently their "acceleration" [5]. Using this ap-
proach, at least the instantaneously static acceleration is
being taken care of. Furthermore, it has been shown, in
a perturbation theory context [6], that the gravitational
wave emission of boosted perturbed black holes is very
similar to that of the static ones.

We then use these expressions to calculate the rate
of emission and the total amount of gravitational
wave energy emitted in the process using the standard
quadrupole formulas and assuming that Newtonian me-
chanics rules the black hole motion. Our results are in
good agreement with those recently obtained by Anninos
et al. using a numerical approach [7]. This agreement
seems to point out that the static acceleration contribu-
tion is the most important one for this head-on collision
problem. We emphasize that this is a posteriori justifi-
cation to the series of simplifying assumptions, yet phys-
ically plausible, used in this paper.

The plan for this paper is as follows. In Sec. II we
present the Weyl solution. In Sec. III the equation of
motion for the holes is obtained. In Sec. IV an expres-
sion for the rate of emission of gravitational radiation is
derived and the total output of gravitational wave energy
is calculated. In Sec. V we discuss our results.

II. WEYL STATIC SPACETIME

In 1917Weyl published one of the first exact solutions
of Einstein's field equations. This solution is a particular
case of the class of static axisymmetric vacuum space-
times that nowadays is known as Weyl class [8]. Other
exact solutions of Weyl's class followed, in particular the
1924 Curzon solution [9]. This solution caused some con-
troversy because it was interpreted as a vacuum static
metric having two fixed bodies on the axis of symmetry
as its source. Silberstein [10] promptly pointed out the
problem and naively claimed that general relativity was
an unphysical theory. Then Einstein himself and Rosen
[11] solved the puzzle showing that the Curzon's solu-
tion actually does not have a vacuum between the bodies
because there is an angle deficit when one goes around
the axis of symmetry in a plane perpendicular to the line
linking the bodies. Thus, in general relativity, a two-
body system in static equilibrium must have some sort
of strut between them, in this case, a conical singular-
ity. Therefore, in principle, one could look for a solution
that may be interpreted as two black holes with a "strut"
holding them apart.

The line element of a vacuum, static axisymmetric
space-time, in "isothermal and conformal" coordinates,
is given by [12—14]

ds =e ~ dt —e ~ [e "(dp +dz )+p dP ], (1)

where g = @(p,z), v = v(p, z), 0 & p & oo, —oo & z &
oo, and 0 &P & 27r [4]. Einstein's field equations are
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v& = p(@,
' —4.')

(4)

m B++R —L
I B++R +L (5)

where

B~ —— p2+
I
zy—

and m is the mass of this Newtonian bar. Note that @ is
a solution of Laplace's equation (2) subject to the condi-
tion B+ + B —L & 0. So the solutions to the vacuum
Einstein's equations (2), (3), and (4) are subjected to the
condition that p and z satisfy this inequality.

From (3), (4), and (5) we obtain

m 2 (B++B )' —L'
v = 2 — ln

4B+B (7)

Setting L = 2M and performing the coordinate trans-
formation

where partial derivatives are denoted by subscripts. One
can first solve Laplace's equation (2) for @ and then solve
the quadratures (3) and (4) for v. Asymptotically g plays
the role of a Newtonian potential.

Since Eq. (2) is elliptic, if one imposes the boundary
conditions g ~ 0 and v ~ 0 for (p, z) m (oo, boo),
which corresponds to saying that the spacetime is asymp-
totically Hat, then the trivial solution is the only possibil-
ity. But one can get a nontrivial solution when Laplace's
equation (2) is replaced by a Poisson equation with some
localized source on the right-hand side of (2). We refer
to it as the Newtonian image of the sources of the Weyl
spacetime [15,16].

