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Quantum state diffusion, density matrix diagonalization, and decoherent histories:

A model

Jonathan Halliwell and Andreas Zoupas
Theory Group, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 21 March 1995)

We analyze the quantum evolution of a particle moving in a potential in interaction with an
environment of harmonic oscillators in a thermal state, using the quantum diffusion (QSD) picture
of Gisin and Percival. The QSD picture exploits a mathematical connection between the usual
Makovian master equation for the evolution of the density operator and a class of stochastic nonlinear
Schrédinger equations (Ito equation) for a pure state |1), and appears to supply a good description
of individual systems and processes. We find approximate stationary solutions to the Ito equation
(exact, for the case of quadratic potentials). The solutions are Gaussians, localized around a point
in phase space undergoing classical Brownian motion. We show, for quadratic potentials, that every
initial state approaches these stationary solutions in the long time limit. We recover the density
operator corresponding to these solutions, and thus show, for this particular model, that the QSD
picture effectively supplies a prescription for approximately diagonalizing the density operator in
a basis of phase space localized states. We show that the rate of localization is related to the
decoherence time, and also to the time scale on which thermal and quantum fluctuations become
comparable. We use these results to exemplify the general connection between the QSD picture
and the decoherent histories approach to quantum mechanics, discussed previously by Diési, Gisin,
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I. INTRODUCTION

One of the basic premises of quantum theory is that the
quantum state of a genuinely closed and isolated system
evolves according to the Schrédinger equation. Although
some systems of interest are approximately closed and
isolated, most of the systems we encounter are not, as
a result of either purposeful intervention by measuring
devices, or unavoidable interaction with the immediate
environment. Such systems are said to be open, and are
often studied in quantum optics [1], quantum measure-
ment theory [2,3], and in connection with decoherence
and emergent classicality [4-6].

An open quantum system is in essence a distinguished
subsystem of a large, closed and isolated system in which
there is a natural division into subsystem and environ-
ment. Although such divisions of the world cannot be
explicitly identified in general, they do exist in a wide
variety of situations of both experimental and theoret-
ical interest. For example, in quantum optics, the dis-
tinguished subsystem is an atom or small collection of
atoms, and the environment is the electromagnetic fields
in interaction with it. We will in this paper be primarily
concerned with that pradigm of open quantum systems,
the quantum Brownian motion model, which consists of
a large particle coupled to a bath of harmonic oscillators
in a thermal state [7,8].

If the state of the total quantum system is described by
a density operator piotal then the state p of the subsys-
tem is obtained by tracing it over the environment. An
evolution equation for p (a master equation) may then
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be derived. This is in principle obtained quite simply
by tracing the unitary evolution equation for piota; over
the environment. In practice, this is hard to carry out
with any degree of generality, and has been carried out
in detail only in specific examples (see Ref. [9] for exam-
ple). As an alternative, one can ask for the most general
evolution equation for p that preserves density operator
properties: hermiticity, unit trace, and positivity. These
conditions alone do not allow one to say very much about
the form of the equation, but if one makes the additional
assumption that the evolution is Markovian, then the
master equation must take the Lindblad form [10]

d i 1<
B = —2[Hpl = 3 > ({LIL;,p} —2LypL}) . (11)
j=1

Here, H is the Hamiltonian of the open system in the ab-
sence of the environment (sometimes modified by terms
depending on the L;) and the n operators L; model the
effects of the environment. For example, in the quantum
Brownian motion model, there is a single non-Hermitian
L which is a linear combination of position and momen-
tum operators. The Markovian assumption is not always
valid, but is known to be a good approximation for a
wide variety of interesting physical situations, e.g., for
the quantum Brownian motion model in a high temper-
ature environment.

Density operators evolving according to a master equa-
tion (not always of precisely the above form) have
been the subject of a number of studies concerned with
decoherence and the emergence of classical behavior
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[6,9,11-16]. In particular models, it has been shown that
the density operator can become approximately diagonal
in some basis (sometimes more than one), indicating that
interference between the states in that basis is destroyed.
This suggests that one has some right to regard the dy-
namical variable corresponding to the diagonalizing basis
as “definite.” One may then ask for the probabilities of
successive values of these variables, and whether those
probabilities are peaked about approximately classical
evolution.

This approach to emergent classicality has considerable
intuitive appeal, but there are at least two ways in which
it could be made more precise.

First of all, the notion of diagonality of the density op-
erator is too vague. In the quantum Brownian motion
model, for example, one expects both position and mo-
mentum to become reasonably definite. The argument as
to how this comes about often goes as follows [13]: The
coupling to the environment is typically through posi-
tion, and the density operator tends to become approxi-
mately diagonal in position very quickly. On longer time
scales, the Hamiltonian part of the evolution begins to
contribute, and the basis of diagonalization is rotated in
phase space. As a result of this interplay between the
Hamiltonian and the interaction with the environment,
the density operator therefore becomes approximately di-
agonal in a basis of states that are localized in phase
space, such as coherent states. It is, however, difficult to
see this precisely and with any degree of generality. What
is required is an explicit way of exhibiting the diagonality
in phase space localized states.

' 1
|dyp) = —%qulz)dt + 5 D (ALDL; - LIL; -
J

for the normalized state vector |¢). Here, the d¢; are
independent complex differential random variables rep-
resenting a complex Wiener process. Their linear and
quadratic means are

MIdE;dEy) = drdt , M[dE;déx] =0, M[d{;]=0.
(1.4)

The master equation (1.1) is invariant under uni-
tary transformations of the Lindblad operator, L; —
> & Uik Li, where Uj;, are the components of a unitary
matrix [17]. Physics therefore corresponds to the equiv-
alence class of master equations equivalent under these
transformations. Correspondingly, the Ito equation (1.3)
is invariant under the same unitary transformations on
the L;’s, supplemented by similar transformations on the
noise terms, and thus there is an equivalence class of Ito
equations also.

