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We revive an old proposal of Zeh for the preferred basis in the many-worlds interpretation of
quantum mechanics. The algorithm for the basis reduces to the eigenvalue problems for density
matrices of subsystems forming the whole system under consideration. We generalize this procedure
to the case of degenerate eigenvalues of reduced density matrices. A semiclassical calculational
method for these eigenvalues is developed and applied to some model problems. The classical
properties of elements of the preferred basis are investigated. It is shown that classicality exists only
in some part of many-worlds branches. Moreover, it depends crucially on the initial conditions and
Hamiltonians and under some circumstances turns out to be a temporary phenomenon. Applications
of the preferred-basis proposal to quantum cosmology are discussed. The relation between the
preferred-basis approach and quantum-histories approach is discussed.

PACS number(s): 03.65.Bz, 98.80.Hw

I. INTRODUCTION

The development of quantum cosmology in recent
years [1] has had an impact on the study of the con-
ceptual foundations of quantum mechanics. The idea
of the quantum birth of the Universe [2—5] is naturally
combined with the treatment of the Universe as a whole
quantum object, which in another context was put for-
ward in the &amework of the many-worlds interpreta-
tion of quantum mechanics [6—9] pioneered in 1957 by
Everett [6]. The present paper is devoted to the problem
of the preferred basis in the many-worlds interpretation
of quantum mechanics and quantum cosmology [10—18],
which is closely related to the problem of explaining the
classical behavior of the Universe.

In our opinion the majority of the most important
questions in the interpretation of quantum mechanics can
be reduced to the problem of a rather intricate inter-
relation between classical mechanics and quantum me-
chanics. It makes sense to extract three aspects of this
problem. The first aspect can be called the question of
priority. Which theory is more fundamental: classical
mechanics or quantum mechanics? The answer depends
crucially on the interpretation of quantum mechanics we
choose. In the framework of different "neoclassical" (or
hidden parameters) interpretations [19] the main role is
the idea of the priority of classical-type determinism and
the treatment of the probabilistic character of quantum
mechanics is a secondary phenomenon.

The Copenhagen interpretation of quantum mechan-
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ics [20,21] seems to be prevailing among physicists. To a
certain extent, in this interpretation classical and quan-
tum mechanics have equal status. Recognizing the fun-
damental nature of quantum probability, adherents of
the Copenhagen interpretation introduce also such no-
tions as a classical realm of physical reality, a classical
device, or a classical observer, and so on. This dualism
of notions in the Copenhagen interpretation of quantum
mechanics manifests itself in the existence of two funda-
mental processes: unitary evolution of the wave function
according to the Schrodinger equation and the so-called
reduction of the wave packet in the process of quantum
measurement [21]. The meaning of the latter consists in
the abrupt and noncausal elimination of that part of the
wave function which corresponds to those possible out-
comes of quantum measurement that were not realized.
It is usual to explain this phenomenon by a special role
of a classical device in the quantum measurement or even
by a special role of consciousness in our world [21], but
in any case this postulate restricts the "sovereignty" of
the quantum-mechanical description of reality.

This situation can be regarded as unsatisfactory kom
the point of view of those who, like Everett, are guided
by a desire to reduce to a minimum the number of fun-
damental principles of the theory [22]. Moreover, when
trying to apply quantum mechanics to the consideration
of cosmological problems we stumble upon the impos-
sibility of finding the place for a classical realm or ex-
ternal classical observer. These two groups of reasons
stimulated the development of the many-worlds interpre-
tation of quantum mechanics. The main idea of this in-
terpretation is the priority of quantum mechanics over
classical mechanics and the belief in the objective na-
ture of the wave function. Thus in the framework of the
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many-worlds interpretation there is only one object de-
scribing the physical reality, the wave function, and only
one dynamical process, the Schrodinger evolution. The
postulate of the reduction of the wave packet is given
up. Instead we can speak about the simultaneous real-
ization of di8'erent outcomes of quantum measurement
in difFerent "branches" of the wave function of the Uni-
verse or in di8'erent "parallel" Everett worlds. This ap-
proach to the problems of quantum cosmology seems to
be promising and we shall attempt to be consistent in
carrying it out in this paper. Perhaps it is worth notic-
ing that now, at least in the community of quantum cos-
mologists, one can speak about a broad propagation of a
"post-Everett" attitude to the interpretation of quantum
mechanics [23,24]. However, there are different trends
inside this "post-Everett" paradigm. Roughly speaking,
one can subdivide here into three main approaches. The
first one is the so-called decoherence approach originating
from the papers [25—27]. The second approach is based
on quantum histories or quantum paths and their de-
coherence functional [23,24,28—33]. The main diff'erence
of this approach from the traditional ones is connected
with the idea that it is necessary to consider the quan-
tum history as a whole as a principal object of quan-
tum theory instead of the usual study of quantum states
at fixed moments of time. The third approach in the
&amework of the post-Everett paradigm can be called
the "biorthogonal basis approach" or "Schmidt basis ap-
proach" [10,16—18]. This approach is the subject of the
present paper.

The second aspect of the problem of quantum-classical
interrelations can be formulated as a question: What
does "classicality" mean'? In more definite terms we can
ask ourselves how can we define the notion of classical
behavior in quantum terms. It is necessary to do it for
the explanation of the classical behavior of quantum sys-
tems. For these purposes the Wigner function approach
is usually used [34—36]. In the framework of this approach
one introduces the quasiprobability Wigner function

W(p, q, t) = dq' exp ~—1, ( ipq')
2vrh 5 )

q' 5 . ( q'
x4

( q ——,t
f

O'I q+ —,t f.
) 4 2 )

This function has properties close to those of the phase-
space probability distribution function in classical statis-
tical physics. It is possible to say that, in the case when

~(p, q) - f (q) v (p —p.i(q, t) ),

where p,~(q, t) is the classical mechanical law of motion
for the momentum and the dispersion of p is small, we
can treat the behavior of a system as behavior in classical
statistical mechanics [37—41]. Usually, the investigation
of the Wigner function is combined with studying the
properties of a density matrix of the system in the &ame-
work of the decoherence approach [25—27,42—55]. The
main idea of this approach consists in the construction
of the reduced density matrix of the observable subsys-
tem by tracing out degrees of IIreedom belonging to the

environment:

pr« — (environment }psystem+environment .
The vanishing of the off-diagonal elements of p, g describ-
ing quantum interference can be interpreted as a deco--
herence phenomenon or as a transition of the quantum
system to classical behavior. Thus in this way we can
reduce the quantum mechanical behavior to the classical
statistical one. However, there is an essential difference
between the role of statistical principles in classical and
quantum physics. In classical physics the probability is
"the measure of our ignorance" of the initial conditions
or the details of interaction, while in quantum physics we
cannot get rid of the probability even in principle, and
there is no analogue to the "Laplace demon" who could
calculate everything [56]. This situation is an incentive
to develop an alternative approach to the notion of clas-
sicality in quantum mechanics which could be treated as
a complementary one to the decoherence —Wigner func-
tion approach. This approach combines the choice of
preferred basis with the subsequent investigation of the
dynamics of elements of this basis. We shall compare our
preferred-basis branches of the wave function with some
"yardstick" states which, with respect to their properties,
are treated as maximally close to classical ones. These
sample states are some kind of coherent states and this
approach to the treatment of classical properties of quan-
tum systems was initially proposed by Schrodinger [57] in
1926. These states were first considered for the harmonic-
oscillator Hamiltonian; however, it was shown that one
can generalize the definition of the coherent oscillator
to a number of more complicated cases [58—61]. More-
over, it was shown that in some potentials these gener-
alized coherent states could be stable and possess other
attractive properties. The detailed investigation of the
properties of the generalized coherent states in di8'erent
potentials was carried out in a series of papers [62]. It
was shown that the generalized coherent states do not
possess all the properties which could be demanded for
the states pretending to have classical behavior; how-
ever, these minimum-uncertainty coherent states can, at
least, be regarded as the best candidates for mediation
between classical and quantum ones. Therefore we can
use the notion of the coherent state as a model of the
classical "yardstick" state in spite of the fact that the
general definition for such a classical ideal state has not
yet been formulated.

The problem of the definition of classicality in quan-
tum terms is closely connected with the third aspect of
quantum-classical interrelations —the cosmological one.
This can be expressed in the following question: how
does the quantum origin of the Universe lead to the ob-
servable classical world at the present time? The pre-
vailing approach to this problem is the decoherence ap-
proach [25—27]. In the application to cosmology [37—55]
the decoherence approach is usually used in combination
with the correlation properties of the Wigner function.
Probably, the subtlest question here is the choice of the
environment. We cannot find an environment external to
the whole Universe and we must treat a part of the de-
grees of freedom inside the Universe as the environment.
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Another problem in the application of the decoherence
approach concerns the basis dependence of the behavior
of the reduced density matrix elements. It is obvious that
the definition of the matrix elements of p, g depends on
the choice of the basis for this matrix. Usually it was
implicitly or explicitly assumed that the pointer basis
of Zurek [25,26] was used. This basis is stable against
an interaction between the measuring apparatus and the
environment. In treating cosmological problems we are
also trying to carry out the preferred-basis approach to
the wave function of the Universe implying its decompo-
sition into some set of branches which can be identified
with observable worlds. Then we can study the time evo-
lution of these branches and discuss to what extent they
have classical properties.

The problem of the preferred basis was discussed in
Refs. [10—18]. Our approach was briefly sketched in Ref.
[16]. We have revived the old proposal of Zeh [10] and
gave somewhat diferent and more transparent arguments
in favor of this proposal. It is necessary to stress also
that this basis, which we shall call biorthogonal, was first
introduced at the dawn of quantum mechanics (and inany
years before the many-worlds interpretation came into
existence) by Schrodinger for the purpose of describing
the quantum correlations between interacting subsystems
[63]. An analogous basis was used also by Schmidt in the
purely mathematical context [64].

In this paper we give a more extensive version of our
approach to the problem of the choice of the preferred ba-
sis in quantum mechanics and quantum cosmology and
to the question of classicalization of the quantum world.
The structure of the paper is the following: Sec. II is
devoted to the d.escription of the procedure of choosing
the preferred basis in the many-worlds interpretation of
quantum mechanics; in Sec. III we construct the discrete
preferred basis for the wave function of continuous vari-
ables; in Sec. IV we study the dynamics of the preferred
basis; in Sec. V we discuss the problem of classicality and
consider some simple toy models; in Sec. VI we continue
the discussion of a classical behavior in a more compli-
cated toy model; in Sec. VII we consider the connection
between the preferred-basis approach and the quantum-
histories approach to the interpretation of quantum me-
chanics; and in Sec. VIII we summarize our results.

II. THE CHOICE OF THE PKEFEKRED BASIS

The many-worlds interpretation of quantum me-
chanics resolves some problems and paradoxes arising in
other interpretations. At the same time it gives rise to
some ad.ditional problems. An especially important prob-
lem among them is the choice of the preferred basis. To
explain the essence of this problem it makes sense to re-
call the mechanism of the "branching" of the wave func-
tion in measurementlike processes. For illustrative pur-
poses we shall consider the well-known example of the
Stern-Gerlach experiment.

Let the system consist of a device which is initially in
the state ~O)0 and is ready to measure the spin z com-
ponent of an atom, which is in the state

(cil t) + c21 &) )

where
~ g) and

i $) are s, = k2 orthonormal eigenstates
of an atom. The initial state of the system as a whole is

(2.1)

We see that before the measurement both the device and
atom are in the pure state. Let us introduce now the
unitary operator U describing the interaction between
the atom and the device. The measurement operator U
satisfies the rule [21]

&I 4 & Io&o =
I && Ic'~& (2.2)

where ~C'g) and ~O~) are the orthonormal eigenstates of
the device indicating the fact of measuring, respectively,
the values 8 =

2 and 8 = —2. Under the action of U
the state (2.1) transforms into

I @)- = UI @)'- = c
I &) IC'~) + c

I &) I
C'~&. (2.3)

Prom the point of view of the Copenhagen interpreta-
tion the unitary transition from the state (2.1) to the
state (2.3) is only the first part of the process of quan-
tum measurement. We know that really we can measure
only one value of s„but in (2.3) there are two terms
corresponding to both possible results of measurement.
The second part of the quantum measurement consists
in the elimination of one of these terms:

l~)-t «
I t)l~t&

or

I+)-t «14) I+~) (2..4)

to the defactorized state

(2.6)

The process (2.4) is nothing else but a reduction of the
wave packet. However, in the framework of the many-
worlds interpretation we reject the process (2.4) and rec-
ognize the simultaneous existence of both terms in the
superposition (2.3): the measurement process is reduced
to the arrangement of correlations between the atom and
the device and both outcomes of the experiment exist
in parallel worlds. Thus, instead of the reduction of the
wave packet we have the "branching" of our world. From
the mathematical point of view the branching is merely
defactorization of the wave function of a system with re-
spect to the subdivision of this system into subsystems
[see Eq. (2.3)] and these subsystems undergo the transi-
tion &om pure quantum states to mixed ones.

Generally speaking, every transition of the wave func-
tion of a system which consists of two subsystems from
the factorized state

(2.5)
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where the states lp), lp;) describe one subsystem and the
states ly), ly, ) another one and n ) 1 can be regarded
as a process of branching or defactorization of the wave
function.