It can be shown that there is a solution in Weyl's class
that is isometric to the Schwarzschild solution. That is,
the single black hole spacetime is included in Weyl's class
t8)

We start by noting that the Newtonian potential for a
finite rod of length L located on the z axis and centered
at the origin is given by

Let m and m' be the masses of two Newtonian bars of
lengths 2m and 2m' sitting on the z axis and centered
at Zo + m and —Zo —m', respectively. The Newtonian
potential for this configuration is a solution of Laplace's
equation (2) given by

B++B —2m ~ B~++ R' —2m"
ln + + — ln

2 B+ + R + 2m 2 R+ + B' + 2m'

(10)

where

Bg = Qp2+ [z —(Zo + m) g m]2,

B+ ——gp2 + [z + (Zo + m') y m']2.

(11)

(12)

Substituting (10) into (3) and (4) and integrating them
yields

v = v [&1 + v[&'] + 2~5 &']

where @, v[@] and @', v[g'] are solutions to the single-bar
problem and the interaction term is given by

(m'+Zp) R++(m+m'+Zp) R —mR'
2 Zp R++(m+Zp)R —mR+j

~~~~~

~

~ ~~ ~ 1n I~

I

1 Zp+ 2ln (14)

The last term is an integration constant that has been
chosen so that v(p, z) tends to zero far away from the
bars.

Note that at p = 0 the interaction term (14) does not
vanish between the two bars, being given by

v(0, z) = 2cr(0, z) = ln 1— mm'
(Zo + m)(Za + m') (15)

for ~z~ ( Zo. This term generates a conical singularity
[17,18] which can be interpreted as a cosmic-string-like
object [19] (a strut) that holds the two bodies apart [5].

The conical singularity appearing in the plane orthogo-
nal to the z axis can be obtained through the application
of the Gauss-Bonet theorem to the two-dimensional hy-
persurface obtained by fixing t and z such that ~z~ ( Zo.
It has been shown [17] that the Gaussian curvature of
this two-dimensional hypersurface is given by

p' = (r' —L r) sin'0,
z = (r —L/2) cos 0

(8)
(9)

puts the line element into the standard Schwarzschild
form [5]. Note that in these coordinates the horizon is
given by p = 0, —M & z & M and also that this coordi-
nate transformation applies only to the static region of
the Schwarzschild solution.

Since Laplace's equation (2) is linear, one can super-
pose two solutions, each of them corresponding to the
potential of a Newtonian bar. Having done that, one can
then solve Eqs. (3) and (4) to obtain what can be inter-
preted as a two-black-hole solution. In what follows we
explicitly show how this superposition can be achieved.

where b2(p) is defined implicitly by

OO 27K

h2(p)e ~ "pdpdP = l.
0 0

(17)

Since the metric in the two-dimensional manifold con-
sidered above is diagonal, the only nonvanishing compo-
nents of the Ricci tensor are given by [20,21]

B~ = R~ = K = 2vr(e " " —1)b2(p).c 4 (18)

Assuming that in the four-dimensional case these com-
ponents of the Ricci tensor are also the only nonvanishing
ones and using Einstein's Geld equations
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1 pB„"——g„"B= —Shirr", (19)
of the Newtonian potential V(r) = ——„by the Weyl
potential

we obtain the following nonvanishing components of the
energy-momentum tensor:

(28)

~
—u(p~z)

T,' = T; = h2(p). (2o)

r. = T. d~ = —e-"(' ) —1.—uOz
disk

Substituting (15) into (21) yields the tension on the
strut by the two black holes [5]: namely,

mm'
d' —(m+ m')' ' (22)

The compression "force" on a plane perpendicular to
the z axis can be calculated [22] by integrating T; on the
disk centered at p = 0; that is,

For a head-on collision we set h = 0 and let r = xi. We
may also set M to 1 by rescaling space and time coor-
dinates appropriately. So the equation of motion we are
going to deal with is

1.2 1—x +—ln
2 2

(29)

where x= dx/dt.
In the next section we use this equation of motion to

obtain the amount of gravitational radiation emitted in
a head-on collision process. For comparison we show the
same calculations for the Newtonian gravitational poten-
tial instead of the Weyl potential.

where d = 2ZO + m + m' ) m + m' is the coordinate
distance between the centers of the black holes. We ob-