The precise mathematical relation between (1.3) and
(1.1) is that the class of Ito equations (1.3) is equiva-
lent to the class of maser equations (1.1). Indeed, this

(LIX(L;))[)dt + Z(Lj — (L;))[¥)d&;(t)
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Second, the way in which one attempts to see the emer-
gence of classical behavior for the variables which have
become definite is to consider the evolution of states ini-
tially localized in phase space. Such states will tend to
follow approximately classical trajectories in phase space,
with spreading due to quantum and environmentally-
induced fluctuations. The emergence of approximately
classical trajectories is, however, much harder to see for
arbitrary initial states, e.g., for superpositions of phase
space localized states. The problem, in essence, is that
the density operator does not in general correspond to
the behavior of an individual trajectory, but to an en-
semble. The density operator for an arbitrary initial state
will be very spread out in phase space, and it is not at
all clear that it corresponds to the intuitive expectation
of a statistical mixture of classical trajectories. Clearly
what would be very useful in this context is an alterna-
tive description of open systems that could give a clearer
physical picture of the behavior of an individual system,
rather than ensembles.

A recently developed picture of open systems that may
be the required precision tool is the quantum state dif-
fusion picture, introduced by Gisin and Percival [17-19].
In this picture, the density operator p satisfying (1.1)
is regarded as a mean over a distribution of pure state
density operators,

p=Mp)(¥|,

where M denotes the mean (defined below), with the
pure states evolving according to the nonlinear stochastic
Langevin-Ito equation,

(1.2)

(1.3)

connection supplies an alternative algorithm for numer-
ical solution [19]. However, the strength of this picture
is that solutions to (1.3) supply an intuitively appealing
picture of the expected behavior of individual systems,
and have been seen to correspond very closely to indi-
vidual runs of actual laboratory experiments in quantum
optics [20].

The connection between (1.1) and (1.3) is closely anal-
ogous to the connection between the Fokker-Planck equa-
tion and the Langevin equation in the classical descrip-
tion of Brownian motion. There, one has two completely
equivalent mathematical descriptions with very different
pictures. The Fokker-Planck equation describes an en-
semble of systems evolving deterministically, whilst the
Langevin equation describes an individual system evolv-
ing stochastically.

The quantum state diffusion picture has much in com-
mon mathematically with a variety of recent attempts
to modify quantum mechanics at a fundamental level
[21-24]. In such attempts, equations of the form (1.3),
or similar, are proposed. The difference between quan-
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tum state diffusion (QSD) and such alternative formula-
tions is that QSD is regarded as a phenomenological pic-
ture, appropriate only under certain conditions, whereas
the alternative formulation are taken to be fundamental.
Equations (1.1) and (1.3) also arise in descriptions of
continuous measurement in standard quantum mechan-
ics [25,26]. This paper is primarily concerned with the
mathematical properties of Eq. (1.3), hence the results
will be applicable to all of these situations.

Solutions to the Ito equation often have the feature
that they settle down to solutions of rather simple be-
havior after a period of time. This general pattern of
behavior is indicated by numerical solutions [19], along
with a number of localization theorems, which show that,
unlike evolution according to the master equation, the
dispersion of certain operators decreases as time evolves
[18,27]. That is, certain types of variables become more
“definite” as time evolves.

A particularly useful example for our purposes was
given by Diési [28], who considered the Ito equation (1.3)
with L = az and H = p?/2m. (This is the quantum
Brownian motion model for the free particle neglecting
dissipation.) He showed that there exist stationary solu-
tions |¥pe) to the Ito equation that consist of Gaussian
wave packets tightly concentrated about a point in phase
space evolving according to the stochastic equations of
classical Brownian motion. This is a particularly appeal-
ing result. The solutions to the Ito equation correspond
very closely to macroscopic observations of an individual
particle interacting with an environment.

Given a set of localized phase space solutions |¥,,),
such as the Didsi solution, the density operator may be
reconstructed via (1.2). This, it may be shown, may be
written explicitly as

p= / dp daf (99 ) W pq) (Tl » (1.5)

where f(p,q,t) is a non-negative, normalized solution
to the Fokker-Planck equation corresponding to the
Langevin equation describing the Brownian motion of the
center of the stationary solutions.

The crucial point, now, is that the representation (1.5)
of the density operator provides the desired improve-
ments of the density operator program described above.
First, the stationary states |¥,,) are approximately or-
thogonal (for sufficiently distinct values of their centers,
P,q). Equation (1.5) therefore shows explicitly how the
density operator may achieve a form in which it is approx-
imately diagonal in a set of phase space localized states.
Secondly, each diagonal element corresponds to an indi-
vidual classical trajectory (with noise). This means that
the density operator might reasonably be interpreted as
corresponding to a statistical mixture of classical trajec-
tories.

The object of this paper is to demonstrate the above
statements in detail, for systems more general than the
case considered by Didsi. We will consider an open sys-
tem consisting of a particle moving in a potential V (z),
coupled to an environment described by Lindblad oper-
ators in (1.1) which are a linear combination of position
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and momentum operators. The detailed description of
the model is given in Sec. II.

We shall show, in Sec. III, that the Ito equation
(1.3) has stationary solutions consisting of Gaussian wave
packets concentrated about points in phase space which
undergo classical Brownian motion. These solutions are
exact for quadratic V(z). The solutions for general po-
tentials V(z) are approximate, and are valid as long as
the localization width is much smaller than the length
scale on which the potential varies.

We shall then show, in Sec. IV, that every initial state
tends towards one of the stationary solutions, for linear
systems. In Sec. V, we consider the rate of localization,
and show that it is related to the decoherence time, and
also to the time scale on which thermal and quantum
fluctuations become comparable.

In Sec. VI, we construct the density operator of the
form (1.5) explicitly, and discuss its properties.

Arguably the most comprehensive and fundamental
approach to the problem of emergent classicality in
quantum theory is the decoherent histories approach
[4,29-31]. In fact, in Ref. [32], it was argued that there
is a close connection between the quantum state diffu-
sion picture and the decoherent histories approach. In
Sec. VII, we use the above results to elaborate on this
connection.

We summarize and conclude in Sec. VIIIL.