We see that in the decomposition (2.6) every state of
one subsystem lp;) has the uniquely determined counter-
part ly;), which is usually called the "relative state" [6].
However, at the same time we can choose another set of
basis states IP;) instead of ly;). In this case we shall have
another set of relative states ly, ) and the wave function
(2.6) will be written in the form

e& =) c„ln&rln (2.9)

subscripts I and II.
It seems rather reasonable to require that the fact that

of different terms of the decomposition of the wave func-
tion belong to different worlds must be accompanied by
their mutual orthogonality; moreover, we require also or-
thonormality of substates corresponding to our subdivi-
sion of the system into subsystems. This leads immedi-
ately to the decomposition

IP'& l~'&. (2.7)
where both sets of basis vectors In)r and their relative
states In)rr are orthonormal,

From the mathematical point of view there is no essential
difference between formulas (2.6) and (2.7); they simply
describe the same wave function, but written in different
bases. But &om the physical point of view the choice
of different bases implies different decompositions of the
wave function into some sets of branches which corre-
spond to different real worlds, which can be perceived
experimentally. Thus we have to make a definite choice
of some preferred. decomposition or preferred basis.

One can say that within the usual "common sense" it
is impossible to choose in the case of the Gerlach-Stern
experiment another basis but

I t) IC't) and
I &) l@~) (2.8)

because our device is constructed and arranged to mea-
sure the spin z component of an atom. It is true, but
in order to separate other possible choices of the basis
we have to resort to some classical properties of the de-
vice. However, this deprives us of the main advantage
of the many-worlds interpretation —its purely quantum
nature. Moreover, common sense is applicable only in
simple quantum-mechanical experiments. In a more com-
plicated case of quantum cosmology common sense does
not always work. The point is that it is necessary to
work out the procedure of constructing the preferred ba-
sis originating kom purely quantum notions. We can try
to extract this procedure &om the consideration of rather
simple quantum-mechanical problems, generalize it, and
then apply it to more general and complicated situations
amounting to problems of quantum cosmology.

The construction of the preferred basis, which we
would like to advocate, consists of two steps: (i) splitting
of the system under consideration into certain subsys-
tems and (ii) choosing the proper basis for one subsystem
and the basis of relative states for another subsystem. It
is necessary to stress that, &om the point of view of our
prescription, we can choose any subdivision of the system
into subsystems, because for every such subdivision our
prescription gives a unique preferred basis. In contrast
with the Copenhagen interpretation, where observation
and measurement play a special role, in the many-worlds
interpretation they are simply interactions between sub-
systems. Therefore we shall treat our subsystems on an
equal footing without indication which of them is the
observer and which is the observable. All notation con-
cerning the corresponding subsystem will be marked by

r(nlm)r = b„, rr(nlm)rr = h„ (2.10)

and t" are some complex coeKcients which determine a
priori probabilities p of realizing the nth Everett world:

(2.11)

This prescription for the choice of the preferred basis
yields also a constructive algorithm for finding it. Con-
sider the density matrix of the total system p = l@)(C'I
and the density matrix of the erst subsystem I, obtained
by tracing out the degrees of freedom of subsystem II:

pr = Trrrl@)(4'I. (2.12)

Substituting the decomposition (2.9) and using the or-
thonormality condition (2.10) one finds that the latter
has the form

sr = ).Ic-I'ln&»(nl (2.13)

whence one concludes that the vectors In)r of the pre-
ferred basis solve the eigenvalue problem for the density
matrix py.

Aln)r = p-ln)r

p. = Ic.l' (2.14)

with eigenvalues which exactly coincide with the proba-
bility weights (2.11) of Everett worlds. Similarly to In)r
the basis vectors In)rr are the eigenvectors of the density
matrix of the second subsystem:

prr = Trrl@)(@l, pin)rr = p In)rr. (2.15)

Both the density matrices py and pj y are Hermitian,
positive semide6nite and (in view of the normalizabil-
ity of l@)) bounded operators. Therefore they possess
a countable eigenvalue spectrum and their orthonormal
eigenvectors are unique up to inessential phase factors.
The only exceptions are the invariant subspaces of py
and pyy corresponding to possible degenerate eigenval-
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ues, in which the eigenvectors can be determined up to
unitary rotations. These subspaces can only be finite
dimensional, because the sum of eigenvalues over each
subspace is less than (or equal to) 1 in view of (2.11).

The basis (2.9), to which we came due to reasoning
of the above type, coincides with the biorthogonal ba-
sis of Schrodinger [63], introduced for the study of quan-
tum correlations between interacting quantum systems or
with the "Schmidt canonical basis" of Zeh [10] (this name
originates f'rom the classical paper of Schmidt [64] on the
integral equations), used in the context of the many-
worlds interpretation. This basis can be obtained by
solving two eigenvalue problems (2.13) and (2.14) for the
density matrices of relevant subsystems. The nonunique-
ness of this solution in the invariant subspaces of the
degenerate eigenvalues was also mentioned in Ref. [10],
but without a concrete proposal for its resolution. Here
we shall go somewhat further and resort to an additional
principle in order to fix this basis uniquely. From Eqs.
(2.13) and (2.14) it follows that the preferred basis de-
pends on the quantum state I@& of the total system and
consequently evolves in accordance with the Schrodinger
evolution of I@& = I@(t)&. Then it seems natural to re-
quire that the decomposition of these invariant Hilbert
subspaces into equally probable Everett worlds should be
stable against this dynamical evolution. To demonstrate
the eKciency of this principle we return to the above-
mentioned example of the Gerlach-Stern experiment.

The density matrices of measurement device and atom
corresponding to the state of the whole system after mea-
surement (2.3) take the form

s ~-'- = lc~ I'le'~& &4'tl + lc2I'IC'~& &4'~
I

eigenvalue problems. The new basis is, however, unstable
with respect to the measurementlike interaction between
the device and the atom. Indeed, there are two branches
of

I @) in this basis:

I@& = —
I ~&l@ &+ I+-&I@ (2.17)

(2.18)

where superscripts enumerate corresponding subsystems,
and for di8'erent branches, enumerated by M, the cor-
responding vectors In ) for different M can be either
orthogonal or equal. The decomposition (2.18) can be
designed by a recurrent procedure. As a first step we
can construct the density matrix for the first subsystem,
tracing out the rest of the subsystems. As a result, we
get the decomposition of I@) in the basis vectors of the
first subsystem and corresponding relative states:

(2.19)

In contrast with branches (2.15) of the decomposition
(2.16) those branches (2.4) of the decomposition (2.3) are
not destroyed during the dynamical evolution by the op-
erator U and thus form the unique preferred basis which
gives the reasonable many-worlds picture of the Gerlach-
Stern experiment.