serve that the force is divergent if the horizons touch
each other (Zo ——0) and also that for large distances,
i.e. , d )) m+ m', (22) takes the form of the Newtonian
force between two point particles.

III. EQUATIONS OF MOTION

We now investigate the time evolution of a two-body
system interacting through the Weyl force (22). We make
the assumption that Newton's equation of motion with
Weyl's force is adequate to describe the black holes mo-
tion. We then write

m~ mb F~b1~
dg2 v'

b
—(m +mb)

d rg
mQ

(23)

(24)

where r g ——r —rg and r, rg are the position vectors
for the particles with masses m, mb, respectively.

We now have a Newtonian two-body problem that can
be transformed into a central force problem in the usual
way. Then Eqs. (23) and (24) are transformed into

IV. EMISSION OF GRAVITATIONAL
RADIATION

One can use the quadrupole formula and the dynamics
given by the Weyl potential to calculate the generation
of gravitational waves.

The mass traceless quadrupole moment is given by [23]

A A 1 AZ;„—= ) m~ x, z„—-h, „(z )
A

(3o)

Now, for a two-particle system separated by the dis-
tance x the only nonvanishing components of 7~1, are

2 2
Z~~ = —px )3

1 2
+yy +zz P'X )3

(31)

dEg 1 " " 6= —p

where p = m mg is the reduced mass. Since the total
mass M was set to 1, the reduced mass is constrained
to be less than 1. Note that the NCSA [7] notation M
indicates the mass of one black hole instead of the total
mass as we use in this paper.

Consequently, the gravitational luminosity is given by

r
dt2

and d2K/dt = 0, where MK = m r + mbrq, r = r q

and M = m + m&. Integrating (25) yields

where the angular brackets mean an average over several
wavelengths.

Since we are mainly interested in the energy radiated
along the collision process, we use the following expres-
sion in what follows:

1drdr 1 r —I+ ln-
2dt dt 2 r+M

rxr=h, (27)

de de 1
dx (33)

where e and b are the constants of motion energy and
angular momentum per unit of mass, respectively. What
we have done in this case is equivalent to a replacement

and x is decreasing with time t.
For a head-on collision of two bodies with equation of

motion (29) the quadrupole formula (32) yields
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Total Amount of Gravitational Wave Energy
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FIG. 1. Gravitational wave energy emission rate as a func-
tion of the distance between the holes for three initial condi-
tions. The top curve has an initial condition such that e = 0
(that condition is satisfied, for instance, ii' the holes are re-
leased from infinity at rest) and the others below have e ( 0.
The inserted graphic shows a comparison of the curve ob-
tained with the use of the Newtonian potential with one of
the curves above.

FIG. 2. Total amount of gravitational wave energy emis-
sion as a function of x;„for some values of x „.From top
to bottom the values of x „are infinity, 10, and 5, respec-
tively.

vanishes at x = xo = ~3 (see Fig. 1).
For comparison, it is interesting to mention that the

use the Newtonian potential gives

dEs 8@2 (x' —3)' x+12e+ ln
dx 15 (x' —1)4 x —1

(34)
dEg 8p 1 226+ —

)dx x

Note that
&
' diverges for x ]-+ 1, that is, when the

two black hole horizons touch each other. Of course, one
has to be careful when using this approach for when the
black holes are very close to each other, strong distor-
tions of their horizons and their coalescences could not
be taken in account using Weyl's potential alone. Fur-
thermore, the black holes would reach the speed of light
at x = xi;sgt = (e '+1)/(e ' —1) ) 1, that is, before
the horizons touch. So the description of the head-on col-
lision given by this approach is valid only for x & x~;gh&.
One can note that the rate of emission reaches a maxi-
mum somewhere in the range xhsi, t ( x~, I, ( ~5 and

which steadily increases as x decreases, diverges at x = 0,
and at x = 2/(1 —2e) the holes reach the speed of light.

The total amount of energy radiated through gravita-
tional waves is given by