II. THE MODEL

In this paper, we are concerned with systems described
by a master equation of the form (1.1) with a single non-
Hermitian operator linear in & and p:

L = ad +ibp (2.1)

where a and b are real constants. The unitary trans-
formations under which the master equation is invariant
reduce to a simple phase invariance, L — e**L. What
follows therefore applies also to L’s of the form (2.1)
multiplied by a phase. This form of L is sufficient to
describe the quantum Brownian motion model (see be-
low), but also includes the cases in which L is taken to
be a creation or annihilation operator.
The operator H in (1.1) is taken to be

~2

H= 21’_m + V(&) + ¢{&,p} = Ho + c{2,p} , (2.2

where c is a real constant. The master equation may then
be written

p= = g |Ho+ (o 3hab) (2.0).0] — iabls, (5,5
508,12, 6l] - 5015, [, ]

or, alternatively,

(2.3a)



p= — i[Hos (or lnab) (2.8).9] + i, . 2)]

pll - —bz[P (B, pl - (2.3b)

1
_5"'2[‘”’[
Hereafter, we take ¢ = %abﬁ. This ensures that the

Ehrenfest type result, Tr(pp) = % Tr(&p), holds.
The corresponding Ito equation is

@) =~ (Ho+ ghab(z. 5} ) )

—5[«12(5c —(2))* + *(p — (p))?
+2iab(& — (z)p) — hab]|y)dt

+a(@ — () +ib(p — (p))][¥)dE (24)

We are particularly interested in the quantum Brown-
ian motion model, for which the Lindblad operator is as
above, but with

b=(2D)1/2% , €= 1’7.

a= (2D)_1/2 , 5

(2.5)

Here, D = h?/(8m~kT), where v is the dissipation of
the environment and T is its temperature. The master
equation in this particular case may then be written

2T L2, 2 o1

(2.6)

p= —%[HO,P] - %7[5:, {pvﬁ}]

~snter Al -

This does not, in fact, completely agree with the master
equation given in a number of previous papers on quan-
tum Brownian motion. In particular, the master equa-
tion given by Caldeira and Leggett [7] does not involve
the term [p, [P, p]]. This difference is due to the fact the
above master equation, by design, respects the positivity
of the density operator, while the Caldeira-Leggett equa-
tion is known to violate it on short times scales [33]. This
difference is not important, since we expect the Marko-
vian approximation to hold only for high temperatures,
and in this case the extra term is negligible since its co-
efficient is proportional to T~1. (See Ref. [34] for further
discussion, and also Ref. [9] for the derivation of exact
master equations.)

Some information on the behavior of the solutions to
the Ito equation may be obtained by computing the time
evolution of the moments of £ and p, and this will be
useful in the following sections. For any operator G, the
time evolution of its expectation value in the state |)) is
given by

4(G) = (¥|G|dy) + (d¢|G|¢) + (dy|Gldy)

h([H G))dt — —(L*[L G] + (G, LY|L)dt
+o(Gt, LYd¢ + o(L, G)de* . (2.7)

Here, following Percival [27], we have introduced the no-
tation
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o(B,C) = ((B' - (B)*)(C - (C))) = (B'C) — (B)*(C)

(2.8)
for the correlation between two operators B,C in the
state [¢)).

Setting G equal to p and £ in this equation we obtain
the Langevin equations

dw) = Pt + 0@, Lyt + oL )", (29)
d(p) = —(V'(2))dt — 2hab(p)dt + o(p, L)d¢ + o (L, p)dE™ .

(2.10)

With the choice of parameters (2.5), and for quadratic
potentials, these equations describe classical Brownian
motion. For more general potentials, this is true only if
the state is sufficiently well localized in z for the approx-
imation (V'(£)) = V'((£)) to be valid (see below).

It is also of interest to compute the mean of the time
evolution of higher moments of £ and p, and these may
again be computed using (2.7). One finds

d(Azx)? r 2
M = _~—~+2hab(Az-) +2b2(Z—R)
—2a%(Az)? (2.11)
miBr)? _ _2<1<,sv'(@) +V'(#)p) — (p)(V’(a‘c»)
dt 2

2
—2hab(Ap)? + 2a? (hz - RZ) - 2b*(Ap)*

(2.12)

dR

ME=

~[aV' (@) - (&) (V' (@)] + B2S

—2a’R(Az)? — 262 R(Ap)? . (2.13)

Here, R is the symmetrized correlation between p and &:

ih

opw) + 5 = ol@p) -~ o -

(2.14)

R = 3lo(z,p) +o(p, )] =

Also, (Az)* denotes ((z — (z))2)?, and similarly for
(Ap)*.

To handle general potentials is too difficult except in
special cases, so approximations are required. Under
Schrédinger evolution in ordinary quantum mechanics in
a wide variety of potentials, there exist approximate solu-
tions consisting of localized Gaussian wave packets con-
centrated about a classical path [35]. These solutions are
possible because a sufficiently localized packet will only
“notice” the quadratic approximation to the potential in
the neighborhood of the wave packet’s center. The so-
lution breaks down after a period of time, however, as a
result of spreading of the wave packet.

Similar types of solution to the Ito equation (2.4) are
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possible, as we shall see in the next section. These have
the advantage that wave packets tend to localize with
time, rather than spread. We may therefore justifiably
approximate the potential-dependent terms in (2.12) and
(2.13) by their expansions about the mean values of z and
p.
To see this more explicitly, and to assist the estima-
tion of the validity of the approximation, introduce the
notation, Z = (z), p = (p), and then write the potential
as

V) =V(@)+ (z—z)V'(z) + %(m - z)*V"(z)

+W(z,z) ,

SBV'(8) + V/(@)5) — (B)(V'(2)) = RV"(2) + 2 (6W'(2) + W' (2)5) — (5)(W'(2)) -

The quadratic approximation to the potential will there-
fore be valid when the terms involving W may be ne-
glected in the above expressions. This will generally de-
pend on the particular state.

Taking the first few terms in the Taylor expansion of
W, Eq. (2.17) for example, implies that the higher order
terms may be neglected if

V@) > 5 (A2 V" ()] . (2.20)
This is clearly the condition that the width of the state
is much less than the length scale on which the poten-
tial varies, as one would intuitively expect. The higher

order terms in (2.18) and (2.19) also may be neglected if
essentially the same type of condition holds.