In conclusion of this section we would like to notice
that the proposed procedure can be used in the case of
more complex processes, when it makes sense to subdi-
vide the system into more than two subsystems. In this
case we must choose the decomposition

~-~- = le~I'I &&&t I
+ lc21'I &&&& I

and according to our algorithm the preferred basis is
given in the nondegenerate case

I
cq

I g I
c2

I
by the vec-

tors (2.4).
For Ical = lc2I =

2 this procedure becomes insuK-
cient, because the preferred basis in our two-dimensional
Hilbert space is already not unique. For example, instead
of (2.4) one can take the basis of vectors

I

—+&I4'~& and

I m&IC ),where

I
-+& = (I t) +

I &&)

I@& = ) c' l~„"&) .c„'g l~„'g & l~'„I,"& (2.20)

Repeating this procedure N —1 times, we have

I+& = ).c."l~.'"&):c.".l~."&&".).c-' ~l~.'..'. .&).

Here superscripts (1) in the coeKcients c indicate the
first step of a recurrent procedure. Then we can extract
&om the rest of the subsystems the second one and repeat
the procedure. After this we have

(2.21)

I@ ) = (l@~&+ l@~))

(IC'~& —IC'~&) (2.16)

The decomposition (2.21) can be condensed into (2.18),
where coeKcients c are all possible products of coefB-

(Z) (N)ClentS Cn '
Cnh,

III. DISCRETE PREFERRED BASIS FOR THE
WAVE FUNCTION OF CONTINUOUS

VARIABLES

For the case cz ——c2 ——~ Eq. (2.15) also solves the In quantum mechanics and quantum cosmology we
often work with the wave function written in terms of
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@(x,y) (3 1)

depending on two. continuous variables x and y, which
describe the erst subsystem and the second one corre-
spondingly. The density operators for the first and the
second subsystems are given by the formulas

+oo
p(x, x') = dy@*(x,y)@(x', y),

continuous variables. In this case the preferred basis
looks like a system of wave packets. In order to con-
struct this system of wave packets we have to resolve a
system of eigenvalue equations which turns into a sys-
tem of integral equations. Because of the boundedness
of the density operators mentioned in the preceding sec-
tion they have a discrete spectrum. Let us write down
the system of integral equations and then consider an
exactly soluble example.

We consider the wave function

field, the cosmological scale factor, etc. , while (f} de-
notes all the other inhomogeneous quantum fields usually
considered in the linearized approximation [65—67].

We now identify the subsystems I and II, respectively,
with x and (f}and compute the density matrix of the
variable z. In view of (3.6) it takes the form

(* z') = T (f1 I@)(@I = p(x) p*(x') exp[ —W(x, x')],

(3.7)

where the function W(x, x') contains all the correlations
between x and x', which indicate that the subsystem
I = x is not in the pure state. Suppose now that the
function rp(x) is sharply peaked about some point in x
space. Then, if the correlation corrections W(x, x') do
not smear out this peak, the same will be true for the
kernel (3.7): with respect to both arguments x and x' it
will be concentrated around its stationary points x = xo
and x' = xo. Thus the dominant contribution to p(x, x')
will give the terms quadratic in (x —xo) and (z' —xo):

s(v, v') = j «&*(*v')~(* ~) (3.2)
p(x, x') = m exp[ a(x —x—,)' —a*(z' —x,*)'

+b(x —xo) (x' —xo)], (3.8)

dx'p(x, x') p„(x') = p„p„(x) (3.3)

and

and the eigenvalue equations (2.13) and (2.14) turn into
where N is the normalization factor. Generally a and
xo are complex numbers, while the parameter 6 is al-
ways real (in consequence of the density matrix Hermitic-
ity) and arises entirely due to the nonvanishing correlator
W(x, x') which is responsible for the nontrivial branching
of the preferred basis. The requirements of boundedness
and positive de6niteness of the density matrix impose
also the conditions

du'p(v, V')x-(V') = p-X-(u). (3.4)
Rea ) 0, 6 ) 0, 2Rea ) b. (3.9)

Similarly to (2.9) the wave function @(x,y) can be writ-
ten in the form

@(z,u) = ):c-V-(z) ~-(~) (3.5)

where ~c„~' = p„.
Generally speaking, the resolution of the integral eigen-

value equations (3.3) and (3.4) is a very difficult techni-
cal task. However, there is a class of system in which
the eigenvalue problem for the preferred basis can be
solved by semiclassical methods. These systems possess
a quantum state sharply peaked about some point in the
con6guration space of the theory, and the semiclassical
expansion parameter turns out to be the quantum dis-
persion in the vicinity of this point. Let us denote this
variable by 2; and write the wave function of the system
as

(x) = [2 n!~m'(2Ren) ] H [2+Ren(x —x)]
x exp[ —n(x —xo)2], (3.1O)

where

62
n = (Rea)2 ——+ i Ima, (3.11)

2xo(a* + n) —bxo
2(a* + n) —b

(3.12)

Xo + O.'*Xo

2Reo,
(3.13)

Now we can write down the solutions of the eigenvalue
problem (3.3) for the density matrix (3.9):

@(x (f})=
V (*)4'((f}*). (3.6)

This means that the strongest dependence of ill(x, (f})
on x is exhausted by the function p(z), while its depen-
dence on all the remaining variables (f}is given by the
function 4((f},x) slowly varying with x. This is a typ-
ical situation when one singles out the background of x
and the rest of the degrees of freedom (f}. For exam-
ple, in quantum cosmology x may play the role of some
homogeneous macroscopic variable —the inQaton scalar

2+2Rea —b

y'2Rea —b+ +2Rea+ b

(3.14)

Thus the preferred basis of the Gaussian wave function
of two continuous parameters consists of the complete
set of the generalized harmonic-oscillator wave functions.
They describe the tower of Everett worlds with decreas-
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ing probability weights (3.12) and the growing quantum
dispersions centered around the point x:

[(")- —= (ml(" ) ln&]

(p„~(x —x) ~y„) = (2n+ 1)Ren. (3.15) (&i) = (Hi)
i(mlT»[I' I@)(@I]In)i

jpm pn
We can notice that in the case of real parameters a and

xo the expressions for n and g will be much simpler [16]: m n (4 4)

Q2
2

4
(3.16)

IV. THE DYNAMICS OF THE PREFERRED
BASIS

The quantum state of the system ~@) = ~ill(t)) is

subject to the Schrodinger evolution

'~, l+(t)) = Hl~(t)),. 6
(4.1)

which makes the basis ~m)i~iil = ~m(t))i~iil also evolve
with time. Now take into account that the matrices
i(m(to) ~n(t))i and ii(m(to) ~n(t))ii are unitary in view of
the orthonormality conditions (2.10). This means that
the evolution of the preferred. -basis vectors of both sub-
systems is unitary and is governed by some effective Her-
mitian Hamiltonians 'Ry and A.yy.