&&g(xmin~ xmax) =
&max

dx )

where x „ is the relative coordinate distance between
the holes at the moment of release. Our approach clearly
breaks down when the holes get too close. So we have
to chose x;„appropriately. There are two possibilities:
It can be either x~;ght

——2.1640, namely, the point where

TABLE I. The total amount of gravitational energy radiated away as a function of x „. The
value of x;„used is indicated in brackets; that is, b.E~ [x;„]is the total amount of energy radiated
in the head-on collision when the holes are released at rest from x „up to the respective x
(Note that x~ i, depend on e = (1/2) ln [(x „—1)/(x „+1)] through the transcendental equa-
tion 4x(x —5)(2e+ ln [(x + 1)/(x —1)])+ x —3 = 0). The values are compared to the calculation
obtained from Newton's force and to the NCSA's [24] numerical relativity results. The two numbers
on the first lines of NCSA's column reveal difFerent values for difFerent numerical techniques for
initial conditions in which the holes are very close to each other.

xmax
3
5
7

10
20
30

100

xpeak
2.1159
2.1621
2.1726
2.1787
2.1844
2.1861
2.1883
2.1892

&&s[x~. i]
0.00230
0.00536
0.00656
0.00735
0.00817
0.00842
0.00875
0.00889

az, [2.1840]
0.00207
0.00535
0.00662
0.00746
0.00833
0.00860
0.00895
0.00909

&&N. ~. [2]
0.00649
0.01244
0.01463
0.01610
0.01765
0.01813
0.01878
0.01905

&&Nese [2]
O.OO4O7 (3.5 + O.2) x 1O-'
0.00582 (5.5+ 1.3) x 10

0.00654
0.00715
0.00801
0.00831
0.00874
0.00894
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the holes reach the speed of light when released from
infinity, a choice that can be justified by special relativity;
or xp k which is the point where the rate of emission
of gravitational radiation reaches its maximum value, a
choice that can only be justified a posteriori by virtue
of its remarkable agreement with the NCSA results (see
Table I). However, it is important to point out that
xp Q is very close to x~;zht and that may well be the
reason why the results, using either one of these points
as x;„, are almost exactly the same. One could then
argue that xp i, is the correct cuto8' point, i.e. , x
because it is very close to 2:~;sh& (the relative speed of
the holes reach about 99% of the speed of light at xx,
when released from infinity) and there is a drastically
decrease on the rate of emission of gravitational waves
energy beyond this point (see Fig. 1). In the Newtonian
potential case x;„is chosen to be 2, namely, the point
where the holes reach the speed of light when released
from infinity.

For the sake of completeness, the dependence of LEg
on xp k is shown in Fig. 2.

sion problem.
We obtain the mutual attraction "force" that can be

derived from Weyl's potential for this two-black-hole con-
figuration and used Newtonian equations of motion to
find the dynamics of the holes. We then calculate the
amount of gravitational radiation energy released in the
head-on collision process using the quadrupole radiation
formula.

Our approach gives results that are in extremely good
agreement with other relativistic calculations and com-
puter simulations, which is somehow a surprise because
of its simplicity. Note that the relativistic calculation
by Davis et al. [25] (for a test particle falling radially
into a black hole from infinity at rest) yields AE
0.0104@; the equivalent Newtonian estimation yields
AE =

0 p 0.0191@2; the computer simulation by
Smarr [2] gives AE = 0.0080@ within a factor of 2. Fi-
nally, the NCSA group [7] gives AE = 0.0089@ . On
the other hand our approach using the peak value as the
stopping point for the radiation process yields the value
LE = 0.00889@, .

V. CONCLUDING REMARKS

Using the static and axisymmetric Weyl spacetime, an
exact solution to Einstein's field equations that can be in-
terpreted as being the geometry due to a configuration of
two black holes with a conical singularity between them,
we gave a semianalytical treatment to the head-on colli-
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