III. STATIONARY SOLUTIONS TO THE
LANGEVIN-ITO EQUATION

We now show how to find stationary solutions to the
Langevin-Ito equation, (2.4). It may be written

|dv) = a|y)dt + D|¢)dE , (3.1)
where
o=~ L H + b+ iab((x)p — (p)2)
~ 502 — (@) — 286~ (B)? (3.2)
o=L—(L). (3.3)

It is then convenient to rewrite the Ito equation in the
exponential form
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where
W(2,3) = Lo =2V (E) + (= D)VD 4
(2.16)

Then the potential-dependent terms in (2.10), (2.12), and
(2.13) become

(V'(8) =V'(@) + (W'(2)) , (2.17)

(@V'(2)) — (@) (V'(2)) = (Az)*V"(2) + ((z — 2)W'(2)) ,

(2.18)
(2.15)  and
|
(2.19)
-
%) + d) = exp(adt + 5d€)[) . (3.4)

The Diési stationary solution has the feature that un-
der time evolution, its shape is preserved and the only
things that change are (p) and (Z) (and possibly a phase)
[28]. Our approach to the search for stationary solutions
to our more general equation is to require that the solu-
tion have this property. We therefore look for solutions
to (3.1) satisfying the condition

)+ 1) = exp( ido) — phdle) + 10 )1¥) . (39

This is the statement that the state at time t + dt differs
from the state at time ¢ by nothing more than a phase,
and a shift of (p) and (z) along the classical Brownian
path described by (2.9), (2.10). Clearly (3.5) will be sat-
isfied for any states of the form

i, i,
) = exp( 3260 - 55 ) ) (36)
where |x) is an arbitrary fiducial state. These are gener-
alized coherent states [36].

We will solve (3.4) and (3.5) by first combining them
to yield

exp(idt + 3dE)|) = exp (%fcd(p) ~ Lpd(a) + ,ildqs) )
(3.7)

and later confirm that the solution satisfies (3.5).
Taking the operator on the right-hand side of (3.7) over

to the left-hand side, and combining the exponentials us-

ing the Baker-Campbell-Hausdorff formula, one obtains
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exp (-——-:z:d(p) + pd(a:) — —d¢> + 4dt + 0d€
— o 8, 0)dE + 505, 1d(e)dt ) ) = 1¥) - (3:)

Inserting the explicit expressions for d(p), d{x), i, and 0,
and writing d¢ = ¢odt + ¢1dE + ¢1dE* (where g is real),
this equation becomes

exp(Adt + Bd¢ + Cde*)|y) = |[¥) (3.9)
where
= -ﬁ[(V'(w)) + 2hab(p)|&
%@ + 2oL, I)~ 1o (3.10)
B = %[—a(p, L)g +o(z,L)p— 1]+ L — (L), (3.11)
= —-[——U(L,p)z +o(L,z)p — #7] - (8.12)

Expanding the exponential in (3.9), it follows that the
state must obey the three equations

Al"p) =0, (3.13)
Bly)=0, (3.14)
Cly)=0. (3.15)
Equation (3.14) and (3.15) will be satisfied if
¢1 = o(z, L){p) — o (p, L) () (3.16)
and if the wave function is
(@l) = N e (e = @) + j@)z)  (317)

for some constant (3, to be determined. The solution
satisfies

(al#) + (ald) = N exp(~p(z ~ (&) - d(e))?

bp(@rde)e) . (39)
This is clearly a generalized coherent state, and thus sat-
isfies Eq. (3.5).

An equation for B may be obtained by inserting (3.17)
in (3.13). On obtains the purely algebraic equation

4(b2 + %)52,@2 + 4habB — (a2 + %V”((@)) =0

(3.19)
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where we have neglected terms higher than quadratic in
the potential, as described in the previous section.

It is of course possible to write down the explicit solu-
tion for 3, but it will generally be more useful in what
follows to proceed differently. We have the uncertainty
relation

h2

2

R* > )

with equality if and only if the state is of the form (3.17)
[37]. Let us denote the values of the varlances and cor-

(Az)*(Ap)? — (3.20)

relation of the stationary state (3.17) by o2 , and Rp.
Then
2 2 2 _ W
o2t - RE=" (3.21)
and
1—2iRo /R
= 3.22
p= 122k (3.22)

Since, from (3.19), B is a constant [to the extent that
the approximation (2.20) holds] the stationary values of
the variances and correlation must be those for which the
right-hand sides of (2.11)—(2.13) vanish. That is,

R

2
= +habcr +b2<hz —RO) —ad*ct =0, (3.23)

2
—V"(z)Ro — habo} + a® <fi4- - Rg) —b%0p =0, (3.24)

2

—a2v"(z) + %o _ 2a®Roo2 — 2b°Roos =0 .  (3.25)
m

These will be the most useful equations to work with in
the following section.

To see the complete solution in a particular case, let
V(z) = 0 and b = 0. The solution for 3 is then

p=-9 (% )/

where we have chosen the square root so that Ref3 > 0,
for normalizability of the state. It follows that

2 B 1/2 . A2ma? 1/2 R E
== \ 2maz R i » =g
3.

(3:27)

(3.26)

This a close to minimal uncertainty state, since it satisfies

I3
V2
The solution (3.26)—(3.28) is very similar to the solu-

tion obtained by Diési [28], but differs by some simple
numerical factors, e.g., he obtained

Op0s = (3.28)
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O\ 1/2
(02)Dissi = (W) , (3.29)
This difference is due to the fact that Didsi used an Ito
equation with a single real Wiener process, whereas the
Wiener process used here is complex.

The Didsi solution is also discussed in Ref. [38]. Some
stationary solutions to (1.3) for the harmonic oscillator
have also been found by Salama and Gisin [39], but their
choice of Lindblad operator differs from that used here.

Approximate stationary solutions to the Ito equation
(2.4), for general potentials, are currently being studied
by Brun et al. [40].

IV. A LOCALIZATION THEOREM

We now show that all solutions to the Ito equation tend
towards the stationary solution in the long-time limit.
The demonstration applies primarily to the case of linear
systems, but we will work with a general potential in
what follows, saving until the end the issue of the extent
to which that case is properly covered here.

We have shown that there is a two-parameter family of
stationary solutions, parametrized by the centers (), (p).
To prove that all solutions tend to stationary solution,
we will exploit the fact that the stationary solutions are
uniquely characterized by the statement that they are
the eigenfunctions of the operator

A=p—2ihB% , (4.1)

where (3 is the solution to Eq. (3.19). This means that
the stationary solutions are uniquely defined by the state-
ment that (AA)? = 0. We shall prove the desired result
by showing that (A A)? tends to zero, in the mean.