. 0
(t))i = &ilm(t))iBt

l. /8
'Ri = i ) ~

—~m(t))i i(m(t)
~ ~

.
(Bt r

(4.2)

[Equations for ~m(t))ii and 'Rii have the same form. ] To
derive 'Ry and 'Ryy note that the total Hamiltonian H
contains the coupling V between subsystems I and II to-
gether with the proper Hamiltonians Hy and Hyy of these
subsystems:

II = Ill+arr+ V (4.3)

One can show that in virtue of (4.1) the nondiagonal
elements of 'Ry are given by

All this is directly applicable to quantum cosmology.
As was shown in Refs. [67—70] the one-loop corrected
wave function of the Universe in the Hartle-Hawking "no-
boundary" prescription [2,3] can be normalizable depend-
ing on the field content of the model. Moreover, it may
have a good inflationary peak at some reasonable value of
the homogeneous inflaton scalar field. Because of these
properties the proposed method can be applied to the
quantum Universe for the purpose of its many-worlds
analysis.

Analogous equations for 'Rpp can be obtained by sub-
stituting in Eq. (4.4) the subscript II instead of I and
vice versa. The diagonal elements of 'R~~~~~ determine
the phase behavior of ~n)i~iil and, consequently, they are
not unique, because only the sum of phases of c„, ~n)i,
and ~n)ii is fixed in the decomposition (2.9), two of them
being completely arbitrary. To 6x this choice it is natu-
ral, for example, to require

(Ri) = (Hi), ('Rii) = (Hii) (4 5)

whence it follows that

. 19c
i " =i (n~ii(n~V~@). (4.6)

Equations (4.4) and (4.5) completely determine the Her-
mitian Hamiltonians 'Ry and 'Ryy which thus turn out to
be complicated functionals not only of the fundamental
Hamiltonian H, but also of the quantum state

~
@) of the

system.
The most unexpected conclusion &om the unitary dy-

namics of the proposed basis is, however, the following.
Since the observer (identified, for example, with the sub-
system I) observes and measures only one relative state
of the second subsystem II in his many-worlds branch,
he finds that this state undergoes a unitary evolution of
the above type. This is in spite of the impure nature
of this open subsystem II described by a nonfactorizable
density matrix. Is this an explanation of why we see
the surrounding Universe in unitary evolution despite the
enormous amount of uncontrollable interaction between
our apparatuses and the whole world? Perhaps this is one
more argument in favor of our proposal for the preferred
basis.

The second conclusion is that the observer studying
the dynamics of his relative state measures the effec-
tive Hamiltonian 'RII and not the fundamental Hamil-
tonian H of the total system. This apparently means
that research into nature at the most fundamental levels
requires additional efforts in reconstructing the funda-
mental dynamical laws on the grounds of the observable
reality. To what extent such a reconstruction of H is
possible is an open question.

It is worth noticing also that according to our defini-
tion of different branches their probability weights are
changing with time due to evolution of c [see Eq. (4.6)].
Is it possible to observe this change of the probability
weights experimentally'? In other words, this question
could be formulated in the following form: is it possi-
ble to "live" in one branch without feeling the existence
of other branches in the case when the weights of these
branches are changing? Moreover, an additional question
arises: is the rate of change of these probability weights
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important &om the viewpoint of the self-identi6cation
of the observer with one of the branches in the preferred
basis? One can choose two difFerent answers to this ques-
tion. First, we can postulate that after the splitting of
the wave function into branches the observer (or, to be
more precise one of the "incarnations" of the observer)
who identifies himself with one of them cannot perceive
the presence of other Everett worlds and consequently
cannot find the change of c„and p„. Second, we can
consider (see Refs. [17,18]) the smallness of

~

"&~"
~

as the
condition of good de6niteness of difFerent branches in our
basis and treat the rapid changes of probability weights
of branches as an indication of their inseparability.

We are inclined to choose the 6rst answer to the above
question, but at the same time we are ready to recognize
that we do not see decisive arguments in favor of the first
or the second approach to the dynamics of the probabil-
ity weights. Maybe the resolution of this question can be
found along another line of reasoning connected with the
discussion of the most adequate choice of splitting a sys-
tem into subsystems, but this question will be considered
elsewhere [71).

bx 1 lbp 1

a (5.2)

where

) 1/2

me) (5.3)

@(x) = N exp( —nx + Px), (5.4)

where N is a normalization factor. The dispersions of x
and p are

1

/2Ren
(5.5)

is the amplitude of the ground-state oscillations of a har-
monic oscillator (or for a more complicated system t is
some length characterizing the quantum-size properties
of this system).

Let us now consider the Gaussian wave packet in one-
dimensional con6guration space:

V. THE PROBLEM OF CLASSICALITY AND
SIMPLE MODELS

6]n]
/2Ren

(5.6)

We have mentioned in the Introduction that our ap-
proach to the notion of classicality consists in studying
the properties of individual quantum states. Thus we
take our preferred-basis states and compare them with
some standard quantum states modeling the classical
ones. We shall consider wave functions depending on the
continuous variables studied in Sec. III and take coherent
states as quantum states, simulating the classical prop-
erties. We have already mentioned in the Introduction
that such a treatment of coherent states is to some ex-
tent tentative. However, it seems to us promising enough
because the notion of the coherent state manifested its
possibility to be generalized to more complicated situa-
tions than that of the harmonic oscillator [58—61]. (Here,
it is necessary to stress that these generalized coherent
states will not always follow classical trajectories [72].)

The notion of coherent states was introduced by
Glauber [73] to study the properties of electromagnetic
6eld oscillators. These states coincide with Gaussian
wave packets in con6guration space, which were also used
by Schrodinger [57] at the dawn of quantum mechanics to
study the connection between the quantum and classical
descriptions.

What features distinguish the coherent states from
other Gaussian wave packets? First, for the coherent
states the product of dispersions of coordinate and mo-
mentum is minimal,

Thus the product of these uncertainties (dispersions) is

hfn]
2Reo.

(5.7)

It is not difficult to see that (5.7) has the minimal value

2 at real o.. To provide the coherence of the state with
real a it is necessary also to require that this o. has a
special value, which can be obtained by comparison of
(5.2) and (5.5):

(5.8)

h/n/
orlop =

2Reo.