A number of “localization theorems,” showing that the
dispersion of certain operators decreases with time, in the
mean, have been proved by Gisin and Percival [18] and by
Percival [27]. None of these results is applicable to the
present case because their assumptions are too restric-
tive. They assume, for example, that the Hamiltonian
is zero (or negligible), or that the Lindblad operators
commute with the Hamiltonian. In brief, they assume
that the Hamiltonian plays no significant role. An im-
portant feature of the case considered in this paper is
that the stationary solutions are possible as a result of a
balance between the wave packet spreading induced by
the Hamiltonian and the localizing effect of the Lindblad
operators, and hence the role of the Hamiltonian cannot
be ignored. An argument for the local stability of the
stationary solution in the free particle case with b = 0
was given by Didsi [28], but this proves nothing about
arbitrary initial states.

Returning to the case at hand, we have

(AA)? =0(A,a)
(Ap)? + 41%|6* (Az)?
—2ih(B + B*)R — R*(B+ B*) .

(4.2)
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The rate of change of (AA)? in the mean, Md(AA)?,
is then easily computed from Egs. (2.11)—(2.13). It is
convenient to write

(Az)? =02(1+ X), (4.3)
(Ap)® =02(1+Y), (4.4)
R=Ry(1+2), (4.5)

hence the stationary solution is X =Y = Z = 0. One
then obtains

d(AA)?
M%)w =1 X + Y +csZ
ﬁz
—2a? (Rg + z)X2 —2b%03Y?
0.2
—2R2(a® 4+ b2 )22
o2
2 p2 2‘72 2
+4a’R3X Z + 4b ;ileOYZ , (4.6)
where
c1 = —k?a® + 2habol + 2RV () , (4.7)
2R, o2 o2
ca = —2habo? — —a—’z’ —B? 20—2 , (4.8)
_ 2R % op oy 4.9
03—7;2‘— 0 (:c), (-)

T

and we have used (3.21) to simplify some of these expres-
sions.

The coefficient ¢y, c2, c3 have a number of useful prop-
erties. First, from Eq. (3.24), it is easily seen that

h2 2
¢1 = — =~ — 2a*R} — 2625 (4.10)
and thus ¢; < 0. Second, using Eq. (3.23),
o2 K2b? o2
=-2-2(ad%s2 +V®R: - — ) - R?* -2 . (411
C2 a,g (a O + 0 4 0'3: ( )
Using (3.21), twice, it then follows that
cy = —2a20'§0'12, — 2b2¢7: =c; . (4.12)

Third, ¢; and c3 are related as follows. From Eq. (3.25),
c3 may be written

o2 R2
c3 = 4R§ (az + _12’b2) = —22—0201
o2 oZo2

(4.13)

using (3.21) and (4.10). It follows that the linear terms
in (4.6) may now be written
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2R2

252
o020,

ClX + CzY + CgZ =C (X —+ Y — ) . (4.14)

Clearly (4.6) is zero at the stationary solution, but it
cannot be negative for arbitrary X, Y, and Z, because of
the presence of the linear terms. However, X, Y, and Z
are not arbitrary but must respect the uncertainty prin-
ciple [an expression of which is Eq. (3.20), for example].
A convenient way to implement this restriction is to note
that

2R3
o2

x

0<(AA)? =02(X+Y) -

z, (4.15)

with equality if and only if the state is a general Gaussian,
such as the stationary solution. From (4.14), it is clear
that

aX +cY +esZ = %(AA)z .
p

(4.16)

Since ¢; < 0, the linear terms are negative definite and
zero only at the stationary solution.

With some rearrangement of the quadratic terms, and
using (3.21),

2 2.2

m3B4)° a2 - Ra® w2 _ 202R3(X — Z)?

dt af,
RZ _\> A%°R2
2 4 0 0 72

—2b ap(Y — Ugtfg ) — 207 Z* .

(4.17)
We therefore deduce that
2

M% <0 (4.18)

with equality if and only if the solution is the stationary
solution. This completes the proof of localization.

As stated earlier, the stationary solutions to the Ito
equation are valid for general potentials as long as the
localization width is much less than the length scale on
which the potential varies, i.e., as long as the approxima-
tion (2.20) holds. This approximation becomes exact for
linear systems.

We have essentially assumed the approximation (2.20)
in proving the above localization theorem. This means
that the proof is strictly valid only for systems with
quadratic potentials. It cannot be valid for general poten-
tials because even if there exist approximate stationary
solutions for which the neglect of the higher derivative
terms of the potential is valid, there will always be initial
states for which (2.20) is not a valid approximation and
localization is therefore not guaranteed for these states.
For general potentials, therefore, the above proof implies
localization only for a rather limited class of initial states,
e.g., for states that are already close to the stationary
states.

Still, one intuitively expects that when approximate
stationary solutions exist for general potentials, there will
be situations in which most initial states will tend to-
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wards one of those solutions. Consider, for example, the
case of a double well potential with minima of distance
L apart, and suppose that the initial state has a width
greater than L, where L is chosen so that the approxi-
mation (2.20) is not valid. Then one can see from Eq.
(2.11) that a very large initial width will be reduced very
rapidly, in the mean, bringing it into the regime in which
the approximation (2.20) is valid. Our localization theo-
rem would then apply. We hope to investigate this point
further in a future publication.

Note that the stationary solutions and the localization
theorem do not depend on the sign of V'(z), and there-
fore will be valid for the upside-down harmonic oscillator
(which is sometimes used as a prototype for chaotic sys-
tems [41]).

V. LOCALIZATION RATE

It is also possible to estimate the rate of localization.
Clearly,

A UB4)?

— (5.1)

Cy 2
< 52 (A4)

4

and thus localization proceeds on a time scale of order
7 = 02/|c1|. Using (4.12), this becomes
7 = (2a%02 + 2b%02) 71 . (5.2)

In the quantum Brownian motion model for the free par-
ticle with b = 0, Egs. (2.5), (3.27) imply that

A\ 1/2
TN(;_M,) .

This, as noted previously, is the time scale on which ther-
mal fluctuations become comparable to the quantum ones
[42-44].

The above represents the minimum rate of localiza-
tion. The actual rate can be much higher, e.g., if X is
very large. Consider again the free particle with b = 0.
Suppose the initial state consists of a superposition of
wave packets a large distance ! apart. Then (Az)2 ~ [2,

(5.3)

R212

(AA)? ~ 4h%|8)*(Az)? ~ — (5.4)

and the dominant contribution to the localization rate is
the X2 term:

2 hz hz 2l4
M% ~ —2a? (Rg + Z)Xz ~— :4 . (5.5)
It follows that, in this case
1

For the quantum Brownian motion model, Eq. (2.5) then
implies that
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ﬁz

T~ kT (5.7)
Both of the time scales (5.3) and (5.7) are typically ex-
ceedingly small for macroscopic values of m, v, and T'.

As we shall show in detail in the next section, once the
solutions to the Ito equation have become localized, the
corresponding density operator has the form (1.5). The
localization time scale is therefore the time scale on which
the density operator approaches the form (1.5). Since the
process of decoherence of density operators is commonly
associated with the approach to approximately diagonal
form, it is natural to regard the localization time scale as
essentially the same thing as the decoherence time scale.

Note, however, that the so-called “decoherence time
scale” is sometimes taken to be (5.7) [14,45,15]. What
is clear from the above is that the rate of approach to
diagonal form depends on initial state, and that (5.7) is
appropriate only for initial states with very large (Az)2.

The connections between the time scales of decoher-
ence and thermal fluctuations has certainly been noted
before [43,42], but what is new here is the observation
that both of these things are in turn related to the time
scale of localization in quantum state diffusion.

VI. RECOVERY OF THE DENSITY OPERATOR

We now show how a density operator satisfying the
master equation may be recovered from the stationary
solutions to the Ito equation.

Each solution to the Ito equation is in general a func-
tional of the noise term ¢(t) over the entire history of
the solution’s evolution. Equation (2.1) indicates that
the density operator is formally recovered from these so-
lutions by averaging |¢)(1| over all possible histories of
the noise £(t), and we write
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p = M|e)(ve| -

A completely explicit form of this expression may be
found in Ref. [32] but it will not be needed here.

When the solutions |i)¢) are the stationary solutions,
(3.17), they depend on the noise £(¢) only through their
centers, (z),(p), which obey the Langevin equations
(2.9), (2.10). We may therefore rewrite (6.1) as

(6.1)

p=M / dpdad(p — 5)3(a — ) ¥pe) (Ypal ,  (62)

where we have again introduced the notation z = (z),
P = (p), and |1p,) denotes the stationary solution (3.17)
with centers p and g. The £(¢t) dependence is now con-
tained entirely in p and Z, and Eq. (6.2) may be trivially
rewritten

p= /dp daf(p,q:t)[¥pa) (¥pal » (6.3)

where
f(p,q,t) = Mé(p—p)é(q — ) .

The weight f(p,q,t) is non-negative and satisfies

(6.4)

/dpdqf(p,q,t) =1. (6.5)
It is in fact the solution to the Fokker-Planck equation
corresponding to the Langevin equations. This Fokker-
Planck equation is readily derived as follows. First note
that

f+df =Mé(p—p—dp)é(q —z — dz) . (6.6)

Now expanding the § functions to second order, we have

f+df = M(5(p —p)d(q—z) —dzd(p—p)d'(q — %) — dpd’'(p — p)é(q — )

1
+%da-c26(p —p)8"(a—2) +dpdz &' (p — p)¥'(a - 2) + 5dp*" (p — P)S(a — f)) :

We may now use the Langevin equations for £ and p,
and also pull the derivatives outside the mean M: for
example,

I

Mldzs(o—7)8'(a — ) = M (o0 - p) 55— 3) ) o

POf .

—r (6.8)

We thus obtain the Fokker-Planck equation

(6.7)
[
of p Of 1 O of
- == = 4+ V'(q)== + 2hab—
ot m 8q +V(9) Op + Op
% f 8%f
29°T 20°J
+Ho D) 3 + ot D) 55
+2Relo(z, L)o (L, p)) 22 (6.9)
elo(z, D op0g .
The coefficients of the second derivative terms are
h2a?
lo(p, L)|* = a®R} + b%c) — habo? + = (6.10)
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. A2b2

lo(x,L)|? = b*R% + a*02 — habo? + 4 (6.11)

2Re[o(z,L)o(L,p)] = 2a*Ryo? + 2b2¢712J — 2habRy .

(6.12)

We have 2hab = 2v, and for high temperature, the
dominant term of the three second derivative terms is
the first one, which has a coefficient:

lo(p, L)|? ~ 2m~kT . (6.13)

The resulting Fokker-Planck equation is well known [46].
All solutions (for potentials for which e¥/*T js normal-
izable) tend towards the stationary solution

f(p,q)=NexP<_ P’ V_(q_))

2mkT kT (6.14)

like e~ ", where IV is a normalization factor. For sim-
plicity consider now the harmonic oscillator case V(q) =
1mw?q®. Then the integrations ov d be d

3 . g er p and ¢ may be done

explicitly, with the result

p(z,y) = exp (—I—%L(:L' —y)? - %—Zi*)(wz + yz))

(6.15)

up to a normalization factor, where

mw2

A= ST

+8+p6*.

(6.16)

For large temperature, this is readily shown to be a ther-
mal state [47]. Similar results are expected to hold for
the case of more general potentials.

To summarize, an initial density operator approaches
the form (6.3) on the localization time scale, i.e., typi-
cally very quickly. On much longer time scales, it will
then relax to an equilibrium density operator, when one
exists for the system (it does not for the free particle, for
example).

Note that although the above derivation of the asymp-
totic form (6.3) strictly concerned pure initial states, it
is readily extended to mixed initial states by writing the

D(Qa Q,) = TI'(Pa.. (tn) tt ch (tl)pPa{ (tl) o Pai‘ (tn)) )
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initial state in a diagonal basis,

po =3 caln)nl (6.17)

and then applying the above to each initial state |n)(n|.
One thus finds that the density operator tends to form
(6.3), with f(p,q,t) of the form

f(p7 q, t) = Ecnfn(pa Q7t) ’

n

(6.18)

where f,(p,q,t) is the solution to the Fokker-Planck
equation corresponding to the initial state |n)(n|.