/Imn/r— ) (5 9)

At real n different &om (5.8) we have the so-called
squeezed states [74,75] because the dispersion for the co-
ordinate or momentum can be very small, while the dis-
persion of the conjugated variable is very large. In the
case of complex o, we have the so-called correlated states
[76] for which we have instead of minimization of the
product of uncertainties the equality (5.7) which can be
rewritten in the form

h
bxbp = —,

2
' (5.1)

where r is a correlation coefBcient which can generally
be represented as

(5.1O)

and, secondly, these uncertainties expressed in terms of
dimensionless values are given by

ohio~

where (A) denotes the quantum average of the opera-
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1 f x'
4(x, y, t) = exp ~—

+~op ( 2o2
y2

(5.11)

For the Hamiltonian V = kxy we can calculate dynam-
ically evolving wave function 4(x, y, t) and then obtain
density matrices pz(x, x') and pzz(y, y') of the form (3.8)
with time-dependent parameters a and b. According to
Eqs. (3.11) and (3.13) we get the quantum dispersions

It is interesting to mention here that, for example, in the
hydrogen atom, it is the lowest modes that are very nonclassi-
cal and the highly excited modes with the high order Hermite
polynomials are regarded as approximately classical. Thus
the picture appears to contradict our notion of classicality.
The point is, however, that states of excited electrons are not
classical from our point of view because their dispersions are
very big. When people speak about the classicality of exited
levels of the atom they mean that the distances between these
levels become smaller, the spectrum becomes almost continu-
ous, and electromagnetic radiation can be described in terms
of classical electrodynamics. To translate such a notion of
classicality into our language it is necessary to consider the
whole system which consists of electrons, photons, and nuclei
and to invent criteria connecting dispersions of different par-
ticles including ultrarelativistic ones. Apparently, it is a very
diKcult task.

tor A. The relation (5.9) represents a generalization
of the Heisenberg uncertainty relation and is called the
Schrodinger uncertainty relation [77].

Thus, in studying the classical properties of quantum
states we have to compare them with the coherent quan-
tum states which represent Gaussian wave packets with
certain real coefBcients in the quadratic form of the ex-
ponential.

Now returning to the tower of Everett worlds consid-
ered in Sec. III we can say that only one of them corre-
sponding to the Gaussian wave packet without Hermite
polynomial has the chance to be a classical world. All
other worlds described by higher oscillator wave func-
tions by no means can be treated as classical. However,
this fact should not confuse us, because for the explana-
tion of the classical properties in our world it is enough
to have at least one branch in the wave function of the
Universe which possesses good classical properties. It is
necessary to stress that the true wave function of the
Universe is much more complex than all our models and
due to this complexity can have a lot of diferent classical
branches.

The question of special interest is the study of the ten-
dencies in the dynamical behavior of the preferred basis
for simple model systems. Here we investigate toy mod-
els of two coupled subsystems which show that both the
decrease and growth of quantum uncertainty can take
place depending on their interaction Hamiltonian V (for
simplicity, we disregard their free Hamiltonians, which
corresponds to the case of two coupled particles of very
large masses).

Consider the system with two observables x and y,
having as an initial quantum state the Gaussian packet

(I + k2t202) 2)1/4 '

(1+ A, t2a2A )z&4' (5.12)

tending for large times to zero (here we put h = 1).
However, the decrease of the coordinate widths is ac-
complished by the infinite growth of momentum disper-
sions O„and o„ inverse to a~ and 0„. Therefore the
interaction V = kxy does not make the subsystems more
classical.

Consider now the binomial interaction containing both
pairs of canonical operators:

& = ~(xp + up ). (5.13)

(Remeznber that the Hamiltonian of the form xp& was
introduced by von Neumann [21] for simulating the mea-
sureznent processes in quantum mechanics. ) In this case
all the dispersions

(A sinh et+ cr2 cosh et)
(o.2 sinh et + A2 cosh et r

and oy =
2 (the latter equals o with interchanged 020'p

and A) tend for large tiznes to finite values and, moreover,
become equal for both correlating subsystems o~ = 0„=
Qo A, t -+ oo. This is an example when a sharply peaked
state of one subsystem (say y) dynamically reduces the
initially large dispersion o )& A of its counterpart x to
the value go% (( 0 and thus renders it more classical
(certainly at the price of its own quantum spreading).

Thus we see that the classical properties of the pre-
ferred basis states are very sensitive to the choice of the
interaction Hamiltonian and the emergence of such prop-
erties in the process of dynamical evolution depends cru-
cially on the structure of the initial wave function and the
structure of the interaction as well. In the next section
we shall consider a more complicated toy model which
will give us the opportunity to learn a number of new
things concerning classical behavior in the &amework of
the many-worlds interpretation.

VI. MORE COMPLICATED TOY MODEL

I ~ + 'jj

2m 2M
(6.2)

We consider the wave function depending on two
continuous variables which has the following form at the
initial moment of time t = 0:

1 ( x' . y' l
4'(x, z1, 0) = exp

~

— +ipx —
~

. (6.1)»'r
The evolution of this wave function is governed by the
Hamiltonian
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2 2

including &ee Hamiltonians 2 and 2~ together with
the von Neumann —type interaction term kxpy which cor-
responds to the measurement of the coordinate x by the
device y [21].

The evolution operator e '™can be factorized into
the product of the exponents of monomial operators due
to the termination of the Campbell-Hausdorf series [78]:

exp(A) exp(B) = + exp
~

A + B + —[A, B]
2

+ [[A, B—],B] + —[A, [A, B]]

erst one is a we11-known displacement for which

e &- f (x) = f (x + a). (6 8)

We also have to calculate the result of acting by the op-
8

~ b 2
erator e ~ ' on the function e

(
e a-'eb* +' = dnb

~

n — e e +'
Bx

dP iP(~ —
a) an'+Su'+cx

2'
dp ipcp+ace +b(p:—ip) +c(x—ip)

2K

1 f x2b+ cx + ac2 )
gi 4ba q 1 —4ba

exp
~ ~

. (6.9)

+higher commutators (6.3) Here we used the formula (6.8) and the integral repre-
sentation for the b-function:

It is not difBcult to verify that in the case when

I'
A= —it

~(2m 2M)
(6 4)

8(a) = — dPe'P2'
Thus, using the formulas (6.8) and (6.10) we have

4(x, y, t) = exp —(—Ax —By + Cxy
1 1 2 2

B = —itkxp„ (6.5) (6.10)

only commutators [A, B] and [[A, B],B] have nonzero
values while [A, [A, B]] and the higher-order commuta-
tors in (6.3) are equal to zero. Thus using the Campbell-
Hausdorf formula (6.3) we have

2 2

exp —i t + exp —itkxp„p~ py
2m 2M

where

(6.ii)

( 1 1 t' it'I'
D = 1+it + ——

t4k'
12m2Q2b"

2 2

= exp —it + + kxpy
px py
2m 2M

it kp~py &t k py+
2m 12m

(6.6)

1 ( it t Q $2 its@2)
+3 (6.12)

After some calculations we can rewrite Eq. (6.6) in a form
convenient for our purposes