As a final comment, note that any density operator
may be written in the form (6.3), for some function
f(p,q)—this is a property of the coherent states [36].
What is special about the particular function f(p,gq,t)
derived here is that it is non-negative, and that it obeys
the Fokker-Planck equation (6.9). It may therefore rea-
sonably be interpreted as a phase space probability dis-
tribution. (See Ref. [48] for related work on this point.)

VII. CONNECTION WITH THE DECOHERENT
HISTORIES APPROACH

As shown in Ref. [32], there is a close connection be-
tween the quantum state diffusion approach to open sys-
tems and the decoherent histories approach. In this sec-
tion, we use the results of the previous sections to exem-
plify and amplify this connection.

The primary mathematical aim of the decoherent his-
tories approach is to assign probabilities to the possible
histories of a closed system [4,29-31,49]. The approach
is, however, applicable to open systems since they may
be regarded as subsystems of a large closed system. A
quantum-mechanical history is defined by an initial state
po at time t = to together with a string of projection op-
erators P,, - -+ P, acting at times ¢, - - - t,, characteriz-
ing the possible alternatives of the system at those times.
The projections are exhaustive, > P, = 1, and exclu-
sive, Py Pg = 6,3Py. Because of interference, most sets
of histories for a closed system cannot be assigned prob-
abilities. The interference between pairs of histories in a
set is measured by the so-called decoherence functional:

(7.1)

where P,, (tx) = exp(——%H tr) Po exp(%H tr), H is the Hamiltonian of the closed system, and o denotes the string
aq - a,. When
D(ngl) ~0 (7'2)
for all pairs a # o', interference may be neglected, and the set of histories is then said to be decoherent. One may
then assign the probability p(a) = D(a,a) to the history, which may be shown to obey the sum rules of probability
theory.
For a given Hamiltonian and initial state, one’s initial aim is to find those histories for which the decoherence
condition is satisfied. In general, it is satisfied only by histories which are coarse-grained, which loosely speaking
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means that the projections at each moment of time give a less than complete description of the system. For open
systems, a natural coarse graining is to focus only on the properties of the distinguished system itself, while ignoring
the environment. This involves using projections of the form, P, ®I¢ at each moment of time, where P, is a projection
onto the distinguished subsystem and I¢ denotes the identity on the environment. Assuming that the initial density
operator factorizes, the trace over the environment may be carried out explicitly in the decoherence functional (7.1),

and, in the regime in which a Markovian approximation holds, it then has the form

D(a, o) = Tr(Pa,_

n—1

1Kt:_1 [Pa

where the trace is now over the distinguished subsystem
only. The quantity K::“ is the reduced density opera-
tor propagator associated with the master equation (1.1),
pt = K§[po)-

The results of the previous sections have provided us
with some information about the density operator propa-
gator, and we can use this information to establish some
properties of the decoherence functional (7.3).

We have seen that any density operator will tend, on a
typically very short time scale, to the form (6.3), in which
it is approximately diagonal in a set of phase space local-
ized states. Once in that form, under further evolution
its form will be preserved and the only change will be
that the function f(p,q,t) will evolve according to the
Fokker-Planck equation (6.9).

Take the projection operators in the decoherence func-
tional to be phase space projectors, of the form

Po= /r  da dalta) Wpal (7.4)

where |1pq) are the generalized coherent states (3.17),
and are eigenstates of the operator (4.1). These quanti-
ties are not exact projection operators, but will be ap-
proximate projectors if the phase space region I', is suf-
ficiently large, and if its boundary is sufficiently smooth
[30]. They have the property that Py |ipq) = |¥pq), if P, q
lie in the phase space cell T'y, and Py|t)pq) = 0 otherwise.
Again this approximation should be valid if T',, is suffi-
ciently large compared to the phase space area occupied
by the generalized coherent states (which is of order ).

Consider the time evolution from ty to ¢t; in the deco-
herence functional. Clearly if this time interval is greater
than the localization time it follows from the results of
Sec. VI that the density operator will evolve into the form

K [po] = / dpdaf(p, a, 1)l Upa)(pal - (7.5)

because it is approximately diagonal in the coherent
states, it is easy to see that

|

PalK:; [P0 Py =~ / dp1dg: f(p1, 41, t1) [ ¥pras) (Ypran | -

1

: Kttlz PaxK:;[pO]Pa'l) o 'PaLgl]Pan) ’

(7.3)

Pal Ktt; [p]Pa'l ~0 (7'6)
if a1 # o). Keeping only the diagonal terms, a; = of,
and evolving to time tz, the (unnormalized) density op-
erator P, K{![p]Ps, should again evolve into approxi-
mately diagonal form, and again we get

Poy K2 [Poy K12 [p) P Py = 0 (7.7)

if a2 # of. Continuing in this way for the entire history,
it is easy to see that we will have approximate decoher-
ence if the projections at each moment of time are taken
to be phase space projectors. We have not estimated the
degree of approximate decoherence (and this tends to be
rather involved in general), but we expect it to be good
if the size of the phase space cells is much larger than
h, and if the time between projections is longer than the
localization time. We therefore find that localization in
quantum state diffusion and decoherence of histories in
the decoherent histories approach occur in the same vari-
ables.

This conclusion is in agreement with the general con-
nection between quantum state diffusion and decoherent
histories outlined in Ref. [32], but it also extends it some-
what. There, it was argued that localization and decoher-
ence tend to occur in the Lindblad operators. Here, the
Lindblad operator is essentially position, but we have ac-
tually obtained the stronger conclusion that localization
or decoherence occurs in the operator (4.1), and hence,
approximately, in both position end momentum. (Note
that the Lindblad operator has a small momentum part
added, but this is not the primary source of momentum
localization. Rather, it is the interplay between the posi-
tion part of the Lindblad operator and the Hamiltonian,
as discussed earlier.)

Given approximate decoherence, we now consider the
probabilities for histories, given by the diagonal elements
of the decoherence functional. From Eq. (7.5), and from
the properties of the phase space projections, it follows
that

(7.8)

Now consider the evolution from ¢; to t;. We have, from Sec. VI,

K ([$pras) (Ypras|) = / dpadanf (P2, 92, t21P1, 01 81) [Upaga) Ppacal

(7.9)
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where f(p2, g2, t2|p1,q1,%t1) is the solution to the Fokker-Planck equation satisfying the initial condition

f(p2,92,t1|p1,q1,t1) = 6(p2 — p1)6(q2 — q1) -

(7.10)

f(p2,q2,t2|p1,41,t1) is therefore the Fokker-Planck propagator, i.e., the probability of finding the particle at p2, ¢z at
time t3, given that it was at p;, ¢ at time ¢;. Assembling (7.8) and (7.9), it follows that

Py K2 [Pay K2 [00] Poy | Py /P dpadaz /

Continuing in this way for the entire history, one finds that

o) = [

an

dp1dq: f(p2, 42, t2|P1, 92, t1)

@1

Xf(p1, ql’t1)|¢P1q1><¢P1¢11| . (711)
dprndqy, - - /I“ dp1d£I1f(Pm dn, tnlpn—lv Qn—l’tn—l)
X -+« f(p2, 92, t2|P1, a1, 1) f(P1, 01, t1) - (7.12)

This is the desired result. Equation (7.12) is the proba-
bility that a particle evolving according to the stochastic
process described by the Fokker-Planck equation (6.9)
will be in the sequence of phase space cells 'y, -+ T, at
times tq---t,.

This result is in agreement with the probabilities one
would assign to histories in the quantum state diffusion
approach. For there, once the solutions to the Ito equa-
tion have become localized, the description of the motion
on scales greater than the localization width is classi-
cal Brownian motion according to the Langevin equa-
tions (2.9),(2.10). This is equivalent to the description
in terms of the Fokker-Planck equation (6.9). We have
therefore exemplified the second part of the connection
between quantum state diffusion and decoherent histories
put forward in Ref. [32], that the probabilities assigned
to histories in each approach are the same.

A further claim in Ref. [32] is that the degree of local-
ization is related to the degree of decoherence. Although
they are clearly related, it is difficult to check this here
because, as stated above, explicit computation of the de-
gree of approximate decoherence is quite difficult. This
point will be pursued in more detail elsewhere.

Finally, a property of the Fokker-Planck propagator as-
sociated with Eq. (6.9) is that it is peaked about classical
evolution (with dissipation). It follows that the probabil-
ity for histories (7.12) will be most strongly peaked when
the phase space cells lie along a classical path.

VIII. SUMMARY AND DISCUSSION

Our main results are as follows.

We have found stationary solutions to the Langevin-
Ito equation (2.4) which are exact for linear systems, and
approximate for nonlinear systems as long as the local-
ization width is much less than the scale on which the
potential varies. The solutions consist of localized wave
packets concentrated about a point in phase space un-
dergoing classical Brownian motion.

For linear systems, every initial state tends towards
one of the stationary solutions. For nonlinear systems,
some form of localization is plausible, and will certainly
be true in the neighborhood of the stationary solutions,
but our investigations on this point are inconclusive.

Localization proceeds on a time scale which is typically
very short. It is related to the time scale on which ther-
mal and quantum fluctuations become comparable, and
also to the decoherence time scale.

The density operator corresponding to the stationary
solutions may be reconstructed and has the form (1.5).
It is therefore diagonal on a set of phase space local-
ized states. For linear systems (and plausibly for many
nonlinear systems also) any initial density operator ap-
proaches this form on the localization time scale. On
longer time scales, when dissipation is present, the den-
sity operator approaches a thermal state (when it exists)
in the long-time limit, as expected on general grounds.
These results fulfill the aims set out in the Introduction,
concerning the density matrix approach to decoherence.

Our work also has some implications for the question
of approximate versus exact density matrix diagonaliza-
tion. As discussed in the Introduction, it is often held
important in the context of decoherence studies to find
the basis in which the density matrix is diagonal. This
can of course always be done, since the density opera-
tor is a Hermitian operator, but the basis in which p is
exactly diagonal is generally nontrivial, i.e., it does not
usually consist of the eigenstates of a simple operator.
Furthermore, the basis consists of eigenstates of a differ-
ent operator at each moment of time.

Here, we have shown that the quantum state diffusion
approach naturally leads to a basis in which the den-
sity matrix is approzimately diagonal. The basis states
are the eigenstates of a simple operator, the same oper-
ator at each moment of time. There therefore appears
to be much to be gained by relaxing the condition of
eract diagonality. Corresponding to these exactly and
approximately diagonalizing bases, there will be exactly
and approximately decoherent set of histories in the de-
coherent histories approach. In Sec. VII, we exhibited
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the approximately decoherent set.

The bases of approximate and exact diagonality do
not appear to be “close” in any sense. For example,
for a Gaussian density operator (in the position repre-
sentation), the exactly diagonal basis consists of Hermite
polynomials multiplied by Gaussians (similar to energy
eigenstates of the harmonic oscillator) [5], whereas the
approximately diagonal one consists of phase space lo-
calized states. (See also Ref. [50] for examples of dif-
ferent bases in which the density matrix is diagonal.)
This suggests that the corresponding exactly decoherent
set of histories is not necessarily “close” to the approx-
imately diagonal one, somewhat contrary to the expec-
tation sometimes expresses [51] (although it is not clear
whether there are other exactly decoherent sets of histo-
ries that are close to the approximate one).

The basis of states picked out by the QSD approach ap-
pears to be “natural,” in the sense that they correspond
to the trajectories that would actually be observed in
an individual experiment, whereas the exactly diagonal
basis does not, in general. Correspondingly, the approx-
imately decoherent set of histories may seem to be more
“natural” than the exactly decoherent set. The question
of whether one is in any sense preferred over the other
is, however, a subtle one. It depends on the sort of pre-
dictions one wishes to make, and on the extent to which
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the simplified situation consisting of a distinguished sys-
tem coupled to an environment is really part of a much
larger universe in which there may be adaptive systems
that can measure different properties of the distinguished
subsystem [4].

The sum up, the model described in this paper illus-
trates the connection between the intuitive pictures and
physical predictions provided by the quantum state dif-
fusion approach, density matrix approaches, and the de-
coherent histories approach. In our model, localization
in quantum state diffusion, diagonalization in the density
matrix approach, and decoherence of histories in the de-
coherent histories approach all occur under the same con-
ditions and are essentially the same thing, for each is con-
cerned with the conditions under which “definite proper-
ties” may be assigned to the system. Furthermore, the
probabilities assigned to histories in the quantum state
diffusion approach and the decoherent histories approach
approximately coincide.
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