B=
i
1+1 it

2b' q mP ) ' (6.i3)

p' p'
exp( etrr) = exp (

—a —" + " + kxpx
2m 2M
2 2

= exp —it exp —it
it3k2p2

x exp " exp —atkxpy
3m

x exp (6.7)

tk it2k
$2 2 $2~2'

pt pk2t3
MP2 m/2 '

pt2k
2'

(6.i4)

(6.15)

(6.i6)

Now to calculate @(x,y, t) = e "~4(x,y, 0) we must
act by operator (6.7) on the initial wave function (6.1).
Taking into account that p~ = —i and py = —i8~ y Qy
we can reduce the calculation of 4(x, y, t) to a set of

g 82
consecutive operations of two kinds: e & and e ~ ' . The

p't (G = i+-
2m g Mb' 12mb')

Substituting (6.10) into (3.2) we can obtain

(6.i7)
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p(z, z', t) = N exp( —az —a*z' + bzz'

+cz + c'z + d), (6.18)

E CD'E
C = —+D BD*+B*D' (6.22)

where

1

~~Ah+B+ B*

Aa= ——
D

CC*
2(BD* + B'D) '

C2D*
4D(BD' + B*D) '

(6.19)

(6.20)

(6.21)

G G* E2DD*d= —+ —+D D* BD* + B*D (6.23)

The expression for p(y, y', t) can be obtained from (6.18)—
(6.23) by substituting B instead of A and vice versa and
F instead of E and vice versa.

Now, having the explicit expressions for p(z, z', t) and
p(y, y', t), we can write down the preferred-basis vectors
in the way described in Sec. III. We are interested in the
time dependence of dispersions of the wave packets in
our preferred basis. Substituting the expressions (6.20),
(6.21), and (6.11)—(6.14) into (3.11) we have

2t2 k2t4 t4 k2t~ k4t8+ m2E4 + 2m2&2/2 + m4+8 + 2m4+6$2 + 16m A 8
A~k2t2 k~t41+ g2 + 4

(6.24)

and

t2 k2&2t2 k2t4 k2t4 k4t6+ M& $4 + $& + 4m2 +2/& 3Mm$4 + 36m& $4

b,~k~t2 k~t41+ 82 + 4m2b2&2

(6.25)

We see that o and a„have a rather complicated time
dependence. Both of them tend to infinity at t + oo
(spreading of the wave packets) but at the beginxung of
the time evolution it is possible to observe the shrinkage
of wave packets in the configuration space of x provided
k A 2,&, . At some stage of evolution the squeezing
of o„ is also possible but under very special fine tuned
conditions and only at a certain stage of the time de-
velopment of the system. Thus the classicality, defined
as a definite property of a wave packet (the vicinity of
the standard coherent state), is not only a phenoxnenon
which is inherent to some special branches of the wave
function but also a very unstable phenomenon. It is pos-
sible to say that at least in our model classicality can
arise as rather specific properties which are only typi-
cal for certain intermediate stages of time evolution. We
must confess that such a treatment of classicality con-
tradicts the dominant opinion that the classical behavior

K
Imo! = (6.26)

where

I

is the final goal of dynamical evolution. However, it is
worth mentioning Ref. [50], where classical properties of
the Universe were investigated in the framework of the
decoherence approach and the decoherence length was
shown to oscillate in time in some circumstances. This
phenomenon can also be treated as a manifestation of the
nontrivial dependence of classical properties on time.

It is interesting to investigate also the behavior of the
correlation coefficient r (5.10) which is responsible for
the deviation of the product of dispersions o o„&om its
minimal value [see formulas (5.9)]. First of all, we xnust
calculate Ima. Substituting formulas (6.20) and (6.11)—
(6.14) into (3.11) we have

4t 2 1 t2 2t2 t 13k t 2k t ilk t 2k tK=-
8 Mb2& mQ M mQ $4 Mm $ Q m3& 6m& j Mb 1 2Mm2& b 3mb+ + + + + + +

13k t k2t 4k t
M2m3 +884 6m 4662 2M2m+2$6 3M2m3 +8/6

5k4t' k't'
4m3 Q4($4

+ +

and

k4t8 5k't' k't' k2t6
+ +144m5+8$4 16Mm4+6$6 gm3+2$2 4m4M+8$4

k6t10

288m L b
(6.27)
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t2

$2 M2$4
3k't'

4m4 +6/2
k4t10

+ 144ms 4s 84

2t2 3k2t4 2k2t 2t4 t' 5k't'
+ + + + + + +
k4t' t6 35k4t8 k't' k4t' k2t8

9m2b M m A8b 144m L b 6Mm A8b 6Mm3L2b 4M m Q b
—+ — —+ + + +

k4t10 k6t10 k6t12
+ 24Mm34 b 36m L b6 576m64 b

+ + (6.2S)

We can see that at t = 0 Imo. = 0; then, at small t,

Imn(t) =
I

+
I

)0.f 1 1
(6.29)

In the limit t + oo, we have

Imn(t) = ——( 0
t (6.30)

and Imo. tends to zero from below. Thus, at some in-
termediate point t*, Ima(t*) = 0 and the product of
uncertainties is minimal. It follows from Eq. (6.26) that,
at t M oo,

mb
Reo. (t) = (6.31)

Comparing (6.31) and (6.30) it is easy to see that at
t -+ oo Ren(t) decreases faster than lmo;. Hence, ac-
cording to (5.9) r -+ 1 and the product of uncertainties
grows to infinity o. o.„—+ oo. Thus we see that a good
classical behavior in our model can be observed at some
intermediate stage of time evolution while at t —+ oo we
have the simultaneous spreading of the wave packet in
configuration space and in momentum space as well.

VII. QU'ANTU'M-TH. AJECTOKIES APPROACH
TO QUANTUM MECHANICS AND

PKEFEB.&ED BASIS

In recent years the quantum-histories approach to the
interpretation of quantum mechanics became very pop-
ular [23,24,2S—33]. In the framework of this approach
one considers the quantum trajectories or histories rather
than quantum states at fixed moments of time. The
probability weights are ascribed to these histories and
instead of density matrices one can consider the density
functionals on these histories and investigate their deco-
herence properties. 'We shall try in this section to investi-
gate the connection between the preferred-basis approach
and quantum histories. For this purpose we shall use the
approach of quantum trajectories recently proposed by
Griffiths [33). In the framework of this approach one con-
siders the quantum trajectories as objects belonging to
the Hilbert space of quantum states in contrast to quan-
tum histories connected with the usual classical trajecto-
ries in spacetime. Thus it is convenient enough to analyze
quantum trajectories compared to the preferred-basis ele-
ments at difFerent moments of time. Let us brieBy review
the definition of quantum trajectories from Ref. [33].

We consider the time-dependent wave function

I+(t)) = &(t) I+(0))

Then we take a set of times t1 ( t2 ( . . ( t„and for
each moment choose an orthonormal basis ( I4 )j of the
Hilbert space, where o. enumerates the basis vectors. One
can construct the trajectory graph in which all the basis
vectors at a particular moment of time are represented
by nodes placed in a vertical column, and lines are drawn
betweeii the nodes (j,n) and (j + 1,n') if and only if

(@;+il&(4+i)—4) I@,) (7.1)

is not zero. A path on this graph is a succession of con-
secutive nodes (j, n), (j + 1, o.&+i), . . . , (j+ k, n~+i, ) con-
nected by lines. Provided any pair of nodes at different
times are connected by at most one path, we shall say
that the graph, or equivalently the choice of basis, sat-
isfies the noninterference condition and individual paths
will be called quantum trajectories [33]. A single quan-
tum trajectory may be regarded as a generalization to a
sequence of times of the notion of a pure quantum state
at a single time: it gives the most precise description
which quantum mechanics can provide about the state
of the system at the chosen set of times.

I et us choose as a basis (I4 ) ) at any time of our
set ti ( t2 ( . . ( t our preferred biorthogonal basis
which corresponds to some splitting of the system un-
der consideration into subsystems. What is the situation
with the fulfillment of the noninterference condition in-
troduced above [33] in this case? Generally, one can say
that the noninterference is a property of the graph and
depends on the choice of the basis on one hand and on
the choice of the succession of times on the other. In-
creasing the intervals between chosen moments of time,
we can turn a graph not satisfying the noninterference
condition into a satisfying one. We can also make more
"coarse grained" our subdivision of the system into sub-
systems and hence decrease the number of diH'erent basis
vectors (we mean here the basis vectors having nonzero
probability weights). Such a simplification of the basis
also can help us to get rid of the paths breaking the non-
interference condition.

Now, we shall discuss these questions in more detail.
To begin with we consider two extremal cases. First, if
we have only two moments of time, initial t1 and final t2,
the noninterference condition is satisfied automatically.
Second, if we consider our system as a whole without
splitting it into subsystems, our preferred basis at every
moment consists of the quantum state of the system itself
and an arbitrary set of other orthonormal states guar-
anteeing the completeness (as was explained in Sec. II).
Thus we have only one quantum path in our graph and it
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does not depend on the succession of times (it could even
be continuous). Thus the trivial set of times or triviality
(purity) of the quantum structure automatically lead to
the noninterference condition.

Let us examine now a more general situation when
there are some branches, elements of the preferred ba-
sis, and the number of moments of time exceeds 2. If
the weights of these branches are constant in time [see
Eq. (4.8)] then the only nonvanishing matrix elements
(7.1) are those for which ~4-+z) and ~C ) represent the
same branch at diferent times. Thus in this case the
noninterference condition is satisfied independently of
the chosen succession of times. However, if the coeK-
cients c do depend on time [which is equivalent to the
fact that the effective Hamiltonians (4.2) are nontrivial],
then there are nonzero matrix elements (7.1) between dif-
ferent branches of the preferred biorthogonal basis and
the noninterference condition is violated. One can re-
store the noninterference condition in two diferent ways.
First, we can choose a more coarse-grained succession
of times in such a way that we use only those interme-
diate time moments tI, for which the weight coeKcients
are again constant. Then the noninterference condition
will be restored. Second, one can choose a more coarse-
grained subdivision of the system into subsystems and
correspondingly lower the number of diferent branches
in the decomposition of the wave function. If we man-
age to d.o it in such a manner that the interaction of
different; branches is excluded. , then all "dangerous" ma-
trix elements (7.1) will disappear and the noninterference
condition will be restored. Thus one can say that there is
some kind of complementarity between the structure of
the system and the structure of the chosen set of times.
We can provide the satisfaction of the noninterference
condition by coarse-graining either the structure of the
system or the structure of time parametrization of the
quantum trajectory.

VIII. CONCLUSION

We studied the properties of the preferred. basis in
quantum mechanics and analyzed the properties of the
elements of this basis from the point of view of their clas-
sicality. Under classicality we understand the closeness of
the quantum states under consideration to some "yard-
stick" states which are treated as the quantum coun-
terparts of classical states. As a model of such "yard-
stick" states we choose coherent states. As one knows,
these states defined for harmonic-oscillator-type systems
[57,73] can be extended to more complicated cases [58—
62].

The analysis of some models shows that classicality
is a rather subtle phenomenon. First, it is typical not
for all Everett worlds but only for a part of them; sec-
ondly, it depends crucially on the initial state of the sys-
tem (Universe) and on the choice of interaction Hamil-
tonian; thirdly, the classicality can appear in some cases
as a temporary phenomenon which exists only at some
stages of the dynamical evolution. This last conclusion is,
probably, the most unexpected one and contradicts the

usual idea that classicalization is the final goal of evolu-
tion. The above assumptions seem to be counterintuitive
because they contradict our everyday experience, which
confirms that classicality is a quite robust phenomenon at
least in the realm of macroscopic phenomena [the excep-
tions such as superconducting quantum interface devices
(SQUID'S) or magnetic domain walls and grains at low
temperature are not typical]. Moreover, the implementa-
tion of the biorthogonal basis seems also counter-intuitive
because this basis in many cases is unstable against time
evolution. What can we say in defense of our approach'
The main ad.vantage of the biorthogonal basis is its con-
sistently quantum origin. In contrast with the Copen-
hagen paradigm of quantum mechanics where classical
and. quantum theory are treated on an equal footing, the
very spirit of the Everett interpretation consists in the be-
lief that the quantum description of the world is primary
and the classical physics is secondary. In accordance with
such a viewpoint it is not so surprising that the quantum
theory can allow various types of behavior including those
having nothing to do with classical physics. It was our
task here to try to understand in what conditions classical
behavior can be extracted from the abundance of difFer-
ent quantum possibilities. Concerning the question why
we see only classical phenomena in the world surround-
ing us, in spite of its fundamentally quantum character
and the quantum origin of our Universe as a whole, one
can try a tentative answer resorting to the famous an-
thropic principle [79] which brie8y can be formulated in
the following way: we see the worM as it stands because
otherwise we could not have existed. Naturally, this an-
thropic principle is to some extent a speculative idea and
can be used for justifying almost anything; however, we
would like to say that the combination of this vague prin-
ciple with a quantitative algorithm for the preferred basis
can endow this principle with a constructive content.

It seems to us that the classical world can be described
by the comparatively small part of the branches in the
wave function of the Universe having a tiny weight in
the corresponding Hilbert space. We can juxtapose this
phenomenon with that habitual fact that biological life
occupies a very small part of our usual three-dimensional
space. The most important thing is not the volume of the
space occupied by life in the Universe or by the classical
realm in Hilbert space but the very possibility for their
existence.
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